EP1333015A2 - Procédé semi-continu d'obtention d'un chargement explosif composite à matrice polyuréthanne, ledit procédé mettant en oeuvre deux composants - Google Patents

Procédé semi-continu d'obtention d'un chargement explosif composite à matrice polyuréthanne, ledit procédé mettant en oeuvre deux composants Download PDF

Info

Publication number
EP1333015A2
EP1333015A2 EP03290123A EP03290123A EP1333015A2 EP 1333015 A2 EP1333015 A2 EP 1333015A2 EP 03290123 A EP03290123 A EP 03290123A EP 03290123 A EP03290123 A EP 03290123A EP 1333015 A2 EP1333015 A2 EP 1333015A2
Authority
EP
European Patent Office
Prior art keywords
component
process according
components
explosive
constituents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03290123A
Other languages
German (de)
English (en)
Other versions
EP1333015B1 (fr
EP1333015A3 (fr
Inventor
Jean-Paul Augier
Bernard Mahe
Alain Bonnel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurenco SA
Original Assignee
Societe Nationale des Poudres et Explosifs
Eurenco France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale des Poudres et Explosifs , Eurenco France SA filed Critical Societe Nationale des Poudres et Explosifs
Priority to SI200331729T priority Critical patent/SI1333015T1/sl
Publication of EP1333015A2 publication Critical patent/EP1333015A2/fr
Publication of EP1333015A3 publication Critical patent/EP1333015A3/fr
Application granted granted Critical
Publication of EP1333015B1 publication Critical patent/EP1333015B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0058Shaping the mixture by casting a curable composition, e.g. of the plastisol type
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Definitions

