WO2013182796A1 - Explosif factice simulant un explosif malleable et son procede d'obtention - Google Patents

Explosif factice simulant un explosif malleable et son procede d'obtention Download PDF

Info

Publication number
WO2013182796A1
WO2013182796A1 PCT/FR2013/051250 FR2013051250W WO2013182796A1 WO 2013182796 A1 WO2013182796 A1 WO 2013182796A1 FR 2013051250 W FR2013051250 W FR 2013051250W WO 2013182796 A1 WO2013182796 A1 WO 2013182796A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosive
fibers
dummy
liquid
solid
Prior art date
Application number
PCT/FR2013/051250
Other languages
English (en)
Inventor
Bernard Mahe
Original Assignee
Eurenco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurenco filed Critical Eurenco
Publication of WO2013182796A1 publication Critical patent/WO2013182796A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B8/00Practice or training ammunition

Definitions

  • the present invention relates to a dummy explosive simulating a malleable solid explosive, which is an alternative to the dummy explosives of this type of explosive known to date.
  • Such dummy explosives are non-pyrotechnic products simulating said malleable solid explosives.
  • the present invention also relates to a process for obtaining said dummy explosive.
  • Dummy explosives simulating explosives share some or all of the chemical and / or physical properties of explosives (real or reference) to which they correspond: appearance, texture, odor, density ...
  • dummy explosives simulating malleable solid explosives are therefore used as drive products, in large quantities, and that the cost of production (cost of raw materials, of a part and cost of implementation of the production process, on the other hand) is a fundamental criterion in the search for new dummy explosives of this type.
  • Patent DE 37 29 630 published in 1989, describes a type of dummy explosive whose constituent ingredients are basic materials, low costs: chalk, silicone oil, a silica filler and a caustic agent. adjusting the density such as wood flour (particulate cellulosic material whose particles contain non-individualized fibers) or glass beads.
  • Such basic ingredients do not allow to obtain dummy explosives meeting the current requirements of physicochemical realism of dummy explosives.
  • dummy explosives also sometimes called “inert explosives”
  • inert explosives of more realistic malleable explosive
  • a viscous liquid binder a solid polymeric binder, such as a rubber, dissolved in a solvent (said solvent being removed by distillation after mixing) or a polymeric liquid viscous binder such as polyisobutadiene or non-polymeric such as a resin natural,
  • a solid nitrogenous powdery charge (simulating an explosive charge containing nitrogen as a chemical signature), such as pentaerythritol, urea or monosodium glutamate,
  • a plasticizer such as dioctyl sebacate, dioctyl adipate, or a phthalate,
  • thixotropic agent such as synthetic or natural clay, silica or a natural gum,
  • additives such as antioxidants, anti-aging agents, chemical detection markers, dyes.
  • Such dummy explosives and their preparation are for example described in the patent application WO 2011/007253.
  • the simple mixing of the solid charge with the liquid (or, in addition, with at least one additive) must lead to a solid having adequate plastic properties. This can generally only be obtained in the presence of a solid filler, at a high mass percentage and consisting of several granulometric cuts.
  • the dummy explosives simulating malleable solid explosives proposed to date therefore most often contain a plasticizer and / or a thixotropic agent in order, in particular, to give them mechanical properties (temperature resistance, humidity %) and malleability satisfactory.
  • the solid charges added to the liquid binder must be at a mass percentage sufficient to obtain a solid of density close to that of the reference explosive.
  • the commonly used nitrogenous (non-pyrotechnic) solids such as pentaerythritol, urea or monosodium glutamate, which chemically simulate explosive charges, have the disadvantage of having a low density (for example, the density of pentaerythritol is 1.396), compared to that of the explosive charges (for example, the density of the RDX explosive charge is 1.81) and they therefore require to be incorporated and present in the dummy explosive to a mass percentage higher than that of the explosive charge in the explosive to be simulated, to reach the same density.
  • malleable solid explosives generally contain at least 85% by mass of explosive filler (s), the percentage by mass of nitrogenous charge (s) to be incorporated in the binder to obtain an explosive adequate dummy is in higher than this rate and we are at the limit of feasibility.
  • the high mass percentage of nitrogen solids (usually used) thus required may therefore lead to problems of incorporation of said charges into the binder and degrade the mechanical and malleability properties of the dummy explosive.
  • the dummy explosives of malleable solid explosive are thus, to date, complex formulations, which can be difficult to elaborate.
  • the inventor sought a (type d 7 ) explosive dummy simulating malleable solid explosive again. He found one, at least as powerful as the known ones, particularly interesting in terms of:
  • composition (its composition is capable of incorporating a solid charge at a "low” mass percentage and generally does not contain a plasticizer or a thixotropic agent),
  • the present invention thus relates to a dummy explosive (i.e. non-pyrotechnic (pyrotechnically inert), in a non-explosive material) simulating such a malleable solid, original explosive.
  • a dummy explosive i.e. non-pyrotechnic (pyrotechnically inert)
  • non-explosive material simulating such a malleable solid, original explosive.
  • the dummy explosive of the invention is itself, conventionally, a malleable solid.
  • a malleable solid is logically proposed to simulate a malleable solid.
  • the dummy explosive of the invention like the explosive that it simulates, is solid in that it does not flow by gravity in its operating range of use, that is to say at least up to + 70 ° C.
  • Said dummy explosive, such as the explosive it simulates, is malleable in that it can be modeled by hand (manually) at temperatures from -40 ° C to + 70 ° C.
  • the malleable solid explosive dummy explosive of the invention is characterized by its composition. This consists, for at least 95% of its mass, of a nonpyrotechnic pulverulent solid charge (pyrotechnically inert), a liquid and fibers.
  • Said fibers constitute the key element of the present invention.
  • the non-pyrotechnic pulverulent solid charge of the dummy explosive of the invention has a density greater than or equal to 2 g / cm 3 and represents less than 80% by mass of the total mass of the explosive dummy.
  • a change on demand of the mechanical properties and malleability of the dummy explosive can also be easily achieved by varying the rate (see Table 3 below) and / or the dimensions of the fibers.
  • solid rigid products such as composite materials, which contain fibers, more or less long (for example, carbon, glass, synthetic) in a matrix, in order to generally strengthen the mechanical strength and / or modify the electrical properties of said matrix are known from the prior art. They are used in many technical fields, such as the aeronautical field (see, for example, airplane wings), the nautical field (see, for example, poles, bowling, ships), the clothing field (see for example, bullet-proof vests), and that of energetic materials (see, for example, some propellants and weapons powders). In this field of energetic materials, it has notably been described:
  • ignition powders whose composition contains, for example: potassium chlorate + sugar + binder + fibers
  • the fibers serve to reinforce the mechanical properties (in order to confer a better resistance to vibrations and a better thermal resistance to grain of said powders)
  • EP 1 279 624 a double-base solid propellant incorporating synthetic fibers as a mechanical reinforcement, especially when hot (see the teaching of US Pat. No. 6,607,617).
  • the nonpyrotechnic pulverulent solid filler contains a single type of filler or a mixture of fillers of a different type or (and) particle size. As indicated above, the co-presence of the fibers makes the requirements (in terms of quantity and "quality") on said load much less severe.
  • Said solid charge is advantageously chosen from metal oxides (low-cost raw materials) (such as alumina, titanium oxide, magnesium oxide, iron oxides), metal hydroxides (such as aluminum hydroxide and iron hydroxide) and mixtures thereof. These oxides and hydroxides generally have a density greater than 2 g / cm 3 , advantageously greater than 3.5 g / cm 3 .
  • the high density of such charges makes it possible to reproduce the density of the reference explosive by introducing said charges at reasonable rates. ( ⁇ 80% by weight) in the composition of the dummy explosive. At such reduced rates of charge, the desired mechanical and malleability properties are achieved by virtue of the presence of the fibers.
  • nitrogenous solid charges known from the prior art, such as pentaerythritol, urea, monosodium glutamate and mixtures thereof (as chemical signature) is not excluded from the scope of the invention. This presence is advantageously a copresence with that of high density charges, especially as identified above.
  • the particle size of the solid charge is no longer a first order parameter for adjusting the mechanical properties and malleability of the dummy explosive. It is conventionally generally between 0.1 and 500 ⁇ m, advantageously between 0.1 and 300 ⁇ m.
  • the liquid present which acts as a binder, consists of a liquid or a mixture of liquids. It may or may not be a solvent for the solid charge. In the event that said liquid is a solvent of said charge, it is of course understood that said charge is present at concentrations above the saturation concentration, insofar as a solid is involved.
  • the liquid may especially be chosen from natural oils, synthetic oils and liquid polymers.
