EP1324831B1 - Verfahren zum betrieb eines elektrofilters - Google Patents

Verfahren zum betrieb eines elektrofilters Download PDF

Info

Publication number
EP1324831B1
EP1324831B1 EP01986624A EP01986624A EP1324831B1 EP 1324831 B1 EP1324831 B1 EP 1324831B1 EP 01986624 A EP01986624 A EP 01986624A EP 01986624 A EP01986624 A EP 01986624A EP 1324831 B1 EP1324831 B1 EP 1324831B1
Authority
EP
European Patent Office
Prior art keywords
filter
values
model
zones
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01986624A
Other languages
English (en)
French (fr)
Other versions
EP1324831A1 (de
Inventor
Norbert Grass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1324831A1 publication Critical patent/EP1324831A1/de
Application granted granted Critical
Publication of EP1324831B1 publication Critical patent/EP1324831B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques

Definitions

  • the invention relates to a method for operating an electrostatic precipitator.
  • Electrostatic precipitators find in the most diverse technical processes for dedusting of gases use. This is a Package of deposition electrodes arranged in the gas stream. Between These deposition electrodes are preferably wire-shaped Inserted between the electrodes in each case parallel connected spray electrodes on the one hand and the precipitating electrodes on the other hand, a high DC voltage in the order of about 50 kV applied becomes. As a result, the gas molecules are ionized and give then their charge to the dust particles contained in the gas stream which are negatively charged and thereby to the positively charged part of the electrodes are pulled. There They can be made by vibration or by stripping devices be dissolved and then fall down in a dust collector.
  • DE 42 22 069 A1 discloses a method for operating a Electrostatic precipitator and an electrostatic filter to carry out the Procedure described.
  • a desired spark gap which is another electrical High voltage field builds up.
  • the desired spark gap is operated in an area that is dust-free, but otherwise all major operating parameters of the media stream subject. This should on the one hand smoldering fires within of the electrostatic precipitator are avoided, on the other hand should thereby always the operating voltage of the electrostatic precipitator be kept as close to the rollover limit.
  • US-A-4 432 061 discloses a method of operating electrostatic precipitators. wherein each electrostatic precipitator is associated with a microcomputer system which coupled with a main computer. This optimizes strategies for the whole arrangement to achieve optimal efficiency.
  • the object of the present invention is therefore a method to create an electrostatic precipitator on easy way to safely adhere to the limits for the Ensures particle emission.
  • the real electrostatic precipitator becomes a filter model transformed, the at least one input zone, at least a central zone and at least one exit zone, wherein each of the at least three model zones a predefinable Characteristic is assigned.
  • this characteristic is the energy supply for a predetermined number of these Model zones depending on the set point of the particle emission regulated.
  • Modeling results in a simplification of the algorithms and a shortening of the optimization period for the relevant electrostatic precipitator.
  • the filter model 2 comprises in the illustrated Embodiment an entrance zone 2a, a Center zone 2b and an exit zone 2c.
  • the entrance zone 2a which contains the steps 1a and 1b of the real filter correspond, has a high, inhomogeneous dust concentration in the exhaust. Charging as many particles as possible Affects the effectiveness of the middle zone 2b and the exit zone 2c.
  • the middle zone 2b consisting of the stages 1c and 1d of the real Filter 1 is formed, has a significantly lower dust concentration (about 1/20). In the middle zone 2b can In rare cases, a re-spraying occur. Under re-spray one understands the end of the linear voltage rise despite increasing the current.
  • the choice of operating mode for the inverse transformation of the filter model 2 in the real filter 1 depends on the calculated Strength of re-spraying in the corresponding model zones from.
  • the gradients of the emission (or opacity) over the partial electrical power educated This requires the electric power in all Zones one after the other at the current operating point slightly be varied.
  • the gradients of the three model zones are one Measure of the influence of a model zone when changing the electrical Power on the particle emission.
  • the Power setpoints of model zones 2a, 2b and 2c optimized so that all three gradients are the same size and the desired Emission value is reached exactly. At this operating point becomes the electrostatic filter with the minimum possible Power operated at the prescribed or desired Emission value is just reached.
  • fuzzy logic For a specific search of the optimal operating point has become proven the use of fuzzy logic.
  • Another advantage of using fuzzy logic is the simple realizability of unbalanced controllers Change the membership functions of a signal. An increase Emissions require a fast, strong reaction the system because of the risk of exceeding the limit value, whereas significantly reducing electrical power more time is available. By the use of Fuzzy logic thus increases the reliability.
  • the actual values are the mean value of the particle emission also uses the peak values and the instantaneous values.