  • the present invention is in the field military, particularly in the area of explosive ordnance, such as bombs and shells.
  • a pyrotechnic composition functionally detonable consisting of a matrix solid polymer, in general polyurethane, charged, said filler being pulverulent and containing a filler explosive nitrate organic, for example hexogen, octogen, ONTA (oxynitrotriazole), or mixture of at least two of these compounds.
  • the dough When the mixture is complete, the dough should be used in a rather short period of time (pot life).
  • pot life The lengthening of pot life by a reduction in the rate of crosslinking catalyst has as a counterpart a increased polymerization time, the temperature being limited, inter alia, by the pyrotechnic nature of certain constituents.
  • J.M. TAUZIA in a communication entitled “Some comments on Processing Energetic Materials” at Symposium “Compatibility and Processing” organized by the American Defense Prepardness Association (ADPA) October 23-25, 1989 in Virginia Beach (United States) suggests, to solve this problem, a method two-component in which 2 polymeric components chemically stable and approximately same charge rate and the same viscosity are all first made from the constituents, so discontinuous in kneaders.
  • a first drawback is that it turns out to be very delicate to continuously mix the 2 components pasty to obtain a homogeneous product.
  • a second disadvantage is that the 2 components are pyrotechnically active (presence of explosive) and therefore must all 2 beings made and stored in secure facilities.
  • a third disadvantage is that the matrix solid polymeric composite explosive eventually obtained is different from what we obtain, with the same constituents in the same proportions, according to the classic "batch” process. Indeed, according to TAUZIA, the isocyanate component is polymeric. The fact of to prepare, intermediately, a prepolymer isocyanate from the starting isocyanate monomer a as a consequence, obtaining a polyurethane matrix solid different from that obtained by the process "Batch” by directly mixing all the monomer isocyanate and all the hydroxyl prepolymer.
  • the main object of the present invention is an improvement of this two-component process and proposes a two-component semi-continuous process for obtaining a explosive composite charge with polyurethane matrix, presenting neither the disadvantages of the "batch" process conventional or the aforementioned disadvantages of the method semi-continuous two-component system described by J.M. TAUZIA.
  • the present invention object a semi-continuous process of obtaining a composite explosive charge consisting of a matrix solid polyurethane loaded with a solid charge, powdery and comprises at least one nitrated explosive organic, by introducing into a mold a pasty explosive composition then crosslinking of this composition, said composition being obtained by mixing constituents comprising essentially a polyol prepolymer, a plasticizer, a polyisocyanate monomer and a solid filler powder comprising at least one nitrated explosive organic.
  • components A and B do not have the same viscosity, that one is pasty and includes the total charge and polyol prepolymer, and that the other is liquid and includes all the monomer polyisocyanate, such as, without chemical modification, especially without prepolymerization using a polyol.
  • the physicochemical properties, mechanical, detonation and product vulnerability are identical to those of the product obtained according to the classic "batch" process from the same constituents in the same proportions, which avoids a penalizing requalification of the product.
  • Preparation operations for components A and B are totally independent of mixing operations components A and B and casting and can be performed during masked times. These components A and B can be stored if needed for several weeks before being mixed.
  • the process according to the invention is moreover totally independent of pot life from the fact that we mix quickly and continuously small amounts of components A and B, which increases the percentage of crosslinking catalyst and decrease accordingly the crosslinking duration of the pasty explosive composition in the mold and / or carry out this crosslinking at a temperature lower.
  • composition explosive paste is obtained from the constituents used according to the previous methods and which are well known to those skilled in the art.
  • These constituents essentially comprise a polyol prepolymer, a plasticizer, a monomer polyisocyanate and a powdery filler comprising at least less an organic nitro explosive.
  • the sum of the contents of weight in polyol prepolymer, plasticizer, monomer polyisocyanate and powdery filler represents between 98% and 100% of all constituents.
  • organic nitro explosive is conventionally understood to mean an explosive selected from the group consisting of aromatic nitro explosives (comprising at least one C-NO 2 group , the carbon atom being part of an aromatic ring) , nitric ester explosives (comprising at least one CO-NO 2 group ) and nitramine explosives (comprising at least one CN-NO 2 group ).
  • the organic nitro explosive is selected from the group consisting of hexogen, octogen, pentrite, 5-oxo 3-nitro 1,2,4-triazole (ONTA), triaminotrinitrobenzene, nitroguanidine and mixtures thereof, that is all mixtures of at least two of the above compounds.
  • the nitrated explosive organic is selected from the group consisting of hexogen, octogen, ONTA and mixtures thereof.
  • the explosive content organic nitrate is between 15% and 90% by weight compared to the composite explosive and the powdery solid charge is between 75% and 90% by weight relative to the composite explosive.
  • the powdery solid filler consists only of organic nitro explosive.
  • the solid charge powder also includes at least one other compound as the organic nitrate explosive.
  • a metal reducing agent preferably selected from the group consisting of by aluminum, zirconium, magnesium, tungsten, boron and their mixtures.
  • the reducing metal is aluminum.
  • the reducing metal content may for example be between 0% and 35% by weight relative to the composite explosive.
  • the powdery filler may also comprise in combination or not with a reducing metal, a mineral oxidant, preferably selected from the group constituted by ammonium perchlorate, which is particularly preferred, potassium perchlorate, ammonium nitrate, sodium nitrate and their mixtures.
  • a mineral oxidant preferably selected from the group constituted by ammonium perchlorate, which is particularly preferred, potassium perchlorate, ammonium nitrate, sodium nitrate and their mixtures.
  • the mineral oxidant content may for example be between 0% and 45% by weight compared to the explosive composite.
  • the powdery solid charge comprises at least least one compound other than the organic nitro explosive
  • this other compound is preferably chosen from group consisting of ammonium perchlorate, aluminum and their mixtures.
  • the polyol prepolymer is a more or less viscous liquid.
  • His mass number-average molecular weight (Mn) is preferably between 500 and 10,000 and is preferably chosen in the group consisting of polyisobutylenes polyols, polybutadienes polyols, polyethers polyols, polyesters polyols and polysiloxanes polyols. It is particularly preferred to use a polybutadiene with hydroxyl endings.
  • the polyisocyanate monomer is a liquid of chosen from the group consisting of the toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), dicyclohexylmethylene diisocyanate (MDCI), hexamethylene diisocyanate (HMDI), trihexane biuret isocyanate (BTHI), 3,5,5-trimethyl-1,6-hexamethylene diisocyanate, and mixtures thereof.
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • MDCI dicyclohexylmethylene diisocyanate
  • HMDI hexamethylene diisocyanate
  • BTHI trihexane biuret isocyanate
  • IPDI In a particularly preferred manner, IPDI or MDCI.
  • the plasticizer is also a liquid, preferably a monoester such as pelargonate isodecyl (IDP) or a polyester selected from the group consisting of phthalates, adipates, azelates and acetates.
  • a monoester such as pelargonate isodecyl (IDP)
  • a polyester selected from the group consisting of phthalates, adipates, azelates and acetates.
  • phthalates preferably dioctyl phthalate (DOP)
  • alkyl azelates such as azelate dioctyl (DOZ)
  • DOA dioctyl adipate
  • all the constituents may also include least one additive selected from the group consisting of crosslinking catalysts (reaction catalysts NCO / OH), wetting agents, antioxidants and binder-filler adhesion agents.
  • crosslinking catalysts reaction catalysts NCO / OH
  • wetting agents antioxidants
  • binder-filler adhesion agents binder-filler adhesion agents
  • DBTL dibutyldilaurate tin
  • any other well known catalyst of the skilled person including other compounds organic tin such as a stannous salt of an acid carboxylic acid, a trialkyltin oxide, a dihalide of dialkyltin or a dialkyltin oxide.
  • organic tin such as a stannous salt of an acid carboxylic acid, a trialkyltin oxide, a dihalide of dialkyltin or a dialkyltin oxide.
  • an amine as catalyst tertiary, including trialkylamine, or an organic compound of bismuth, such as Triphenylbismuth.
  • the wetting agent preferably a lecithin such as soy lecithin, or a siloxane.
  • antioxidant preferably ditertiobutylparacresol (Ionol) or 2,2'-methylene 4-methyl-6-tert-butylphenol (MBP5).
  • Binder-filler adhesion agent is preferably used triethylene pentamine acrylonitrile (TEPAN), or certain compounds derived from silanols such as triethoxysilyl-3-propyl succinic anhydride (C 13 H 24 O 6 Si).
  • TEPAN triethylene pentamine acrylonitrile
  • silanols such as triethoxysilyl-3-propyl succinic anhydride (C 13 H 24 O 6 Si).
  • Constituents may also include a extender compound polyurethane polymer chain.
  • This compound is generally a polyol monomer of low mass, less than about 300, preferably one triol such as trimethylolpropane (TMP) or a diol such than dipropylene glycol.
  • TMP trimethylolpropane
  • diol such than dipropylene glycol.
  • component A comprises the all the plasticizer.
  • component B consists solely of the polyisocyanate monomer.
  • component A When the constituents comprise a compound chain expander, this one is imperatively necessary all included in component A.
  • constituents include at least one additive selected from the group consisting of crosslinking catalysts, wetting agents, antioxidants and binder-filler adhesion agents
  • this additive can be indifferently distributed between the 2 components A and B, but preferably it is completely included in component A.
  • the others components that the polyol prepolymer, the plasticizer, the polyisocyanate monomer and the solid charge powder are exclusively selected from the group consisting of the chain extender compounds, the crosslinking catalysts, wetting agents, antioxidants and binder-filler adhesion agents, the chain extensor compounds being in totality included in component A, the catalysts of crosslinking, wetting agents, agents antioxidants and binding-load adhesion agents can they be indifferently distributed between the 2 components A and B. However, they are preferably included in component A.
  • Components A and B are independently made, discontinuously, by simple homogeneous mixing, by example in a kneader, and are chemically stable, that is, there is no chemical reaction between the mixed constituents of each component, and that all constituents retain their identity structural, both during mixing and during subsequent and independent storage of components A and B.
  • component A and component B of such that the mass ratio component A / component B is constant and between 95/5 and 99.5 / 0.5, preferably between 98/2 and 99.2 / 0.8, for example neighbor of 99.
  • component A and component B are for example and preferably made in a static mixer, well-known mixer of the person skilled in the art, in the form of a pipe containing braces forcing the product passing through to to separate then to remix.
  • the components A and B are each contained in a pot equipped with a piston whose the setting in motion, using a motor, allows the supply of components A and B of a convergent located upstream of the static mixer, so that the convergent content pours into the mixer static.
  • the pressure on the mixture of components A and B in the convergent is preferably between 1MPa and 10MPa and the 2 pistons are preferably moved by the same engine.
  • the static mixer according to the invention is preferably consisting of several elements mounted in series, shaped like a pipe, having a diameter of preferably between 15mm and 60mm.
  • the explosive pasty composition with volume flow between 0.1l / min and 5l / min, better understood between 0.3l / min and 1l / min, for example near 0,5l / min.
  • the aforementioned preferred variant according to which the components A and B are each contained in a pot equipped with a piston allows very precise dosages and a very regular diet, but one can also, by For example, power the static mixer using metering pumps connected to the storage bins of components A and B.
  • the static mixer is generally provided with a double envelope to allow adjustment of the temperature.
  • Each element can be regulated at a temperature different.
  • the last element can for example be regulated at the temperature chosen for the crosslinking subsequent explosive paste in the molds, other upstream elements being regulated at a lower temperature.
  • Pots or bins containing components A and B may also be equipped with a heater.
  • component A and component B are mixed at a temperature included between 40 ° C and 80 ° C.
  • the composition explosive paste obtained after mixing the components A and B is introduced into a mold in which it undergoes then a thermal crosslinking, in a furnace by example.
  • This crosslinking results from the formation of bridges urethanes because of the reaction of the functions hydroxyls of the polyol prepolymer and optionally chain extender compound with functions isocyanates of the polyisocyanate monomer.
  • the speed of crosslinking increases with temperature and grade as a catalyst.
  • the mold is constituted by the envelope, generally metallic, of a munition, for example a shell.
  • the pasty explosive composition from the mixer is introduced automatically in a large series of molds, for example several hundreds of shells envelopes.
  • the crosslinking temperature of the explosive composition pastry introduced into the molds is included between 15 ° C and 80 ° C.
  • the temperature crosslinking is identical or similar to that to which component A and component B are mixed.
  • Example 1 Obtaining a composite explosive charge with polyurethane matrix loaded with hexogen
  • Component B is made up of only isophorone diisocyanate (IPDI), that is to say polyisocyanate monomer.
  • IPDI isophorone diisocyanate
  • the continuous mixing between component A and component B is made in a static mixer consists of 13 elements mounted in series of length 32mm and diameter 32mm, after transfer of each of components A and B in a pot equipped with a piston.
  • the pot containing component A has a diameter of 300mm and a height of 250mm.
  • the pot containing component B has a 40mm diameter and a height of 250mm.
  • the setting in motion of the 2 pistons allows the supply of components A and B a convergent located upstream of the static mixer, so that on the one hand the component mass ratio A / component B is constant and equal to 99.14 / 0.86, and on the other hand that the contents of the convergent pours in the static mixer.
  • the pressure on the mixture of components A and B in the convergent is 2.5 MPa.
  • the whole installation ie including the 2 pots containing components A and B, the convergent and the 13 elements of the static mixer, is thermostated at 60 ° C.
  • the pasty explosive composition coming out of static mixer is poured, at the temperature about 20 ° C in metal molds of square section 80mm x 80mm and height 120mm, previously arranged in a casing connected to a valve located at the outlet of the static mixer, the sealing box-valve being ensured by a rubber.
  • the dynamic viscosity of the explosive composition pasty at the outlet of the static mixer is 5800 poise.
  • This mold loading operation is carried out under partial vacuum of about 15mm Hg in the casing.
  • the molds After loading, the molds are introduced into an oven at 60 ° C. for 7 days, which makes it possible to crosslink the binder of the explosive composition and finally to obtain a composite explosive feed consisting of 12% by weight of polyurethane matrix and of 88% by weight of hexogen, whose density is 1.62 g / cm 3 .
  • the sensitivity to impact is 25 Joules.
  • This comparative example is not part of the invention. It was made for the sole purpose of show that the physico-chemical properties and mechanical properties of the composite explosive obtained according to bicomponent semi-continuous process object of the invention are identical to those of the composite explosive obtained from the same constituents, in the same proportions, according to the classic batch process hitherto used by those skilled in the art.
  • the dynamic viscosity of the dough is then 4800 poise.
  • the pasty explosive composition obtained has the same weight composition as obtained for the example 1.
  • This composition is then poured into molds identical to those used for Example 1, then crosslinked at 60 ° C in an oven.
  • the composite explosive obtained after crosslinking 7j at 60 ° C has a density of 1.62 g / cm 3 , the same value as that of the composite explosive obtained in Example 1.
  • the sensitivity to impact is 21 Joules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

L'invention se situe dans le domaine militaire des munitions explosives. Elle a pour objet un procédé semi-continu d'obtention d'un chargement explosif composite à matrice solide polyuréthanne chargée dont la charge est pulvérulente et comprend au moins un explosif nitré organique, par introduction dans un moule d'une composition explosive pâteuse puis réticulation thermique de cette composition. La composition est obtenue par mélange de constituants comprenant essentiellement un prépolymère polyol, un plastifiant, un monomère polyisocyanate et une charge solide pulvérulente comprenant au moins un explosif nitré organique. Plus précisément, on réalise tout d'abord, à partir de l'ensemble des constituants, 2 composants : un composant A pâteux comprenant la totalité du prépolymère polyol et la totalité de la charge solide pulvérulente, un composant B liquide comprenant la totalité du monomère polyisocyanate, le plastifiant étant indifféremment réparti entre les 2 composants A et B. On mélange ensuite, de façon continue, le composant A et le composant B de telle sorte que le rapport massique composant A / composant B soit constant et compris entre 95/5 et 99,5/0,5. Ce procédé simple et économique permet de s'affranchir, sans inconvénient, du compromis vie de pot / durée de cuisson de la composition.