  • Said liquid is advantageously chosen from the following polyol polymers: polyisobutylene polyols, polybutadiene polyols, polyether polyols, polyester polyols and polysiloxane polyols, the number-average molecular mass of which is between 500 and 10 000.
  • Said liquid is very advantageously chosen from said polybutadienes polyols.
  • Said liquid preferably consists of a hydroxytelechelic polybutadiene of this type.
  • polybutadienes are perfectly suitable as liquid for the dummy explosives (malleable solids) of the invention.
  • Hydroxytelechelic usually used in the crosslinked state as binder solid propellants for self-propulsion.
  • binder solid propellants for self-propulsion.
  • said liquid has a dynamic viscosity of between 0.1 and 1 Pa.s in the temperature range: -40 ° C. and + 70 ° C.
  • the fibers present are, as indicated above, largely responsible for the mechanical properties and malleability of the dummy explosive. They can all be of the same nature or at least two different natures. They can all have identical aspect ratios (L / D: Length / Diameter) or have different aspect ratios (L / D).
  • They may in particular be chosen from synthetic fibers, mineral fibers and mixtures thereof. It may especially be glass fibers, carbon, polyethylene, polyester, acrylic, polypropylene, nylon ... They are advantageously chosen from carbon fibers, polyethylene fibers and glass fibers, and their mixtures.
  • Said fibers generally have a diameter of between 1 and 100 ⁇ m and a length of between 5 and 100 times their diameter. They advantageously have a diameter of between 5 and 50 ⁇ m and a length of between 10 and 50 times their diameter. Short fibers, of a length less than or equal to 1 cm, a length generally not exceeding a few tenths of a millimeter (less than 1 mm), are therefore generally involved.
  • a mixture the composition of which contains, for at least 95% of its mass, a non-pyrotechnic powdery solid charge, a liquid and fibers, as a pyrotechnic explosive explosive.
  • a new type of dummy explosive, simulating a malleable solid explosive, is thus proposed according to the invention.
  • the solid charge present in the composition of the solid explosive dummy explosive of the invention no longer as a primary function, by mixing with the liquid, to achieve the desired mechanical properties and malleability, as is the case for the dummy explosives of the prior art (requiring the introduction of a large amount of solid charges having specific grain size cuts).
  • the solid charge used in the composition of the dummy explosive of the invention can therefore be introduced in a smaller quantity, without any tight requirement concerning its particle size (assuming of course that the similarity in the density parameter (with the explosive reference) can be provided in this smaller quantity).
  • the malleable solid explosive dummy explosive of the invention is therefore essentially (for at least 95% of its mass) consisting of said charge, said liquid and said fibers. It can quite alternatively be only (100%) constituted of said charge, said liquid and said fibers.
  • said liquid and said fibers may, according to another variant, contain at least one additive, especially chosen from antioxidants, aging anti-aging agents, chemical detection markers, dyes and their mixtures , for not more than 5% of its total mass.
  • Additives which may be included in the composition of the dummy explosives of the invention are in particular:
  • At least one antioxidant of the polymer polyol type liquid
  • at least one antioxidant such as, for example, di-tert-butyl paracresol methane, 2,2-methylene bis (4-methyl-6-tert-butyl) phenol and mixtures thereof
  • at least one anti-hardening agent in aging, especially in the hot state such as, for example, a silicone oil, tetraethylenepentamineacrylonitrile (TEPAN), soy lecithin and mixtures thereof;
  • TEPAN tetraethylenepentamineacrylonitrile
  • At least one chemical detection marker such as, for example, EGDN (EthyleneGlycol DiNitrate), DMDNB (2,3-DiMethyl-2,3- DiNitroButane), p-MNT (para-MonoNitroToluene) or o-MNT (Ortho-MonoNitroToluene).
  • EGDN EthyleneGlycol DiNitrate
  • DMDNB 2,3-DiMethyl-2,3- DiNitroButane
  • p-MNT para-MonoNitroToluene
  • o-MNT Ortho-MonoNitroToluene
  • At least one dye blue or orange according to the marking conventions of the inert materials.
  • composition of the dummy explosives of the invention is free of plasticizer and thixotropic agent.
  • the dummy explosive of the invention has the composition below, expressed in percentages by weight:
  • the additive (s), filler (s), liquid (s) and fibers of the above composition are as specified above.
  • the dummy explosives of the invention are generally in the form of blocks or loaves (in the sense of plastic explosive bars) reference). They generally have a mass of between 100 g and 5 kg.
  • the present invention relates to a method for obtaining a dummy explosive as described above (first object of said invention). Said method comprises:
  • Mixing solid filler + liquid + fibers (+ possibly additive (s)), for obtaining the paste can be implemented at room temperature or hot, generally at a temperature below 80 ° C.
  • the method for obtaining the original dummy explosive of the invention may be implemented continuously or discontinuously.
  • the mixture is obtained by continuously hot mixing the raw materials and is directly extruded into molds (whose volume may be variable, typically between 100 and 700 cm 3 , generally 350 cm 3 ).
  • the mixture is obtained by continuous heat-stirring of the raw materials and is continuously extruded in the desired form, to the desired dimensions, through a die (generally in the form of a bar, at through a die width / height corresponding to the width / height of the desired final bread).
  • the extruded form (generally therefore, the extruded bar) is then cut into blocks (loaves) of the desired length (length corresponding to the mass of blocks (loaves) sought).
  • the density of the resulting dummy explosive may vary depending on the amount of air trapped in the dough during the production process. Said density is advantageously between 1300 and 1700 kg / m 3 .
  • the malleability of a dummy explosive of the invention can be evaluated by its firmness, measured using a Brookfield CT3 type texturometer using a TA29 probe.
  • the firmness of a dummy explosive according to the invention is advantageously between 50 g and 300 g.
  • composition of a dummy explosive of the invention is specified and then said factitious explosive is obtained from its constituent ingredients (more precisely the obtaining of n dummy explosive having said composition).
  • Table 2 shows the composition of said dummy explosive of the invention, suitable as a dummy explosive of the malleable solid explosive of Table 1 of the patent application FR 2 954 309. We first reproduce hereinafter table 1.
  • the liquid used in the composition of the reference explosive and the dummy explosive is the same: a hydroxytelechelic polybutadiene (PBHT).
  • PBHT hydroxytelechelic polybutadiene
  • This is the PBHT R45HTLO marketed by Sartomer (Mn, 3000). It is involved in the composition of the factitious explosive at about 27% by weight.
  • the solid charge used in the composition of the dummy explosive (which acts at 65% by weight, compared with 88% by weight of the explosive charge in the reference explosive) consists of aluminum trihydroxide Al (OH ) 3 (or Al 2 O 3 , 3H 2 O) of 2.3 to 2.5 density. Its particle size is between 3 and 12 ⁇ m (compare with the bimodal particle size of the explosive charge of the reference explosive).
  • the fibers which account for 6% by weight, consist of polyethylene fibers of the PE-Fribids type from the company STW. They have a diameter of about 10 ⁇ for a length of between 0.1 and 0.25 mm.
  • the mass composition of the dummy explosive contains, moreover, as that of the explosive, additives (an antioxidant, an anti-aging hardening agent and a dye, for less than 2 percent of its total mass).
  • the dummy explosive constituents of the invention (having the composition of Table 2 above) are hot kneaded (60 ° C +/- 10 ° C). Each kneading operation involves about 200 kg of material.
  • the paste obtained is then discharged and introduced into a funnel provided with an endless screw for filling molds.
  • the volume of the molds is about 330 cm 3 .
  • Solid blocks of inert material simulating malleable explosive generated in each mold are then removed from the mold, to obtain dummy explosives of the invention (breads of simulating inert material ("inert explosives")) of about 0.5 kg.
  • the density of the dummy explosives having the composition of Table 2 above obtained by this method may vary depending on the amount of air trapped in the dough during the process. Said density is between 1480 and 1525 kg / m 3 .
  • the malleability of said dummy explosives can be evaluated by their firmness, measured using a Brookfield CT3 type texturometer using a TA29 probe.
  • the firmness value thus measured is approximately 121 g.
  • Table 3 shows the variation in the firmness of dummy explosives of the invention, of the type of those of Table 2 above, as a function of the level of added fibers.
  • Example 2 of Table 3 corresponds to the composition of Table 2 (containing 6% by weight of fibers).
  • the firmness is measured using a Brookfield CT3 type texturometer using a TA29 probe. This parameter is representative of the malleability.
  • the values obtained show that the level of firmness (and thus malleability) of the dummy explosive is directly related to the amount of fibers introduced. This level of firmness is therefore easily modifiable, over a wide range, for a density of the quasi-constant factitious explosive within the range specified above.
  • Table 3 shows the variation in the firmness of dummy explosives of the invention, of the type of those of Table 2 above, as a function of the level of added fibers.
  • Example 2 of Table 3 corresponds to the composition of Table 2 (containing 6% by weight of fibers).
  • the firmness is measured using

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet un explosif factice simulant un explosif solide malléable et un procédé pour son obtention. Ledit explosif factice consiste en un solide malléable et sa composition renferme, pour au moins 95 % de sa masse : une charge solide pulvérulente non pyrotechnique, un liquide, et des fibres.

Description

EXPLOSIF FACTICE SIMULANT UN EXPLOSIF MALLEABLE ET SON
PROCEDE D'OBTENTION
La présente invention a pour objet un explosif factice simulant un explosif solide malléable, qui constitue une alternative aux explosifs factices de ce type d'explosif connus à ce jour. De tels explosifs factices sont des produits, non pyrotechniques, simulant lesdits explosifs solides malléables. La présente invention concerne également un procédé d'obtention dudit explosif factice.
Les forces de maintien de l'ordre et les militaires ainsi que les agents de sécurité et les opérateurs de systèmes de détection d'explosifs ont recours à des explosifs factices, simulant des explosifs, pour leur formation pratique, à la manipulation des explosifs pour les premiers, à la détection des explosifs pour les seconds. Les explosifs factices simulant des explosifs partagent tout ou partie des propriétés chimiques et/ou physiques des explosifs (réels ou de référence) auxquels ils correspondent : aspect, texture, odeur, masse volumique...
De par leur nature inoffensive, ils ne nécessitent pas de conditions de stockage et de transport particulières ou sécurisées, et ils permettent de dispenser des formations basées sur des scénarios réalistes, sans évidemment faire courir les risques associés au maniement des explosifs. Ces avantages non négligeables rendent le processus de formation beaucoup plus efficace et facile à mettre en œuvre.
On comprend que les explosifs factices simulant d'explosifs solides malléables (matériaux pyrotechniquement inertes simulant des explosifs solides malléables) sont donc utilisés comme des produits d'entraînement, en grande quantité, et que le coût de production (coût des matières premières, d'une part et coût de mise en œuvre du procédé de production, d'autre part) est un critère fondamental dans la recherche de nouveaux explosifs factices de ce type. Le brevet DE 37 29 630, publié en 1989, décrit un type d'explosif factice dont les ingrédients constitutifs sont des matériaux basiques, de faibles coûts : de la craie, de l'huile de silicone, une charge de silice et un agent de réglage de la densité tel que de la farine (poudre) de bois (matériau cellulosique particulaire dont les particules renferment des fibres non individualisées) ou des billes de verre. De tels ingrédients basiques ne permettent pas d'obtenir des explosifs factices répondant aux exigences actuelles de réalisme physico-chimique des explosifs factices.
L'homme du métier sait depuis fabriquer des explosifs factices (aussi parfois nommés « explosifs inertes ») d'explosif solide malléable plus réalistes en mélangeant les matières premières suivantes :
- un liant liquide visqueux : un liant polymérique solide, tel qu'un caoutchouc, dissout dans un solvant (ledit solvant étant évacué par distillation après le mélange) ou un liant visqueux liquide polymérique tel que le polyisobutadiène ou non polymérique tel qu'une résine naturelle,
- une charge solide pulvérulente azotée (simulant une charge explosive ; renfermant de l'azote, comme signature chimique), telle que le pentaerythritol, l'urée ou le monosodium de glutamate,
- éventuellement un plastifiant, tel le dioctyl sébacate, le dioctyl adipate, ou un phtalate,
- éventuellement un agent thixotropique, tel que de l'argile synthétique ou naturelle, de la silice ou une gomme naturelle,
- éventuellement des additifs tels des agents anti-oxydants, des agents anti-durcissement au vieillissement, des marqueurs chimiques de détection, des colorants.
De tels explosifs factices et leur préparation sont par exemple décrits dans la demande de brevet WO 2011/007253.
Lorsque l'explosif factice ne contient pas de plastifiant et/ou d'agent thixotropique, le simple mélange de la charge solide avec le liquide (voire, en sus, avec au moins un additif) doit conduire à un solide présentant des propriétés plastiques adéquates. Ceci ne peut généralement être obtenu qu'en présence d'une charge solide, à un pourcentage massique élevé et constituée de plusieurs coupes granulométriques.
En fait, il est connu que, sans l'incorporation d'un agent thixotropique et/ou d'un plastifiant, de tels explosifs factices solides malléables présentent rarement de bonnes propriétés de malléabilité, d'adhésion, notamment sur l'acier rouillé, et laissent des résidus sur les mains après leur manipulation.
Les explosifs factices simulant d'explosifs solides malléables proposés à ce jour contiennent donc le plus souvent un plastifiant et/ou un agent thixotropique afin, notamment, de leur conférer des propriétés mécaniques (tenue en température, à l'humidité...) et de malléabilité satisfaisantes.
En tout état de cause, les charges solides additionnées au liant liquide doivent l'être à un pourcentage massique suffisant pour l'obtention d'un solide de masse volumique proche de celle de l'explosif de référence. Or, les charges solides azotées (non pyrotechniques) couramment utilisées, telles le pentaérythritol, l'urée ou le monosodium de glutamate, qui simulent chimiquement des charges explosives, ont l'inconvénient de présenter une faible masse volumique (par exemple, la masse volumique du pentaérythritol est de 1,396), par rapport à celle des charges explosives (par exemple, la masse volumique de la charge explosive RDX est de 1,81) et elles demandent donc à être incorporées et présentes dans l'explosif factice à un pourcentage massique plus élevé que celui de la charge explosive dans l'explosif à simuler, pour atteindre une masse volumique identique. Sachant que les explosifs solides malléables contiennent en général au moins 85 % en masse de charge(s) explosive(s), le pourcentage massique de charge(s) azotée(s) à incorporer dans le liant pour l'obtention d'un explosif factice adéquat est en conséquence supérieur à ce taux et on se trouve alors à la limite de la faisabilité. Le pourcentage massique élevé des charges solides azotées (habituellement utilisées) ainsi nécessaire peut donc induire des problèmes d'incorporation desdites charges dans le liant et dégrader les propriétés mécaniques et de malléabilité du l'explosif factice.
Les explosifs factices d'explosif solide malléable (reproductions, inertes sur le plan pyrotechnique, d'explosifs solides malléables) sont donc, à ce jour, des formulations complexes, pouvant être difficiles à élaborer.
Dans un tel contexte, l'inventeur a cherché un (type d7) explosif factice simulant d'explosif solide malléable nouveau. Il en a trouvé un, au moins aussi performant que ceux connus, particulièrement intéressant en termes :
de composition (sa composition est susceptible d'incorporer une charge solide à un « faible » pourcentage massique et ne renferme généralement ni plastifiant, ni agent thixotropique),
de propriétés mécaniques et de malléabilité (satisfaisantes et aisément modifiables),
de masse volumique (adéquate et aisément modifiable), et - de procédé de fabrication (simple).
Selon son premier objet, la présente invention concerne donc un explosif factice (i.e. non pyrotechnique (pyrotechniquement inerte), en une matière non explosive) simulant un tel explosif solide malléable, original.