Description

La présente invention se situe dans le domaine militaire, plus particulièrement dans celui des munitions explosives, telles que les bombes et les obus.
Elle a plus précisément pour objet un nouveau procédé d'obtention de chargements explosifs composites à matrice solide polyuréthanne.
On entend, de façon classique, par explosif composite, une composition pyrotechnique fonctionnellement détonable, constituée d'une matrice polymérique solide, en général polyuréthanne, chargée, ladite charge étant pulvérulente et contenant une charge explosive nitrée organique, par exemple de l'hexogène, de l'octogène, de l'ONTA (oxynitrotriazole), ou un mélange d'au moins deux de ces composés.
Les chargements explosifs composites et la façon de les obtenir sont par exemple décrits par J. QUINCHON, les poudres, propergols et explosifs, tome 1, les explosifs, Technique et Documentation, 1982, pages 190-192. La charge pulvérulente est mélangée dans un malaxeur à une résine polymérisable liquide, par exemple un prépolymère à terminaisons hydroxyles. On obtient une pâte qu'on peut couler dans un moule puis faire polymériser par cuisson. Par le choix et le réglable des agents de réticulation de la résine, des catalyseurs et d'autres additifs, on peut obtenir des pièces moulées de caractéristiques variées.
Ce procédé classique de malaxage de tous les constituants qui sont introduits et mélangés dans un malaxeur selon une séquence définie présente des inconvénients et limitations.
Lorsque le mélange est achevé, la pâte doit être utilisée dans un laps de temps assez bref (vie de pot). L'allongement de la vie de pot par une réduction du taux de catalyseur de réticulation a comme contrepartie une durée de polymérisation augmentée, la température étant limitée, entre autres, par la nature pyrotechnique de certains constituants.
Cette façon d'opérer nécessite donc un compromis technique entre la vie de pot et la durée de cuisson ainsi qu'un enchaínement obligatoire des séquences de malaxage et de coulée de la pâte.
Elle nécessite également un compromis économique entre la taille du malaxeur et la taille de l'objet moulé.
En effet, si ce procédé « batch » s'avère assez bien adapté pour fabriquer des gros objets tels que des mines sous-marines, des torpilles et des bombes, il s'avère par contre très pénalisant et coûteux pour fabriquer une grande quantité de petits objets moulés à forte cadence, par exemple pour fabriquer plusieurs centaines d'obus de diamètre de l'ordre 50 à 100mm contenant chacun quelques centaines de grammes à quelques kilos d'explosif composite à partir d'une malaxée de 1 à 3t de pâte.
Il est nécessaire, dans cette situation, d'avoir une vie de pot élevée pour pouvoir charger de nombreuses munitions avec la même malaxée, ce qui a comme contrepartie une durée de réticulation de la pâte particulièrement longue et un coût très élevé du cycle de fabrication à cause de la durée d'immobilisation du matériel et des personnes.
Si on réduit la taille du malaxeur, on réduit le nombre de munitions à remplir par malaxée, ce qui est économiquement pénalisant.
L'homme du métier a cherché à sortir de ce carcan vie de pot / durée de cuisson et de cet enchaínement obligatoire et précis des opérations de malaxée et coulée.
J.M. TAUZIA, lors d'une communication intitulée « Some comments on Processing Energetic Matérials» au symposium «Compatibility and Processing » organisé par l'American Defense Prepardness Association (ADPA) les 23-25 Octobre 1989 à Virginia Beach (Etats-Unis) suggère, pour résoudre ce problème, un procédé bicomposant dans lequel 2 composants polymériques chimiquement stables et présentant approximativement le même taux de charge et la même viscosité sont tout d'abord réalisés à partir des constituants, de façon discontinue dans des malaxeurs.
Ces 2 composants pâteux sont ensuite mélangés de façon continue avec un rapport massique proche de 1.
Ce procédé bicomposant, s'il permet bien de s'affranchir du compromis vie de pot / durée de cuisson et rend possible le stockage des 2 composants pendant plusieurs semaines, présente plusieurs inconvénients.
Un premier inconvénient est qu'il s'avère très délicat de mélanger de façon continue les 2 composants pâteux pour obtenir un produit homogène.
Un second inconvénient est que les 2 composants sont pyrotechniquement actifs (présence de charges explosives) et qu'il doivent donc tous les 2 êtres réalisés puis stockés dans des installations sécurisées.
Un troisième inconvénient est que la matrice polymérique solide de l'explosif composite finalement obtenu est différente de celle que l'on obtient, avec les mêmes constituants dans les mêmes proportions, selon le procédé « batch » classique. En effet, selon TAUZIA, le composant isocyanate est polymérique. Le fait de préparer, de façon intermédiaire, un prépolymère isocyanate à partir du monomère isocyanate de départ a pour conséquence l'obtention d'une matrice polyuréthanne solide différente de celle obtenue selon le procédé « batch » en mélangeant directement tout le monomère isocyanate et tout le prépolymère hydroxyle.
Cette différence de structure de la matrice solide polyuréthanne entraíne des différences indésirables de propriétés mécaniques et/ou détoniques, d'où nécessité d'une requalification très coûteuse et pénalisante du produit final.
Le procédé bicomposant décrit par J.M. TAUZIA n'est donc pas totalement satisfaisant.
La présente invention a principalement pour objet un perfectionnement de ce procédé bicomposant et propose un procédé semi-continu bicomposant d'obtention d'un chargement explosif composite à matrice polyuréthanne, ne présentant ni les inconvénients du procédé « batch » classique, ni les inconvénients précités du procédé semi-continu bicomposant décrit par J.M. TAUZIA.
Il a été découvert, de façon inattendue, qu'on pouvait obtenir un chargement explosif composite à matrice polyuréthanne selon un procédé semi-continu bicomposant, simple et peu onéreux, ne nécessitant pas de requalification du produit final, grâce à une combinaison bien précise de caractéristiques techniques relatives à la répartition des constituants dans les 2 composants et au rapport massique de mélange des 2 composants.
Plus précisément, la présente invention a pour objet un procédé semi-continu d'obtention d'un chargement explosif composite constitué d'une matrice solide polyuréthanne chargée dont la charge est solide, pulvérulente et comprend au moins un explosif nitré organique, par introduction dans un moule d'une composition explosive pâteuse puis réticulation thermique de cette composition, ladite composition étant obtenue par mélange de constituants comprenant essentiellement un prépolymère polyol, un plastifiant, un monomère polyisocyanate et une charge solide pulvérulente comprenant au moins un explosif nitré organique.
Ce procédé selon l'invention est caractérisé en ce que, pour obtenir la composition explosive pâteuse :
  • on réalise tout d'abord, de façon discontinue, à partir de l'ensemble des constituants, par simple mélange homogène, 2 composants :
    • un composant A pâteux comprenant la totalité du prépolymère polyol et la totalité de la charge pulvérulente,
    • un composant B liquide comprenant la totalité du monomère polyisocyanate,
      le plastifiant étant indifféremment réparti entre les 2 composants A et B,
  • on mélange ensuite, de façon continue, le composant A et le composant B de telle sorte que le rapport massique composant A /composant B soit constant et compris entre 95/5 et 99,5/0,5.
Il faut bien noter, selon l'invention, outre le rapport massique composant A /composant B bien particulier, le fait que les composants A et B n'ont pas la même viscosité, que l'un est pâteux et comprend la totalité de la charge et du prépolymère polyol, et que l'autre est liquide et comprend la totalité du monomère polyisocyanate, tel que, sans modification chimique, notamment sans prépolymérisation à l'aide d'un polyol.
Cette combinaison de caractéristiques techniques distinctives comparativement au procédé semi-continu bicomposant de l'état de la technique a pour effet technique de supprimer tous les inconvénients précités, et de rendre le procédé particulièrement simple et peu coûteux.
Seul le composant A est pyrotechniquement actif, ce qui limite considérablement les contraintes de sécurité, et le mélange des composants A et B s'homogénéise facilement.
Par ailleurs, les propriétés physico-chimiques, mécaniques, détoniques et de vulnérabilité du produit final sont identiques à celles du produit obtenu selon le procédé « batch » classique à partir des mêmes constituants dans les mêmes proportions, ce qui évite une requalification pénalisante du produit.
Les opérations de préparation des composants A et B sont totalement indépendantes des opérations de mélange des composants A et B et de coulée et peuvent être réalisées durant des temps masqués . Ces composants A et B peuvent être stockés si besoin est durant plusieurs semaines avant d'être mélangés.
Le procédé selon l'invention est de plus totalement indépendant de la vie de pot du fait que l'on mélange rapidement et de façon continue de petites quantités des composants A et B, ce qui permet d'augmenter le pourcentage de catalyseur de réticulation et de diminuer en conséquence la durée de réticulation de la composition explosive pâteuse dans le moule et/ou de réaliser cette réticulation à une température inférieure.
Une réticulation à la température ambiante ( 20°C) est même possible, ce qui est particulièrement avantageux.
Selon la présente invention, la composition explosive pâteuse est obtenue à partir des constituants usuels utilisés selon les procédés antérieurs et qui sont bien connus de l'homme du métier.
Ces constituants comprennent essentiellement un prépolymère polyol, un plastifiant, un monomère polyisocyanate et une charge pulvérulente comprenant au moins un explosif nitré organique.
Par «essentiellement », il faut comprendre que les constituant précités sont toujours présents et représentent globalement plus de 90% en poids par rapport au poids total de la composition explosive pâteuse.
De façon préférée, la somme des teneurs pondérales en prépolymère polyol, plastifiant, monomère polyisocyanate et charge pulvérulente représente entre 98% et 100% de l'ensemble des constituants.