L'explosif factice de l'invention est lui-même, de façon conventionnelle, un solide malléable. On propose logiquement un solide malléable pour simuler un solide malléable. L'explosif factice de l'invention, comme l'explosif qu'il simule, est solide en ce qu'il ne coule pas par gravité dans sa gamme opérationnelle d'utilisation, c'est-à-dire au moins jusqu'à +70°C. Ledit explosif factice, comme l'explosif qu'il simule, est malléable en ce qu'il peut être modelé à la main (manuellement) à des températures de -40°C à +70°C. Ces "définitions" ne surprendront pas l'homme du métier. Notons incidemment ici que la propriété de malléabilité peut s'apprécier par le paramètre fermeté mesurable à l'aide d'un texturomètre (voir ci-après).
L'explosif factice d'explosif solide malléable de l'invention se caractérise par sa composition. Celle-ci est constituée, pour au moins 95 % de sa masse, d'une charge solide pulvérulente non pyrotechnique (inerte pyrotechniquement), d'un liquide et de fibres.
Lesdites fibres constituent l'élément clé de la présente invention.
Leur présence permet d'atteindre, même en l'absence de plastifiant et d'agent thixotropique, les propriétés mécaniques et de malléabilité de l'explosif factice requises, et ce, avec une grande latitude pour le choix de la charge solide, en tout état de cause, avec une beaucoup plus grande latitude que selon la technique de l'art antérieur où la charge solide doit être introduite à un taux massique élevé et sous différentes coupes granulométriques pour atteindre lesdites propriétés requises (voir ci- dessus). De par la présence des fibres, la charge peut être introduite à un taux massique beaucoup plus faible, en sélectionnant toutefois ses ingrédients constitutifs de masse volumique suffisante pour reproduire la masse volumique de l'explosif à simuler. Ainsi, selon une variante avantageuse, la charge solide pulvérulente non pyrotechnique de l'explosif factice de l'invention présente une masse volumique supérieure ou égale à 2 g/cm3 et représente moins de 80 % en masse de la masse totale de l'explosif factice.
Une modification à la demande des propriétés mécaniques et de malléabilité de l'explosif factice peut par ailleurs être aisément réalisée en faisant varier le taux (voir le tableau 3 ci-après) et/ou les dimensions des fibres. L'homme du métier a compris que les fibres présentes le sont, individualisées, au sein de matrices non rigides (= charge + liquide), en références aux propriétés mécaniques et de malléabilité de l'ensemble (= charge + liquide + fibres).
Certes, des produits solides rigides, tels des matériaux composites, qui renferment des fibres, plus ou moins longues (par exemple, de carbone, de verre, synthétiques) dans une matrice, afin, généralement, de renforcer la tenue mécanique et/ou modifier les propriétés électriques de ladite matrice, sont connus de l'art antérieur. Ils sont utilisés dans de nombreux domaines techniques, tels le domaine aéronautique (voir, par exemple, les ailes d'avion), le domaine nautique (voir, par exemple, les mâts, les quilles, de navires), le domaine vestimentaire (voir, par exemple, les gilets pare-balles), et celui des matériaux énergétiques (voir, par exemple, certains propergols et poudres pour armes). Dans ce domaine des matériaux énergétiques, il a notamment été décrit :
des poudres à canon, pour munitions sans douilles, contenant de 0,1 à 10 % en masse de fibres, pour augmenter leurs propriétés mécaniques tout en maintenant ou accroissant leurs propriétés balistiques (voir l'enseignement de la demande de brevet DE 28 43 477) ;
des propergols solides incorporant des fibres de carbone, pour réduire leur sensibilité aux décharges électrostatiques (voir l'enseignement du brevet US 5 547 525) ;
des poudres d'allumage (dont la composition renferme, par exemple : chlorate de potassium + sucre + liant + fibres), pour des dispositifs de sécurité automobile, au sein desquelles les fibres ont pour fonction de renforcer les propriétés mécaniques (en vue de conférer une meilleure résistance aux vibrations ainsi qu'une meilleure résistance thermique aux grains desdites poudres) (voir l'enseignement de la demande EP 1 279 624 ; un propergol solide double base incorporant des fibres synthétiques à titre de renfort mécanique, notamment à chaud (voir l'enseignement du brevet US 6 607 617).
Toutefois, assurément, pour l'homme du métier, les produits solides en cause, produits solides rigides, d'une part et produits solides malléables, d'autre part, sont des produits bien différents et il n'est pas la règle générale de transposer les enseignements relatifs à l'un de ces types de produits à l'autre type. A la connaissance de la Demanderesse, il a ainsi été tout à fait original de proposer la présence de fibres dans la composition d'un explosif factice simulant un explosif solide malléable (voir l'introduction du présent texte). Les résultats obtenus sont par ailleurs forts intéressants (voir ci-dessus ainsi que ci-après dans la partie exemple).
On se propose maintenant de développer ci-après chacune des caractéristiques de composition de l'explosif factice d'explosif solide malléable de l'invention.
La charge solide pulvérulente non pyrotechnique renferme un unique type de charge ou un mélange de charges de nature ou (et) de granulométrie différente(s). Comme indiqué ci-dessus, la coprésence des fibres rend les exigences (en termes de quantité et de « qualité ») sur ladite charge beaucoup moins sévères.
Ladite charge solide est avantageusement choisie parmi les oxydes métalliques (matières premières à bas coût) (tels que l'alumine, l'oxyde de titane, l'oxyde de magnésium, les oxydes de fer), les hydroxydes métalliques (tels que l'hydroxyde d'aluminium et l'hydroxyde de fer) et leurs mélanges. Ces oxydes et hydroxydes présentent généralement une masse volumique supérieure à 2 g/cm3, avantageusement supérieure à 3,5 g/cm3. La forte masse volumique de telles charges permet de reproduire la masse volumique de l'explosif de référence en introduisant lesdites charges à des taux raisonnables (< 80 % en masse) dans la composition de l'explosif factice. A de tels taux réduits de charge, les propriétés mécaniques et de malléabilité recherchées sont atteintes grâce à la présence des fibres. Notons incidemment que la présence de charges solides azotées connues de l'art antérieur, tels le pentaérythritol, l'urée, le monosodium de glutamate et leurs mélanges (comme signature chimique) n'est pas exclue du cadre de l'invention. Cette présence est avantageusement une coprésence avec celle de charges à forte masse volumique, notamment telles qu'identifiées ci-dessus.
La granulométrie de la charge solide n'est donc plus un paramètre de premier ordre pour régler les propriétés mécaniques et de malléabilité de l'explosif factice. Elle est, de façon conventionnelle, généralement comprise entre 0,1 et 500 pm, avantageusement comprise entre 0,1 et 300 pm.
Le liquide présent, qui assure le rôle de liant, consiste en un liquide ou un mélange de liquides. Il peut être ou non un solvant de la charge solide. Dans l'hypothèse où ledit liquide est un solvant de ladite charge, on comprend bien évidemment que ladite charge est présente à des concentrations au-delà de la concentration de saturation, dans la mesure où un solide est en cause.
Le liquide peut notamment être choisi parmi les huiles naturelles, les huiles de synthèse et les polymères liquides. Ledit liquide est avantageusement choisi parmi les polymères polyols ci-après : polyisobutylènes polyols, polybutadiènes polyols, polyéthers polyols, polyesters polyols et polysiloxanes polyols, dont la masse moléculaire moyenne en nombre est comprise entre 500 et 10 000. Ledit liquide est très avantageusement choisi parmi lesdits polybutadiènes polyols. Ledit liquide consiste de préférence en un polybutadiène hydroxytéléchélique de ce type. En fait, conviennent parfaitement, à titre de liquide pour les explosifs factices (solides malléables) de l'invention, les polybutadiènes hydroxytéléchéliques habituellement utilisés à l'état réticulé comme liant des propergols solides pour l'auto-propulsion. L'homme du métier connaît ce type de polymère (voir notamment l'enseignement de la demande de brevet EP 1 333 015). Avantageusement, ledit liquide a une viscosité dynamique comprise entre 0,1 et 1 Pa.s dans la gamme de température : - 40°C et + 70°C.
Les fibres présentes sont, comme indiqué ci-dessus, en grande partie responsables des propriétés mécaniques et de malléabilité de l'explosif factice. Elles peuvent être toutes de même nature ou d'au moins deux natures différentes. Elles peuvent toutes présenter des rapports de forme (L/D : Longueur/Diamètre) identiques ou présenter différents rapports de forme (L/D).
Elles peuvent notamment être choisies parmi les fibres synthétiques, les fibres minérales et leurs mélanges. Il peut notamment s'agir de fibres de verre, de carbone, de polyéthylène, de polyester, acryliques, de polypropylène, de nylon... Elles sont avantageusement choisies parmi les fibres de carbone, les fibres de polyéthylène et les fibres de verre, et leurs mélanges.
Lesdites fibres présentent généralement un diamètre compris entre 1 et 100 pm et une longueur comprise entre 5 et 100 fois leur diamètre. Elles présentent avantageusement un diamètre compris entre 5 et 50 pm et une longueur comprise entre 10 et 50 fois leur diamètre. Des fibres courtes, d'une longueur inférieure ou égale à 1 cm, d'une longueur ne dépassant généralement pas les quelques dixièmes de millimètre (inférieure à 1 mm), sont donc généralement en cause.
On a compris que la présence des fibres dans la composition des explosifs factices de l'invention est un moyen tout à fait original pour obtenir les propriétés mécaniques et de malléabilité recherchées. L'invention propose donc un débouché original auxdites fibres. Ladite invention peut tout à fait s'analyser en termes d'utilisation : utilisation de fibres dans l'élaboration d'un explosif factice d'explosif malléable,
utilisation d'un mélange, dont la composition renferme, pour au moins 95 % de sa masse, une charge solide pulvérulente non pyrotechnique, un liquide et des fibres, comme explosif factice d'explosif pyrotechnique.
Un nouveau type d'explosif factice, simulant un explosif solide malléable, est ainsi proposé selon l'invention.
L'homme du métier conçoit bien évidemment que les solide(s), liquide(s) et fibres associés le sont opportunément pour l'obtention du but recherché : un solide malléable (voir les "définitions" données ci-dessus aux deux qualificatifs : "solide" et "malléable"). Il conçoit que les principaux paramètres en cause, pour l'obtention d'un solide présentant des propriétés de malléabilité adéquates (une consistance adéquate), sont au premier ordre :
- la viscosité et la proportion massique du liquide (liquide ou mélange de liquides) ;
- les dimensions et la proportion massique des fibres introduites.
Il conçoit que les charges présentes interviennent désormais essentiellement en référence au paramètre masse volumique, car même si elles contribuent aux propriétés mécaniques et à la malléabilité de l'explosif factice, elles ne sont pas (plus, en référence aux explosifs factices de l'art antérieur) l'ingrédient principal de réglage de ces propriétés.
Notons incidemment que des interactions chimiques peuvent éventuellement se développer entre la charge solide et le liquide, qu'en tout état de cause ledit liquide assure la fonction de liant de la charge solide et des fibres.
On rappelle encore ici que la charge solide présente dans la composition de l'explosif factice d'explosif solide de l'invention n'a plus comme fonction première, par mélange avec le liquide, d'atteindre les propriétés mécaniques et de malléabilité souhaitées, comme c'est le cas pour les explosifs factices de l'art antérieur (nécessitant l'introduction d'une quantité importante de charges solides présentant des coupes granulométriques spécifiques). La charge solide entrant dans la composition de l'explosif factice de l'invention peut donc être introduite en plus faible quantité, sans exigence serrée concernant sa granulométrie (à supposer bien évidemment que la similitude au niveau du paramètre masse volumique (avec l'explosif de référence) puisse être assurée en cette plus faible quantité).
L'explosif factice d'explosif solide malléable de l'invention est donc essentiellement (pour au moins 95 % de sa masse) constitué de ladite charge, dudit liquide et desdites fibres. Il peut tout à fait, selon une variante, être uniquement (à 100 %) constitué de ladite charge, dudit liquide et desdites fibres. En sus de ladite charge, dudit liquide et desdites fibres, il peut, selon une autre variante, renfermer au moins un additif, notamment choisi parmi les agents antioxydants, les agents antidurcissement au vieillissement, les marqueurs chimiques de détection, les colorants et leurs mélanges, pour au plus 5 % de sa masse totale.
Des additifs, susceptibles d'être renfermés dans la composition des explosifs factices de l'invention sont notamment :
- au moins un agent antioxydant (du liquide type polymère polyol), tels que, par exemple, le di-tertiobutyl paracrésol méthane, le 2,2- méthylène bis (4-méthyl-6-tertio butyl) phénol et leurs mélanges ; - au moins un agent anti-durcissement en vieillissement, notamment à chaud, tel que, par exemple, une huile de silicone, le tétraéthylènepentamineacrylonitrile (TEPAN), la lécithine de soja et leurs mélanges ;
- au moins un marqueur chimique de détection tel que, par exemple, le EGDN (DiNitrate d'EthylèneGlycol), le DMDNB (2,3-DiMéthyl-2,3- DiNitroButane), le p-MNT (para-MonoNitroToluène) ou o-MNT (ortho- MonoNitroToluène). La présence d'un marqueur chimique est possible au sein des explosifs factices, pour simuler les explosifs incorporant de tels marqueurs chimiques en conformité avec la convention de Montréal du 1er mars 1991 portant sur le "marquage des explosifs plastiques et en feuilles aux fins de leur détection" ;
- au moins un colorant (bleu ou orange selon les conventions de marquage des matériaux inertes).
Aucun plastifiant, aucun agent thixotropique, n'est obligatoirement présent dans la composition des explosifs factices de l'invention. Notons toutefois qu'une telle présence ne saurait être totalement exclue mais que généralement elle est superflue (au vu du « faible » taux de charges requis). Ainsi, généralement, la composition des explosifs factices de l'invention est exempte de plastifiant et agent thixotropique.
Selon une variante avantageuse, l'explosif factice de l'invention présente la composition ci-après, exprimée en pourcentages en masse : -
- de 0 % à 5 % d'additifs, et
- pour au moins 95 % (de sa masse) :
+ de 30 % à 80 %, très avantageusement de 50 % à 70 %, d'une charge solide (une unique charge ou un mélange de charges de nature ou (et) de granulométrie différente(s)), et
+ de 10 % à 60 %, très avantageusement de 20 à 40 %, d'un liquide
(un unique liquide ou un mélange d'au moins deux liquides), et