De façon générale, les états physiques, solide, liquide, pâteux, des constituants et des compositions doivent être compris, dans la présente description, comme étant les états physiques à la température ambiante (environ 20°C) et à la pression atmosphérique (environ 0,1 MPa).
On entend, de façon classique, par « explosif nitré organique », un explosif choisi dans le groupe constitué par les explosifs nitrés aromatiques (comportant au moins un groupement C-NO2, l'atome de carbone faisant partie d'un cycle aromatique), les explosifs esters nitriques (comportant au moins un groupement C-O-NO2) et les explosifs nitramines (comportant au moins un groupement C-N-NO2).
De façon préférée, l'explosif nitré organique est choisi dans le groupe constitué par l'hexogène, l'octogène, la pentrite, le 5-oxo 3-nitro 1,2,4-triazole (ONTA), le triaminotrinitrobenzène, la nitroguanidine et leur mélanges, c'est-à-dire tous les mélanges d'au moins deux des composés précités.
De façon particulière préférée, l'explosif nitré organique est choisi dans le groupe constitué par l'hexogène, l'octogène, l'ONTA et leurs mélanges.
Selon une variante préférée, la teneur en explosif nitré organique est comprise entre 15% et 90% en poids par rapport à l'explosif composite et la teneur en charge solide pulvérulente est comprise entre 75% et 90% en poids par rapport à l'explosif composite.
Selon une variante, la charge solide pulvérulente n'est constituée que d'explosif nitré organique.
Selon une autre variante, la charge solide pulvérulente comprend également au moins un autre composé que l'explosif nitré organique.
Elle peut par exemple comprendre un métal réducteur, de préférence choisi dans le groupe constitué par l'aluminium, le zirconium, le magnésium, le tungstène, le bore et leurs mélanges. De façon particulièrement préférée, le métal réducteur est l'aluminium.
La teneur en métal réducteur peut par exemple être comprise entre 0% et 35% en poids par rapport à l'explosif composite.
La charge pulvérulente peut également comprendre, en association ou non avec un métal réducteur, un oxydant minéral, de préférence choisi dans le groupe constitué par le perchlorate d'ammonium, qui est particulièrement préférée, le perchlorate de potassium, le nitrate d'ammonium, le nitrate de sodium et leurs mélanges.
La teneur en oxydant minéral peut par exemple être comprise entre 0% et 45% en poids rapport à l'explosif composite.
Lorsque la charge solide pulvérulente comprend au moins un autre composé que l'explosif nitré organique, cet autre composé est de préférence choisi dans le groupe constitué par le perchlorate d'ammonium, l'aluminium et leurs mélanges.
Selon la présente invention, le prépolymère polyol est un liquide plus ou moins visqueux. Sa masse moléculaire moyenne en nombre (Mn) est de préférence comprise entre 500 et 10 000 et est de préférence choisi dans le groupe constitué par les polyisobutylènes polyols, les polybutadiènes polyols, les polyéthers polyols, les polyesters polyols et les polysiloxanes polyols. On utilise de façon particulièrement préférée un polybutadiène à terminaisons hydroxyles.
Le monomère polyisocyanate est un liquide de préférence choisi dans le groupe constitué par le toluène diisocyanate (TDI), l'isophorone diisocyanate (IPDI), le dicyclohexylméthylène diisocyanate (MDCI), l'hexaméthylène diisocyanate (HMDI), le biuret trihexane isocyanate (BTHI), le 3,5,5-triméthyl 1,6-hexaméthylène diisocyanate, et leurs mélanges.
De façon particulièrement préférée, on utilise l'IPDI ou le MDCI.
Le plastifiant est également un liquide, de préférence un monoester tel que le pélargonate d'isodécyle (IDP) ou un polyester choisi dans le groupe constitué par les phtalates, les adipates, les azelates et les acétates. Parmi les polyesters, la triacétine, les phtalates d'alkyle tel que le phtalate de dioctyle (DOP), les azelates d'alkyle tel que l'azelate de dioctyle (DOZ) et les adipates d'alkyle tel que l'adipate de dioctyle (DOA) sont particulièrement préférés.
Outre les constituants essentiels précités, l'ensemble des constituants peut également comprendre au moins un additif choisi dans le groupe constitué par les catalyseurs de réticulation (catalyseurs de la réaction NCO/OH), les agents mouillants, les agents antioxydants et les agents d'adhésion liant-charge.
Comme catalyseur de réticulation, on utilise de préférence le dibutyldilaurate d'étain (DBTL), mais on peut aussi utiliser tout autre catalyseur bien connu de l'homme du métier, notamment d'autres composés organiques de l'étain tel qu'un sel stanneux d'un acide carboxylique, un oxyde de trialkylétain, un dihalogénure de dialkylétain ou un oxyde de dialkylétain. On peut citer par exemple le diacétate de dibutylétain, le diacétate de diéthylétain, le dioxyde de dioctylétain et l'octoat stanneux.
On peut aussi utiliser comme catalyseur une amine tertiaire, notamment une trialkylamine, ou bien encore un composé organique du bismuth, tel que le triphénylbismuth.
Comme agent mouillant, on utilise de préférence une lécithine telle que la lécithine de soja, ou un siloxane.
Comme agent antioxydant, on utilise de préférence le ditertiobutylparacrésol (Ionol) ou le 2,2'-méthylène bis 4-méthyl 6-tertiobutylphénol (MBP5).
Comme agent d'adhésion liant-charge, on utilise de préférence le triéthylène pentamine acrylonitrile (TEPAN), ou certains composés dérivés de silanols comme l'anhydride triéthoxysilyl-3-propyl succinique (C13H24O6Si).
Les constituants peuvent également comprendre un composé extenseur de chaíne polymérique polyuréthanne.
Ce composé est en général un monomère polyol de faible masse, inférieure à 300 environ, de préférence un triol tel que le triméthylolpropane (TMP) ou un diol tel que le dipropylèneglycol.
Selon la présente invention, on réalise tout d'abord, de façon discontinue, à partir de l'ensemble des constituants, par simple mélange homogène, 2 composants :
  • un composant A pâteux comprenant la totalité du prépolymère polyol et la totalité de la charge solide pulvérulente,
  • un composant B liquide comprenant la totalité du monomère polyisocyanate,
le plastifiant étant indifféremment réparti entre les 2 composants A et B.
De façon préférée, le composant A comprend la totalité du plastifiant.
De façon particulièrement préférée, le composant B est uniquement constitué du monomère polyisocyanate.
Lorsque les constituants comprennent un composé extenseur de chaíne, celui-ci est impérativement en totalité compris dans le composant A.
Lorsque les constituants comprennent au moins un additif choisi dans le groupe constitué par les catalyseurs de réticulation, les agents mouillants, les agents antioxydants et les agents d'adhésion liant-charge, cet additif peut être indifféremment réparti entre les 2 composants A et B, mais, de préférence, il est en totalité compris dans le composant A.
Selon une variante préférée, les autres constituants que le prépolymère polyol, le plastifiant, le monomère polyisocyanate et la charge solide pulvérulente sont exclusivement choisis dans le groupe constitué par les composés extenseurs de chaíne, les catalyseurs de réticulation, les agents mouillants, les agents antioxydants et les agents d'adhésion liant-charge, les composés extenseurs de chaíne étant en totalité compris dans le composant A, les catalyseurs de réticulation, les agents mouillants, les agents antioxydants et les agents d'adhésion liant-charge pouvant eux être indifféremment répartis entre les 2 composants A et B. Ils sont toutefois de préférence compris dans le composant A.
Les composants A et B sont indépendamment réalisés, de façon discontinue, par simple mélange homogène, par exemple dans un malaxeur, et sont chimiquement stables, c'est à dire qu'il n'y a aucune réaction chimique entre les constituants mélangés de chaque composant, et que tous les constituants conservent leur identité structurelle, aussi bien lors du mélange que lors du stockage ultérieur et indépendant des composants A et B.
Selon la présente invention, pour obtenir une composition explosive pâteuse, on mélange ensuite, de façon continue, le composant A et le composant B de telle sorte que le rapport massique composant A / composant B soit constant et compris entre 95/5 et 99,5/0,5, de préférence compris entre 98/2 et 99,2/0,8, par exemple voisin de 99.
Ce mélange continu entre le composant A et le composant B est par exemple et de préférence réalisé dans un mélangeur statique, mélangeur bien connu de l'homme du métier, en forme de conduite contenant des croisillons obligeant le produit qui y passe à se séparer puis à se remélanger.
Selon une variante préférée, les composants A et B sont chacun contenus dans un pot équipé d'un piston dont la mise en mouvement, à l'aide d'un moteur, permet l'alimentation en composants A et B d'un convergent situé en amont du mélangeur statique, de sorte que le contenu du convergent se déverse dans le mélangeur statique.
La pression sur le mélange des composants A et B dans le convergent est de préférence comprise entre 1MPa et 10MPa et les 2 pistons sont de préférence mûs par le même moteur.
Compte-tenu du rapport massique composant A / composé B élevé, il est intéressant de souligner qu'un tel équipement offre la possibilité d'enchaíner plusieurs pots du composant A pour le même pot de composant B, sans rupture du procédé continu.
Le mélangeur statique, selon l'invention, est de préférence constitué de plusieurs éléments montés en série, en forme de conduite, ayant un diamètre de préférence compris entre 15mm et 60mm.
On utilise par exemple entre 6 et 15 éléments de mélange, tels que ceux vendus dans le commerce et bien connus de l'homme du métier.
Selon une autre variante préférée, on obtient la composition explosive pâteuse avec un débit volumique compris entre 0,1l/min et 5l/min, mieux encore compris entre 0,3l/min et 1l/min, par exemple voisin de 0,5l/min.
La variante préférée précitée selon laquelle les composants A et B sont chacun contenus dans un pot équipé d'un piston permet des dosages très précis et une alimentation très régulière, mais on peut aussi, par exemple, alimenter le mélangeur statique à l'aide de pompes doseuses reliées aux bacs de stockage des composants A et B.
Le mélangeur statique est en général muni d'une double enveloppe afin de permettre un ajustement de la température.
Chaque élément peut être régulé à une température différente. Le dernier élément peut par exemple être régulé à la température choisie pour la réticulation ultérieure de la pâte explosive dans les moules, les autres éléments situés en amont étant régulés à une température inférieure.
Les pots ou les bacs contenant les composants A et B peuvent également être munis d'un système de chauffage.
Selon une variante préférée, le composant A et le composant B sont mélangés à une température comprise entre 40°C et 80°C.
Selon la présente invention, la composition explosive pâteuse obtenue après mélange des composants A et B est introduite dans un moule dans lequel elle subit ensuite une réticulation thermique, dans un four par exemple.
Cette réticulation résulte de la formation de ponts uréthannes du fait de la réaction des fonctions hydroxyles du prépolymère polyol et éventuellement du composé extenseur de chaíne avec les fonctions isocyanates du monomère polyisocyanate. La vitesse de réticulation augmente avec la température et la teneur en catalyseur.
Selon une variante préférée, le moule est constitué par l'enveloppe, en général métallique, d'une munition, par exemple d'un obus.
De façon préférée, et notamment lorsqu'on utilise un mélangeur statique pour mélanger de façon continue les composants A et B, la composition explosive pâteuse issue du mélangeur est introduite de façon automatisée dans une grande série de moules, par exemple plusieurs centaines d'enveloppes d'obus.
Selon une variante préférée de l'invention, la température de réticulation de la composition explosive pâteuse introduite dans les moules est comprise entre 15°C et 80°C .
On peut notamment opérer à la température ambiante (environ 20°C), ce qui est particulièrement avantageux.
Selon une autre variante préférée, la température de réticulation est identique ou voisine de celle à laquelle le composant A et le composant B sont mélangés.
L'exemple non limitatif suivant illustre l'invention.
Exemple 1 : Obtention d'un chargement explosif composite à matrice polyuréthanne chargée en hexogène Composant A pâteux
Dans un malaxeur vertical en acier inoxydable de capacité 35 litres, on réalise un composant A pâteux, homogène, par mélange, à 60°C durant 4h, des constituants suivants, dans les proportions relatives mentionnées :
  • 7,49 parties en poids du polybutadiène à terminaisons hydroxyles de masse moléculaire moyenne en nombre environ 2500 et de fonctionnalité environ 2,2 en fonctions hydroxyles commercialisé par la Société Atochem sous la dénomination R45HT (prépolymère polyol).
  • 0,08 partie en poids de triméthylolpropane (composé extenseur de chaíne).
  • 3,37 parties en poids d'adipate de dioctyle (plastifiant)
  • 0,12 partie en poids de MBP5 (agent antioxydant)
  • 0,12 partie en poids de lécithine de soja (agent mouillant)
  • 0,06 partie en poids de TEPAN (agent d'adhésion liant-charge)
  • 0,0001 partie en poids de dibutyldilaurate d'étain (catalyseur de réticulation)
  • 88,76 parties en poids d'hexogène pulvérulent (charge en explosif nitré organique).
Composant B liquide
Le composant B est uniquement constitué d'isophorone diisocyanate (IPDI), c'est à dire du monomère polyisocyanate.
Obtention d'une composition explosive pâteuse, par mélange, de façon continue, des composants A et B
Le mélange continu entre le composant A et le composant B est réalisé dans un mélangeur statique constitué de 13 éléments montés en série de longueur 32mm et de diamètre 32mm, après transfert de chacun des composants A et B dans un pot équipé d'un piston. Le pot contenant le composant A a un diamètre de 300mm et une hauteur de 250mm. Le pot contenant le composant B a un diamètre de 40mm et une hauteur de 250mm.
La mise en mouvement des 2 pistons, à l'aide d'un même moteur, permet l'alimentation en composants A et B d'un convergeant situé en amont du mélangeur statique, de sorte que d'une part le rapport massique composant A / composant B soit constant et égal 99,14/0,86, et d'autre part que le contenu du convergent se déverse dans le mélangeur statique.
La pression sur le mélange des composants A et B dans le convergent est de 2,5 MPa.
L'ensemble de l'installation, c'est à dire notamment les 2 pots contenant les composants A et B, le convergent et les 13 éléments du mélangeur statique, est thermostaté à 60°C.
A la sortie du mélangeur statique, on obtient la composition explosive pâteuse avec un débit de 0,351/min.
Cette composition explosive pâteuse est homogène et a la composition pondérale suivante :
  • prépolymère polyol : 7,42%
  • extenseur de chaíne : 0,07%
  • monomère polyisocyanate : 0,86%
  • plastifiant : 3,35%
  • agent antioxydant : 0,12%
  • agent mouillant : 0,12%
  • agent d'adhésion liant-charge : 0,06%
  • catalyseur de réticulation : 0,0001%
  • hexogène : 88,00%
Obtention du chargement explosif composite par coulée dans un moule puis réticulation de la composition explosive.
La composition explosive pâteuse sortant du mélangeur statique est coulée, à la température ambiante, 20°C environ, dans des moules métalliques de section carrée 80mm x 80mm et de hauteur 120mm, préalablement disposés dans un caisson de coulée relié à une vanne située à la sortie du mélangeur statique, l'étanchéité caisson-vanne étant assurée par un caoutchouc.
La viscosité dynamique de la composition explosive pâteuse à la sortie du mélangeur statique est de 5800 poises.
Cette opération de chargement des moules est effectuée sous vide partiel de 15mm Hg environ dans le caisson de coulée.
Après chargement, les moules sont introduits dans un four à 60°C pendant 7 jours, ce qui permet de réticuler le liant de la composition explosive et d'obtenir finalement un chargement en explosif composite constitué de 12% en poids de matrice polyuréthanne et de 88% en poids d'hexogène, dont la masse volumique est 1,62g/cm3.
Lors de la réticulation à 60°C de la composition dans les moules, on a suivi l'évolution en fonction du temps de la viscosité dynamique de cette composition :
  • Après 2h : 6900 poises
  • Après 4h : 7900 poises
  • Après 6h : 9100 poises.
  • Les propriétés mécaniques en traction de l'explosif composite obtenu ont été déterminées à l'aide d'une machine de traction classique, à 20°C, avec une vitesse de traction de 50mm/min, à partir d'éprouvettes monodimentionnelles normalisées, selon une méthode bien connue de l'homme du métier (moyenne de 6 mesures) :
  • Contrainte maximale (Sm) : 0,8 MPa
  • Module d'élasticité (E) : 15 MPa
  • Allongement à la contrainte maximale (em) : 9%
  • Contrainte à la rupture (Sr) : 0,8 MPa
  • Allongement à la rupture (er) : 10%
  • Ces propriétés mécaniques sont satisfaisantes pour ce type de chargement.
    On a par ailleurs déterminé, selon les méthodes et les appareillages Julius Peters bien connus de l'homme du métier, la sensibilité au frottement et la sensibilité à l'impact de l'explosif composite obtenu.
    La sensibilité à l'impact est de 25 Joules.
    Pour la sensibilité au frottement, on constate 20 essais positifs sur 30 à 353N, limite maximale de l'appareillage.
    Exemple comparatif
    Cet exemple comparatif ne fait pas partie de l'invention. Il a été réalisé dans le seul but de montrer que les propriétés physico-chimiques et mécaniques de l'explosif composite obtenu selon le procédé semi-continu bicomposant objet de l'invention sont identiques à celles de l'explosif composite obtenu à partir des mêmes constituants, dans les mêmes proportions, selon le procédé « batch » classique jusqu'alors utilisé par l'homme du métier.
    Selon cet exemple comparatif, on introduit, dans un malaxeur vertical de 135 litres :
    • 7,42 parties en poids du prépolymère polyol utilisé pour l'exemple 1
    • 0,07 partie en poids de triméthylolpropane
    • 3,35 parties en poids d'adipate de dioctyle
    • 0,12 partie en poids de MBP5
    • 0,12 partie en poids de lécithine de soja
    • 0,06 partie en poids de TEPAN
    • 0,0001 partie en poids de dibutyldilaurate d'étain
    • 88,00 parties en poids d'hexogène pulvérulent.
    Tous ces constituants sont identiques à ceux utilisés pour l'exemple 1 (même provenance et mêmes caractéristiques).
    Après mélange durant 4h à 60°C, on réalise dans le malaxeur un vide partiel d'environ 15mm Hg, puis on poursuit l'agitation de nouveau durant 4h à 60°C.
    La viscosité dynamique de la pâte est alors de 4800 poises.
    On ajoute alors 0,86 partie en poids d'IPDI (même provenance et mêmes caractéristiques que celui utilisé pour l'exemple 1), puis on agite 30min à 60°C, sous vide partiel de 15mm Hg environ.
    La composition explosive pâteuse obtenue a la même composition pondérale que celle obtenue pour l'exemple 1.
    Cette composition est ensuite coulée dans des moules identiques à ceux utilisés pour l'exemple 1, puis réticulée 7j à 60°C dans un four.
    Lors de la réticulation à 60°C de la composition, on a suivi l'évolution en fonction du temps de la viscosité, le point de départ du temps étant le moment de l'introduction de l'IPDI dans le malaxeur :
  • Après 2h : 7300 poises
  • Après 4h : 9900 poises
  • Après 6h : 12500 poises
  • On constate que l'évolution de la viscosité de la composition pâteuse n'est pas significativement différente de celle mesurée pour l'exemple 1.
    L'explosif composite obtenu après réticulation 7j à 60°C a une masse volumique de 1,62 g/cm3, soit la même valeur que celle de l'explosif composite obtenu à l'exemple 1.
    Les propriétés mécaniques de l'explosif composite obtenu selon cet exemple comparatif ont été déterminées dans les mêmes conditions que celles décrites pour l'exemple 1 :
  • Contrainte maximale (Sm) : 1,0MPa
  • Module d'élasticité (E) : 18MPa
  • Allongement à la contrainte maximale (em) : 10%
  • Contrainte à la rupture (Sr) : 1,0MPa
  • Allongement à la rupture (er) : 11%
  • Toutes ces valeurs ne sont pas significativement différentes de celles obtenues pour l'explosif composite de l'exemple 1.
    On a également déterminé, selon les mêmes méthodes que celles utilisées pour l'exemple 1, la sensibilité au frottement et la sensibilité à l'impact de l'explosif composite obtenu.
    La sensibilité à l'impact est de 21 Joules.
    Pour la sensibilité au frottement, on constate 16 essais positifs sur 30 à 353N, limite maximale de l'appareillage.
    Ces valeurs ne sont pas significativement différentes de celles obtenues pour l'explosif composite de l'exemple 1.