+ de 2 % à 20 % de fibres, très avantageusement de 4 % à 10% de fibres.
Les additif(s), charge(s), liquide(s) et fibres de la composition ci- dessus sont tels que précisés ci-dessus.
Les explosifs factices de l'invention se présentent généralement sous la forme de blocs ou pains (au sens des pains d'explosifs plastiques de référence). Ils ont généralement une masse comprise entre 100 g et 5 kg.
Selon son deuxième objet, la présente invention concerne un procédé d'obtention d'un explosif factice tel que décrit ci-dessus (premier objet de ladite invention). Ledit procédé comprend :
- l'obtention d'une pâte par malaxage d'un mélange constitué, pour au moins 95% de sa masse, d'une charge solide pulvérulente non pyrotechnique, d'un liquide et de fibres,
- le moulage de ladite pâte dans un(des) moule(s) et le démoulage de ladite pâte moulée ou l'extrusion de ladite pâte et le découpage de ladite pâte extrudée.
On comprend qu'il s'agit d'un procédé par analogie préconisé pour la première fois dans un contexte de mélanges : charge solide pulvérulente non pyrotechnique + liquide + fibres, pour l'obtention d'un explosif factice d'explosif solide malléable.
Le malaxage charge solide + liquide + fibres (+ éventuellement additif(s)), pour l'obtention de la pâte, peut être mis en œuvre à température ambiante ou à chaud, généralement à une température inférieure à 80°C.
Le procédé d'obtention de l'explosif factice original de l'invention peut être mis en œuvre en continu ou en discontinu.
On précise ci-après, à titre purement illustratif, trois variantes de mise en œuvre dudit procédé. Selon une première variante : on mélange à chaud (typiquement 60°C) les matières premières dans un malaxeur ; le mélange obtenu (dont la masse peut par exemple varier de 100 kg à 5 tonnes) est ensuite déchargé du malaxeur pour être introduit dans un entonnoir terminé par une vis sans fin ; ledit mélange est entraîné par la vis sans fin pour être disposé dans des moules (dont le volume peut être variable, typiquement compris entre 100 et 700 cm3, généralement de 350 cm3) ; ledit mélange contenu dans chaque moule est ensuite démoulé pour l'obtention d'un bloc (pain) en matériau inerte simulant d'explosif malléable (= d'un explosif factice de l'invention). Selon une seconde variante, le mélange est obtenu par malaxage en continu à chaud des matières premières et il est directement extrudé dans des moules (dont le volume peut être variable, typiquement compris entre 100 et 700 cm3, généralement de 350 cm3). Selon une troisième variante, le mélange est obtenu par malaxage en continu à chaud des matières premières et il est extrudé en continu sous la forme souhaitée, aux dimensions souhaitées, au travers d'une filière (généralement sous la forme d'une barre, au travers d'une filière de largeur/hauteur correspondant aux largeur/hauteur du pain final souhaité). La forme extrudée (généralement donc, la barre extrudée) est ensuite découpée en blocs (pains) de la longueur désirée (longueur correspondant à la masse des blocs (pains) recherchée).
La masse volumique de l'explosif factice obtenu peut varier en fonction de la quantité d'air piégée dans la pâte pendant le procédé d'obtention. Ladite masse volumique est avantageusement comprise entre 1300 et 1700 kg/m3.
La malléabilité d'un explosif factice de l'invention peut être évaluée par sa fermeté, mesurée à l'aide d'un texturomètre de type Brookfield CT3 en utilisant une sonde TA29. La fermeté d'un explosif factice selon l'invention est avantageusement comprise entre 50 g et 300 g.
L'invention, sous ses aspects de produit et de procédé, est maintenant illustrée, de façon nullement limitative, par l'exemple ci-après.
On précise tout d'abord la composition d'un explosif factice de l'invention puis l'obtention dudit explosif factice à partir de ses ingrédients constitutifs (plus précisément l'obtention de n explosif factices présentant ladite composition). Composition
Le tableau 2 ci-après présente la composition dudit explosif factice de l'invention, convenant comme explosif factice de l'explosif solide malléable du tableau 1 de la demande de brevet FR 2 954 309. Nous reproduisons tout d'abord ci-après ledit tableau 1.
Tableau 1
Figure imgf000016_0001
Le liquide entrant dans la composition de l'explosif de référence et de l'explosif factice est le même : un polybutadiène hydroxytéléchélique (PBHT). Il s'agit du PBHT R45HTLO commercialisé par la société Sartomer (Mn » 3000). Il intervient dans la composition de l'explosif factice à environ 27 % en masse.
La charge solide entrant dans la composition de l'explosif factice (qui intervient à 65% en masse, à comparer avec les 88% en masse de la charge explosive dans l'explosif de référence) est constituée de trihydroxyde d'aluminium AI(OH)3 (ou AI203,3H20) de 2,3 à 2,5 de masse volumique. Sa granulométrie est comprise entre 3 et 12 pm (à comparer avec la granulométrie bimodale de la charge explosive de l'explosif de référence).
Les fibres, qui interviennent à hauteur de 6% en masse, sont constituées de fibres de polyéthylène du type PE-Fribids de la société STW. Elles présentent un diamètre d'environ 10 μητι pour une longueur comprise entre 0,1 et 0,25 mm.
La composition massique de l'explosif factice contient, par ailleurs, comme celle de l'explosif, des additifs (un agent antioxydant, un agent anti-durcissement au vieillissement et un colorant, pour moins de 2 pourcent de sa masse totale).
Tableau 2
Figure imgf000018_0001
Procédé d'obtention
Les constituants d'explosifs factices de l'invention (présentant la 5 composition du tableau 2 ci-dessus) sont malaxés à chaud (60°C +/-10°C). Chaque opération de malaxage met en œuvre environ 200 kg de matière. La pâte obtenue est ensuite déchargée et introduite dans un entonnoir muni d'une vis sans fin pour le remplissage de moules. Le volume des moules est d'environ 330 cm3. Les blocs solides de matériau inerte simulant d'explosif malléable générés dans chaque moule sont ensuite démoulés, pour l'obtention d'explosifs factices de l'invention (pains en matériau inerte simulant (« explosifs inertes »)) d'environ 0,5 kg.
La masse volumique des explosifs factices présentant la composition du tableau 2 ci-dessus obtenus par ce procédé peut varier en fonction de la quantité d'air piégée dans la pâte pendant le procédé. Ladite masse volumique est comprise entre 1480 et 1525 kg/m3.
La malléabilité desdits explosifs factices peut être évaluée par leur fermeté, mesurée à l'aide d'un texturomètre de type Brookfield CT3 en utilisant une sonde TA29. La valeur de fermeté ainsi mesurée est d'environ 121 g.
Le tableau 3 ci-après présente la variation de fermeté d'explosifs factices de l'invention, du type de ceux du tableau 2 ci-dessus, en fonction du taux de fibres ajoutées. L'exemple 2 du tableau 3 correspond à la composition du tableau 2 (renfermant 6 % en masse de fibres). La fermeté est mesurée à l'aide d'un texturomètre de type Brookfield CT3 en utilisant une sonde TA29. Ce paramètre est représentatif de la malléabilité. Les valeurs obtenues montrent que le niveau de fermeté (et donc de malléabilité) de l'explosif factice est directement lié à la quantité de fibres introduites. Ce niveau de fermeté est donc aisément modifiable, sur une large plage, pour une masse volumique de l'explosif factice quasi constante comprise dans la gamme spécifiée ci-dessus. Tableau 3
Liquide +
additifs Charge solide Fibres Masse
Exemple volumique Fermeté
Pourcentage massique (%) kg/m3 (g)
N°l
28 65 7 1487 173
N°2 29 65 6 1485 121
N°3 31 64 5 1522 116