    Claims (20)

    1. Procédé semi-continu d'obtention d'un chargement explosif composite constitué d'une matrice solide polyuréthanne chargée dont la charge est pulvérulente et comprend au moins un explosif nitré organique, par introduction dans un moule d'une composition explosive pâteuse puis réticulation thermique de cette composition, ladite composition explosive pâteuse étant obtenue par mélange de constituants comprenant essentiellement un prépolymère polyol, un plastifiant, un monomère polyisocyanate et une charge solide pulvérulente comprenant au moins un explosif nitré organique, caractérisé en ce que, pour obtenir la composition explosive pâteuse :
      on réalise tout d'abord, de façon discontinue, à partir de l'ensemble des constituants, par simple mélange homogène, 2 composants :
      un composant A pâteux comprenant la totalité du prépolymère polyol et la totalité de la charge solide pulvérulente,
      un composant B liquide comprenant la totalité du monomère polyisocyanate, le plastifiant étant indifféremment réparti entre les 2 composants A et B,
      on mélange ensuite, de façon continue, le composant A et le composant B de telle sorte que le rapport massique composant A / composant B soit constant et compris entre 95/5 et 99,5/0,5.
    2. Procédé selon la revendication 1, caractérisé en ce que la somme des teneurs pondérales en prépolymère polyol, plastifiant, monomère polyisocyanate et charge solide pulvérulente représente entre 98% et 100% de l'ensemble des constituants.
    3. Procédé selon la revendication 1, caractérisé en ce que les constituants comprennent également un composé extenseur de chaíne et en ce que ce composé est en totalité compris dans le composant A.
    4. Procédé de la revendication 1, caractérisé en ce que les constituants comprennent également au moins un additif choisi dans le groupe constitué par les catalyseurs de réticulation, les agents mouillants, les agents antioxydants et les agents d'adhésion liant-charge, cet additif étant indifféremment réparti entre les 2 composants A et B.
    5. Procédé selon la revendication 4, caractérisé en ce que l'additif est en totalité compris dans le composant A.
    6. Procédé selon la revendication 1, caractérisé en ce que les autres constituants sont exclusivement choisis dans le groupe constitué par les composés extenseurs de chaíne, les catalyseurs de réticulation, les agents mouillants, les agents antioxydants et les agents d'adhésion liant-charge, les composés extenseurs de chaíne étant en totalité compris dans le composant A, les catalyseurs de réticulation, les agents mouillants, les agents antioxydants et les agents d'adhésion liant-charge étant eux indifféremment répartis entre les 2 composants A et B.
    7. Procédé selon la revendication 1, caractérisé en ce que le composant B est uniquement constitué du monomère polyisocyanate.
    8. Procédé selon la revendication 1, caractérisé en ce que le rapport massique composant A / composant B est compris entre 98/2 et 99,2/0,8.
    9. Procédé selon la revendication 1, caractérisé en ce qu'on obtient la composition explosive pâteuse avec un débit volumique compris entre 0,1 et 51/min.
    10. Procédé selon la revendication 1, caractérisé en ce que le mélange entre le composant A et le composant B est réalisé dans un mélangeur statique.
    11. Procédé selon la revendication 10, caractérisé en ce que les composants A et B sont chacun contenus dans un pot équipé d'un piston dont la mise en mouvement, à l'aide d'un moteur, permet l'alimentation en composants A et B d'un convergent situé en amont du mélangeur statique.
    12. Procédé selon la revendication 11, caractérisé en ce que la pression sur le mélange des composants A et B dans le convergent est comprise entre 1MPa et 10MPa.
    13. Procédé selon la revendication 11, caractérisé en ce que les 2 pistons sont mûs par le même moteur.
    14. Procédé selon la revendication 1, caractérisé en ce que le mélangeur statique est constitué de plusieurs éléments de mélange montés en série.
    15. Procédé selon la revendication 1, caractérisé en ce que la température de réticulation de la composition explosive pâteuse est comprise entre 15°C et 80°C.
    16. Procédé selon la revendication 1, caractérisé en ce que le composant A et le composant B sont mélangés à une température comprise entre 40°C et 80°C.
    17. Procédé selon la revendication 16, caractérisé en ce que la température de réticulation de la composition explosive pâteuse est identique ou voisine de celle à laquelle le composant A et le composant B sont mélangés.
    18. Procédé selon la revendication 16, caractérisé en ce que la température de réticulation de la composition explosive pâteuse est la température ambiante.
    19. Procédé selon la revendication 1, caractérisé en ce que le prépolymère polyol a une masse moléculaire moyenne en nombre (Mn) comprise entre 500 et 10000 et est choisi dans le groupe constitué par les polyisobutylènes polyols, les polybutadiènes polyols, les polyéthers polyols, les polyesters polyols et les polysiloxanes polyols.
    20. Procédé selon la revendication 1, caractérisé en ce que le monomère polyisocyanate est choisi dans le groupe constitué par le toluène diisocyanate, l'isophorone diisocyanate, le dicyclohexylméthylène diisocyanate, l'hexaméthylène diisocyanate, le biuret trihexane isocyanate, le 3,5,5-triméthyl 1,6-hexaméthylène diisocyanate, et leurs mélanges.
    EP03290123A 2002-02-01 2003-01-17 Procédé semi-continu d'obtention d'un chargement explosif composite à matrice polyuréthanne, ledit procédé mettant en oeuvre deux composants Expired - Lifetime EP1333015B1 (fr)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    SI200331729T SI1333015T1 (sl) 2002-02-01 2003-01-17 Polkontinuirni postopek za pripravo eksplozivnega kompozitnega naboja s poliuretanskim matriksom z uporabo dveh komponent

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0201213 2002-02-01
    FR0201213A FR2835519B1 (fr) 2002-02-01 2002-02-01 Procede bicomposant semi-continu d'obtention d'un chargement explosif composite a matrice polyurethanne

    Publications (3)

    Publication Number Publication Date
    EP1333015A2 true EP1333015A2 (fr) 2003-08-06
    EP1333015A3 EP1333015A3 (fr) 2005-09-21
    EP1333015B1 EP1333015B1 (fr) 2009-11-04

    Family

    ID=8871443

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03290123A Expired - Lifetime EP1333015B1 (fr) 2002-02-01 2003-01-17 Procédé semi-continu d'obtention d'un chargement explosif composite à matrice polyuréthanne, ledit procédé mettant en oeuvre deux composants

    Country Status (19)

    Country Link
    US (1) US6916390B2 (fr)
    EP (1) EP1333015B1 (fr)
    JP (1) JP3740128B2 (fr)
    KR (1) KR100952063B1 (fr)
    AT (1) ATE447545T1 (fr)
    AU (1) AU2003200305B2 (fr)
    BR (1) BR0300166B1 (fr)
    CA (1) CA2418319C (fr)
    DE (1) DE60329878D1 (fr)
    DK (1) DK1333015T3 (fr)
    ES (1) ES2333948T3 (fr)
    FR (1) FR2835519B1 (fr)
    IL (1) IL153983A (fr)
    NO (1) NO329572B1 (fr)
    PT (1) PT1333015E (fr)
    SG (1) SG105568A1 (fr)
    SI (1) SI1333015T1 (fr)
    TW (1) TW593213B (fr)
    ZA (1) ZA200300557B (fr)

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1652574A2 (fr) 2004-11-02 2006-05-03 SNPE Matériaux Energétiques Procédé et dispositif de préparation d'une pâte de propergol de type composite
    FR2893613A1 (fr) * 2005-11-24 2007-05-25 Eurenco France Sa Procede bicomposant semi-continu perfectionne d'obtention d'un chargement explosif composite a matrice polyurethanne
    WO2010023450A1 (fr) * 2008-08-29 2010-03-04 Bae Systems Plc Composition explosive à couler
    WO2011083249A1 (fr) 2009-12-21 2011-07-14 Eurenco Explosif solide malleable et son obtention
    WO2013182796A1 (fr) 2012-06-04 2013-12-12 Eurenco Explosif factice simulant un explosif malleable et son procede d'obtention
    FR3072676A1 (fr) * 2017-10-24 2019-04-26 Arianegroup Sas Procede de fabrication d'un produit pyrotechnique composite
    FR3090629A1 (fr) * 2018-12-20 2020-06-26 Arianegroup Sas Procédé de préparation de produits pyrotechniques composites

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB0205559D0 (en) 2002-03-11 2002-04-24 Bae Systems Plc Improvements in and relating to the filling of explosive ordnance
    FR2917169B1 (fr) * 2007-06-06 2009-09-11 Eurenco France Sa Procede de determination du caractere sensible ou insensible d'un hexogene.
    EP2365978B1 (fr) 2008-11-12 2019-09-18 Archer Daniels Midland Co. Compositions de lécithine et de plastifiant et procédés
    US10294376B2 (en) * 2008-11-12 2019-05-21 Archer Daniels Midland Company Lecithin and plasticizer compositions and methods
    JP2012131876A (ja) * 2010-12-21 2012-07-12 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
    JP6115040B2 (ja) * 2012-08-22 2017-04-19 日油株式会社 炸薬組成物の製造方法及び該製造方法で製造した炸薬組成物
    WO2014155061A1 (fr) 2013-03-27 2014-10-02 Bae Systems Plc Charges propulsives non phtalate
    ES2870548T3 (es) 2013-03-27 2021-10-27 Bae Systems Plc Propulsores de munición insensible
    GB2512346B (en) * 2013-03-27 2021-06-30 Bae Systems Plc Non-phthalate propellants
    GB2540159B (en) * 2015-07-07 2021-06-02 Bae Systems Plc PBX composition
    EP3762199A1 (fr) * 2018-03-05 2021-01-13 BAE SYSTEMS plc Évidement prédéfini

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4115201A (en) 1976-06-25 1978-09-19 Malec Jerry P Oil reclaimer
    NO140968C (no) * 1977-04-04 1979-12-19 Dyno Industrier As Anlegg for blanding av pulveraktige materialer
    FR2640261B1 (fr) * 1979-08-14 1993-12-10 Poudres Explosifs Ste Nale Composition autopyrolysable pour la propulsion aerobie dont l'oxydant est un explosif
    NO831850L (no) * 1982-05-28 1997-02-26 Royal Ordnance Plc Fremgangsmåte for fremstilling av en formet gummiaktig drivmiddelladning for raketter og liknende
    FR2577919B1 (fr) * 1985-02-27 1987-02-20 Poudres & Explosifs Ste Nale Procede de fabrication sans solvant de produits pyrotechniques composites a liant thermodurcissable et produits ainsi obtenus, notamment poudres propulsives composites
    US4597811A (en) * 1985-07-03 1986-07-01 The United States Of America As Represented By The Secretary Of The Army Prevention of unwanted cure catalysis in isocyanate cured binders
    US4632715A (en) * 1985-12-10 1986-12-30 The United States As Represented By The Secretary Of The Navy Low burn rate motor propellant
    DE4115201A1 (de) * 1990-05-11 1992-01-09 Reinhardt Technik Gmbh & Co Vorrichtung zum mischen von mehr-komponentengemischen
    US5114630A (en) * 1990-09-21 1992-05-19 The United Of America As Represented By The Secretary Of The Navy Continuous manufacture and casting
    DE4119415A1 (de) * 1991-06-13 1992-12-17 Huebers Verfahrenstech Verfahren zum transport und zur aufbereitung von und zur beschickung einer giessanlage mit giessharz, sowie vorrichtung zur ausfuehrung des verfahrens
    DE19520731A1 (de) * 1995-06-07 1996-12-12 Bayer Ag Thermoplastische Polyurethanharnstoff-Elastomere
    US6435854B1 (en) * 1999-11-12 2002-08-20 Eiji Sawa Apparatus for mixing and injection molding thermosetting polyurethane

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    J.M. TAUZIA: "Compatibility and Processing", 23 October 1989, AMERICAN DEFENSE PREPARDNESS ASSOCIATION (ADPA), article "Some comments on Processing Energetic Matérials"
    J.M. TAUZIA: "Some comments on Processing Energetic Matérials", COMPATIBILITY AND PROCESSING, 23 October 1989 (1989-10-23)