Claims

REVENDICATIONS
1. Explosif factice simulant un explosif solide malléable, consistant en un solide malléable, caractérisé en ce que sa composition renferme, pour au moins 95 % de sa masse :
- une charge solide pulvérulente non pyrotechnique,
un liquide, et
des fibres.
2. Explosif factice selon la revendication 1, caractérisé en ce que ladite charge solide pulvérulente non pyrotechnique présente un masse volumique supérieure ou égale à 2 g/cm3 et représente moins de 80 % en masse de la masse totale dudit explosif factice.
3. Explosif factice selon la revendication 1 ou 2, caractérisé en ce que ladite charge solide pulvérulente non pyrotechnique est choisie parmi les oxydes métalliques, les hydroxydes métalliques et leurs mélanges.
4. Explosif factice selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit liquide est choisi parmi les huiles naturelles, les huiles de synthèse et les polymères liquides ; en ce que ledit liquide est avantageusement choisi parmi les polymères polyols ci- après: polyisobutylènes polyols, polybutadiènes polyols, polyéthers polyols, polyesters polyols et polysiloxanes polyols, dont la masse moléculaire moyenne en nombre est comprise entre 500 et 10 000; en ce que ledit liquide est très avantageusement choisi parmi lesdits polybutadiènes polyols ; en ce que ledit liquide consiste de préférence en un polybutadiène hydroxytéléchélique de ce type.
5. Explosif factice selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdites fibres sont choisies parmi les fibres minérales, les fibres synthétiques, et leurs mélanges, notamment parmi les fibres de verre, de carbone, de polyéthylène, de polyester, acryliques, de polypropylène, de nylon et leurs mélanges.
6. Explosif factice selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdites fibres présentent un diamètre compris entre 1 et 100 pm et une longueur comprise entre 5 et 100 fois leur diamètre, avantageusement un diamètre compris entre 5 et 50 pm et une longueur comprise entre 10 et 50 fois leur diamètre
7. Explosif factice selon l'une quelconque des revendications 1 à 6, caractérisé en ce que sa composition renferme jusqu'à 5 % en masse d'au moins un additif.
8. Explosif factice selon la revendication 7, caractérisé en ce que ledit au moins un additif est choisi parmi les agents anti-oxydants, les agents anti-durcissement au vieillissement, les marqueurs chimiques de détection, les colorants et leurs mélanges.
9. Explosif factice selon l'une quelconque des revendications 1 à 8, caractérisé en ce que sa composition est exempte de plastifiant et agent thixotropique.
10. Explosif factice selon l'une quelconque des revendications 1 à 9, caractérisé en ce que sa composition renferme :
de 0 à 5 % en masse d'au moins un additif, et
pour au moins 95 % de sa masse :
+ de 30 à 80 %, avantageusement de 50 à 70 %, en masse de ladite charge solide,
+ de 10 à 60 %, avantageusement de 20 à 40 %, en masse dudit liquide, + de 2% à 20%, très avantageusement de 4% à 10%, desdites fibres.
11. Explosif factice selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il se présente sous la forme d'un bloc ou pain, dont la masse est généralement comprise entre 100 g et 5 kg.
12. Procédé d'obtention d'un explosif factice selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comprend :
- l'obtention d'une pâte, par malaxage d'un mélange constitué, pour au moins 95% de sa masse, d'une charge solide inerte non pyrotechnique, d'un liquide et de fibres,
- le moulage de ladite pâte dans un(des) moule(s) et le démoulage de ladite pâte moulée ou l'extrusion de ladite pâte et le découpage de ladite pâte extrudée.
13. Procédé selon la revendication 12, caractérisé en ce que ledit malaxage est mis en œuvre à la température ambiante ou à chaud, à une température inférieure ou égale à 80°C.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce qu'il est mis en œuvre en continu ou en discontinu.
PCT/FR2013/051250 2012-06-04 2013-06-03 Explosif factice simulant un explosif malleable et son procede d'obtention WO2013182796A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201595 2012-06-04
FR1201595A FR2991317B1 (fr) 2012-06-04 2012-06-04 Explosif factice simulant un explosif malleable et son procede d'obtention