    Cited By (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1652574A2 (fr) 2004-11-02 2006-05-03 SNPE Matériaux Energétiques Procédé et dispositif de préparation d'une pâte de propergol de type composite
    NO341597B1 (no) * 2005-11-24 2017-12-11 Eurenco France Halvkontinuerlig fremgangsmåte for å oppnå en sammensatt sprengladning med polyuretanmatriks
    FR2893613A1 (fr) * 2005-11-24 2007-05-25 Eurenco France Sa Procede bicomposant semi-continu perfectionne d'obtention d'un chargement explosif composite a matrice polyurethanne
    WO2007060365A2 (fr) * 2005-11-24 2007-05-31 Eurenco France Procede bicomposant semi-continu perfectionne d'obtention d'un chargement explosif composite a matrice polyurethanne
    WO2007060365A3 (fr) * 2005-11-24 2007-08-02 Eurenco France Procede bicomposant semi-continu perfectionne d'obtention d'un chargement explosif composite a matrice polyurethanne
    NO20082110L (no) * 2005-11-24 2008-05-07 Eurenco France Halvkontinuerlig fremgangsmåte for å oppnå en sammensatt sprengladning med polyuretanmatriks
    EP1790626A1 (fr) * 2005-11-24 2007-05-30 Eurenco France Procédé bicomposant semi-continu perfectionné d'obtention d'un chargement explosif composite à matrice polyuréthanne
    US7887651B1 (en) 2005-11-24 2011-02-15 Eurenco Semi-continuous two-component method for obtaining a composite explosive charge with polyurethane matrix
    WO2010023450A1 (fr) * 2008-08-29 2010-03-04 Bae Systems Plc Composition explosive à couler
    GB2475198A (en) * 2008-08-29 2011-05-11 Bae Systems Plc Cast explosive composition
    GB2475198B (en) * 2008-08-29 2013-05-29 Bae Systems Plc Cast explosive composition
    WO2011083249A1 (fr) 2009-12-21 2011-07-14 Eurenco Explosif solide malleable et son obtention
    WO2013182796A1 (fr) 2012-06-04 2013-12-12 Eurenco Explosif factice simulant un explosif malleable et son procede d'obtention
    FR3072676A1 (fr) * 2017-10-24 2019-04-26 Arianegroup Sas Procede de fabrication d'un produit pyrotechnique composite
    EP3476821A1 (fr) * 2017-10-24 2019-05-01 Arianegroup Sas Procédé de fabrication d'un produit pyrotechnique composite
    FR3090629A1 (fr) * 2018-12-20 2020-06-26 Arianegroup Sas Procédé de préparation de produits pyrotechniques composites

    Also Published As

    Publication number Publication date
    CA2418319A1 (fr) 2003-08-01
    NO329572B1 (no) 2010-11-15
    AU2003200305A1 (en) 2003-08-21
    ES2333948T3 (es) 2010-03-03
    TW200302815A (en) 2003-08-16
    NO20030488D0 (no) 2003-01-30
    TW593213B (en) 2004-06-21
    JP3740128B2 (ja) 2006-02-01
    FR2835519A1 (fr) 2003-08-08
    IL153983A (en) 2005-09-25
    BR0300166A (pt) 2003-09-09
    NO20030488L (no) 2003-08-04
    US20050115652A1 (en) 2005-06-02
    AU2003200305B2 (en) 2008-04-03
    BR0300166B1 (pt) 2013-10-01
    JP2004035390A (ja) 2004-02-05
    ATE447545T1 (de) 2009-11-15
    SG105568A1 (en) 2004-08-27
    DK1333015T3 (da) 2010-03-22
    ZA200300557B (en) 2003-08-22
    DE60329878D1 (de) 2009-12-17
    EP1333015B1 (fr) 2009-11-04
    PT1333015E (pt) 2010-02-02
    IL153983A0 (en) 2003-07-31
    EP1333015A3 (fr) 2005-09-21
    US6916390B2 (en) 2005-07-12
    FR2835519B1 (fr) 2004-11-19
    KR20030066413A (ko) 2003-08-09
    KR100952063B1 (ko) 2010-04-13
    SI1333015T1 (sl) 2010-02-26
    CA2418319C (fr) 2008-11-04

    Similar Documents

    Publication Publication Date Title
    CA2418319C (fr) Procede bicomposant semi-continu d'obtention d'un chargement explosif composite a matrice polyurethanne
    EP1790626B1 (fr) Procédé bicomposant semi-continu perfectionné d'obtention d'un chargement explosif composite à matrice polyuréthanne
    EP0194180B1 (fr) Procédé de fabrication sans solvants de produits pyrotechniques composites à liant thermodurcissable
    EP2516356B1 (fr) Explosif solide malleable et son obtention
    EP3212593B1 (fr) Produit pyrotechnique composite avec charges d'adn et de rdx dans un liant de type pag et sa preparation
    EP3212594B1 (fr) Produit pyrotechnique composite performant sans plomb dans sa composition et sa preparation
    EP3071537B1 (fr) Produit pyrotechnique composite a liant non reticule et son procede de preparation
    EP3515881B1 (fr) Produit pyrotechnique composite renfermant un agent anti-lueur de type sel de potassium.
    EP3753916B1 (fr) Produit pyrotechnique composite
    EP3656753B1 (fr) Procédé de préparation de produits pyrotechniques composites
    EP3071536B1 (fr) Produit pyrotechnique composite a liant réticule et son procédé de préparation
    FR2501194A1 (fr) Explosif desensibilise et son procede de preparation

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SNPE MATERIAUX ENERGETIQUES

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: EURENCO FRANCE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO

    17P Request for examination filed

    Effective date: 20051024

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: EURENCO

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    REF Corresponds to:

    Ref document number: 60329878

    Country of ref document: DE

    Date of ref document: 20091217

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20100126

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: EP

    Ref document number: 20100400052

    Country of ref document: GR

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2333948

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: SK

    Ref legal event code: T3

    Ref document number: E 6578

    Country of ref document: SK

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20091104

    REG Reference to a national code

    Ref country code: HU

    Ref legal event code: AG4A

    Ref document number: E007213

    Country of ref document: HU

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100131

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20100805

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: EURENCO

    Free format text: EURENCO#12 QUAI HENRI IV#75004 PARIS (FR) -TRANSFER TO- EURENCO#12 QUAI HENRI IV#75004 PARIS (FR)

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PLI

    Owner name: SNPE MATERIAUX ENERGETIQUES

    Free format text: EURENCO#12 QUAI HENRI IV#75004 PARIS (FR) -TRANSFER TO- SNPE MATERIAUX ENERGETIQUES#12 QUAI HENRI IV#75004 PARIS (FR)

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R088

    Ref document number: 60329878

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20110707 AND 20110713

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CL

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: UD

    Name of requester: SNPE MATERIAUX ENERGETIQUES

    Effective date: 20110905

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: QB4A

    Name of requester: SNPE MATERIAUX ENERGETIQUES, FR

    Effective date: 20110620

    Ref country code: ES

    Ref legal event code: GD2A

    Effective date: 20120124

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20111215

    Year of fee payment: 10

    Ref country code: EE

    Payment date: 20111216

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: SK

    Ref legal event code: QB4A

    Ref document number: E 6578

    Country of ref document: SK

    Name of requester: SNPE MATERIAUX ENERGETIQUES, FR

    Effective date: 20101208

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: HU

    Payment date: 20111222

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: HU

    Ref legal event code: QB4A

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SI

    Payment date: 20111216

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: SI

    Ref legal event code: LIQB

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BG

    Payment date: 20130130

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20130717

    REG Reference to a national code

    Ref country code: SI

    Ref legal event code: KO00

    Effective date: 20130822

    REG Reference to a national code

    Ref country code: EE

    Ref legal event code: MM4A

    Ref document number: E003985

    Country of ref document: EE

    Effective date: 20130131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130717

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130118

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130118

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130131

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20131223

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20140103

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140930

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: ML

    Ref document number: 20100400052

    Country of ref document: GR

    Effective date: 20150805

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150805

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20151222

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20151214

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: TR

    Payment date: 20160115

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20151222

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20161223

    Year of fee payment: 15

    Ref country code: CZ

    Payment date: 20161220

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SK

    Payment date: 20170131

    Year of fee payment: 15

    Ref country code: BE

    Payment date: 20170127

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20170131

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20170131

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20170201

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 447545

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170131

    REG Reference to a national code

    Ref country code: SK

    Ref legal event code: MM4A

    Ref document number: E 6578

    Country of ref document: SK

    Effective date: 20180117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180117

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MM

    Effective date: 20180131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180131

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180117

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20190326

    Year of fee payment: 8

    Ref country code: CH

    Payment date: 20190118

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20190116

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20190731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180118

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20200131

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20210121

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20210112

    Year of fee payment: 19

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20210117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170117

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60329878

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20220802

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20220131