Publications (1)

Publication Number Publication Date
WO2013182796A1 true WO2013182796A1 (fr) 2013-12-12

Family

ID=46785494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051250 WO2013182796A1 (fr) 2012-06-04 2013-06-03 Explosif factice simulant un explosif malleable et son procede d'obtention

Country Status (2)

Country Link
FR (1) FR2991317B1 (fr)
WO (1) WO2013182796A1 (fr)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2843477A1 (de) 1978-10-05 1980-04-17 Dynamit Nobel Ag Huelsenlose treibmittelkoerper
DE3046562A1 (de) * 1980-12-10 1982-07-15 Dynamit Nobel Ag, 5210 Troisdorf Plastischer, selbsthaftender sprengkoerper
DE3729630C1 (en) 1987-09-04 1989-03-02 Dynamit Nobel Ag Practice explosive compositions formable by hand
US4959108A (en) * 1988-05-26 1990-09-25 Submarine and Surface Blaster Pty. Limited Explosive compositions and method utilizing bulking and gassing agents
WO1994017014A1 (fr) * 1991-12-06 1994-08-04 E.I. Du Pont De Nemours And Company Ptfe fibrillable incorpore dans des explosifs lies avec du plastique
US5547525A (en) 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
EP1279624A1 (fr) 2001-07-24 2003-01-29 Ecollect Sarl Procédé d'obtention permanente du poids d'un conteneur rigide, à vidage par le bas, de déchets
EP1279654A2 (fr) * 2001-07-23 2003-01-29 NICO-PYROTECHNIK Hanns-Jürgen Diederichs GmbH & Co. KG Allumeur pyrotechnique pour le déclenchement intentionnel anticipé de systèmes de sécurité passive
EP1333015A2 (fr) 2002-02-01 2003-08-06 Snpe Procédé semi-continu d'obtention d'un chargement explosif composite à matrice polyuréthanne, ledit procédé mettant en oeuvre deux composants
US6607617B1 (en) 2000-08-16 2003-08-19 Alliant Techsystems Inc. Double-base rocket propellants, and rocket assemblies comprising the same
WO2006021949A2 (fr) * 2004-08-23 2006-03-02 Rafael Armament Development Authority Ltd. Matiere de simulation et son procede de fabrication
WO2011007253A1 (fr) 2009-07-11 2011-01-20 Albert Wartman Pains de plastic se prêtant au moulage, et pains de plastic factices inertes
FR2954309A1 (fr) 2009-12-21 2011-06-24 Eurenco France Explosif solide malleable et son obtention
US8114230B1 (en) * 2010-10-08 2012-02-14 The United States Of America As Represented By The Secretary Of The Navy Composition 4 (C-4) simulants

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2843477A1 (de) 1978-10-05 1980-04-17 Dynamit Nobel Ag Huelsenlose treibmittelkoerper
DE3046562A1 (de) * 1980-12-10 1982-07-15 Dynamit Nobel Ag, 5210 Troisdorf Plastischer, selbsthaftender sprengkoerper
DE3729630C1 (en) 1987-09-04 1989-03-02 Dynamit Nobel Ag Practice explosive compositions formable by hand
US4959108A (en) * 1988-05-26 1990-09-25 Submarine and Surface Blaster Pty. Limited Explosive compositions and method utilizing bulking and gassing agents
WO1994017014A1 (fr) * 1991-12-06 1994-08-04 E.I. Du Pont De Nemours And Company Ptfe fibrillable incorpore dans des explosifs lies avec du plastique
US5547525A (en) 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
US6607617B1 (en) 2000-08-16 2003-08-19 Alliant Techsystems Inc. Double-base rocket propellants, and rocket assemblies comprising the same
EP1279654A2 (fr) * 2001-07-23 2003-01-29 NICO-PYROTECHNIK Hanns-Jürgen Diederichs GmbH & Co. KG Allumeur pyrotechnique pour le déclenchement intentionnel anticipé de systèmes de sécurité passive
EP1279624A1 (fr) 2001-07-24 2003-01-29 Ecollect Sarl Procédé d'obtention permanente du poids d'un conteneur rigide, à vidage par le bas, de déchets
EP1333015A2 (fr) 2002-02-01 2003-08-06 Snpe Procédé semi-continu d'obtention d'un chargement explosif composite à matrice polyuréthanne, ledit procédé mettant en oeuvre deux composants
WO2006021949A2 (fr) * 2004-08-23 2006-03-02 Rafael Armament Development Authority Ltd. Matiere de simulation et son procede de fabrication
WO2011007253A1 (fr) 2009-07-11 2011-01-20 Albert Wartman Pains de plastic se prêtant au moulage, et pains de plastic factices inertes
FR2954309A1 (fr) 2009-12-21 2011-06-24 Eurenco France Explosif solide malleable et son obtention
WO2011083249A1 (fr) * 2009-12-21 2011-07-14 Eurenco Explosif solide malleable et son obtention
US8114230B1 (en) * 2010-10-08 2012-02-14 The United States Of America As Represented By The Secretary Of The Navy Composition 4 (C-4) simulants

Also Published As

Publication number Publication date
FR2991317B1 (fr) 2014-06-20
FR2991317A1 (fr) 2013-12-06

Similar Documents

Publication Publication Date Title
EP2516356B1 (fr) Explosif solide malleable et son obtention
EP1790626B1 (fr) Procédé bicomposant semi-continu perfectionné d&#39;obtention d&#39;un chargement explosif composite à matrice polyuréthanne
FR2892117A1 (fr) Composition pyrotechnique generatrice de gaz rapide et procede d&#39;obtention
EP0194180A1 (fr) Procédé de fabrication sans solvants de produits pyrotechniques composites à liant thermodurcissable
EP1333015B1 (fr) Procédé semi-continu d&#39;obtention d&#39;un chargement explosif composite à matrice polyuréthanne, ledit procédé mettant en oeuvre deux composants
FR2746389A1 (fr) Propergol composite, charge propulsive et leurs procedes de fabrication
FR2982869A1 (fr) Additif a base de poudre de charbon vegetal pour matrice polymere ou similaire
WO2013182796A1 (fr) Explosif factice simulant un explosif malleable et son procede d&#39;obtention
WO2010061127A2 (fr) Composition composite pour propergol solide comprenant un derive ferrocenique et une charge d&#39;aluminium submicronique, propergol solide et chargement
FR2689425A1 (fr) Procédé de désensibilisation de déchets de propergol de moteurs-fusées.
Vesna et al. The effect of curing agents on solid composite rocket propellant characteristics
CA2290678A1 (fr) Procede de fabrication en continu de bitumes modifies
CA2204840C (fr) Procede continu de fabrication sans solvant de produits pyrotechniques composites thermodurcissables
EP3071537B1 (fr) Produit pyrotechnique composite a liant non reticule et son procede de preparation
EP3221283B1 (fr) Produits explosifs composites de faible epaisseur et leur preparation
CA2930488A1 (fr) Produit pyrotechnique composite a liant reticule et son procede de preparation
EP3137548A1 (fr) Composition thermoplastique
FR3028853A1 (fr) Cordeaux detonants de decoupe et leur preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13730024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13730024

Country of ref document: EP

Kind code of ref document: A1