  • the Viewing the current values allows a quick response on rising values due to unpredictable Process changes (eg sootblowing). Monitoring the maxima prevents unwanted or unauthorized emission peaks even with periodic or recurring events (eg plate knocking).
  • the High voltage power supplies of the electrostatic filter crosslinked wherein an optical Profibus 5 was selected as the transmission system.
  • an optical Profibus 5 was selected as the transmission system.
  • the energy management runs on a personal computer 6, which is shown in the Exemplary embodiment under the operating system Windows NT® is operated.
  • an automation system eg. Eg Simatic® S7.
  • the individual high voltage supplies contain a set of parameters that activates upon loss of data communication becomes.
  • B. Operation with nominal current deposited become. If the emission values are exceeded by a predefinable Value becomes one for all high voltage supplies Current increase causes, regardless of the ongoing optimization. In a second stage can be at a further increasing Particle emission in all high voltage power supplies of the Rated current can be activated.
  • the user-friendly user interface of FIG Recognize the software used in the personal computer 6.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Elektrofilters.
Elektrofilter finden in den vielfältigsten technischen Prozessen zur Entstaubung von Gasen Verwendung. Hierbei wird ein Paket von Abscheideelektroden im Gasstrom angeordnet. Zwischen diesen Abscheideelektroden werden vorzugsweise drahtförmige Sprühelektroden eingefügt, wobei zwischen den elektrisch jeweils parallel geschalteten Sprühelektroden einerseits und den Abscheideelektroden andererseits eine hohe Gleichspannung in der Größenordnung von etwa 50 KV angelegt wird. Hierdurch werden die Gasmoleküle ionisiert und geben sodann ihre Ladung an die im Gasstrom enthaltenen Staubpartikel ab, welche negativ aufgeladen werden und dadurch zu dem positiv geladenen Teil der Elektroden gezogen werden. Dort können sie durch Vibration oder durch Abstreifeinrichtungen gelöst werden und fallen sodann nach unten in eine Staubsammelvorrichtung.
Mit diesem Prinzip lassen sich die unterschiedlichsten Partikel aus den verschiedensten Gasströmen abscheiden, woraus allerdings je nach Einsatzfall stark schwankende Betriebsparameter für das Elektrofilter resultieren. Durch Feuerung unterschiedlicher Kohlesorten entstehen beispielsweise unterschiedliche Partikelmengen und Abgaseigenschaften in den Elektrofiltern. So wird z. B. zum Erreichen des geforderten Reingasstaubgehalts bei Kohlen mit niederohmigen Aschebestandteilen und hohen Aschegehalten erheblich höhere Energie im Elektrofilter benötigt als bei Kohlen mit geringem Ascheanteil.
Bei den bisher bekannten Elektrofiltern ist eine sichere Einhaltung der Grenzwerte für die Partikelemission nur bei voller Leistung der Hochspannungsversorgung sichergestellt, der zu einem entsprechend hohen Energieverbrauch führt.
Die bisher auch vorgenommene manuelle Einstellung der Geräte erfordert einen hohen Aufwand an geschultem Bedienpersonal. Auch eine an sich mögliche Überdimensionierung des Elektrofilters ist wegen der hiermit verbundenen nicht unbeträchtlichen Verteuerung des betreffenden industriellen Verfahrens nur begrenzt möglich. Die Feuerung nur bestimmter Kohlesorten führt dazu, dass Marktentwicklungen nicht voll ausgenutzt werden können.
In der DE 42 22 069 A1 ist ein Verfahren zum Betrieb eines Elektrofilters sowie ein Elektrofilter zur Durchführung des Verfahrens beschrieben. Im bekannten Fall wird außerhalb der aktiven Abscheidezone des Elektrofilters, also entfernt von dem diese Abscheidezone bildenden elektrischen Hochspannungsfeld, eine Soll-Funkenstrecke betrieben, die ein weiteres elektrisches Hochspannungsfeld aufbaut. Die Soll-Funkenstrecke wird in einem Bereich betrieben, der staubfrei ist, aber ansonsten allen wesentlichen Betriebsparametern des Medienstroms unterliegt. Dadurch sollen einerseits Glimmbrände innerhalb des Elektrofilters vermieden werden, andererseits soll dadurch die Betriebsspannung des Elektrofilters immer möglichst nahe der Überschlagsgrenze gehalten werden.
Weiterhin ist in der DE 41 40 228 A1 ein Verfahren zur Entstaubung von Rauchgasen beschrieben. Bei diesem Verfahren wird ein Vergleich einer Soll-Istwertdifferenz mit im Voraus experimentell ermittelten Prozessparametern durchgeführt. Die experimentelle Ermittlung der Prozessparameter erfolgt hierbei in einem hinsichtlich Entstaubungsgrad und Wirkungsgrad optimalen Prozess. Durch das bekannte Verfahren soll ein möglichst effizienter Betrieb der Elektrofilter im ökologischen wie auch im ökonomischen Sinne erreicht werden.
Aus US-A-4 432 061 ist ein Verfahren zum Betrieb von Elektrofiltern bekannt, wobei jedes Elektrofilter mit einem Microcomputersystem assoziert ist, welches mit einem Haupt computer gekoppelt ist. Dieser optimiert Strategien für die ganze Anordnung um eine optimale Effizienz zu erzielen.
Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren zum Betrieb eines Elektrofilters zu schaffen, das auf einfache Weise eine sichere Einhaltung der Grenzwerte für die Partikelemission gewährleistet.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahren sind in den Unteransprüchen angegeben.
Bei dem erfindungsgemäßen Verfahren zum Betrieb eines Elektrofilters wird das reale Elektrofilter auf ein Filtermodell transformiert, das wenigstens eine Eingangszone, wenigstens eine Mittelzone und wenigstens eine Ausgangszone umfasst, wobei jeder der mindestens drei Modellzonen eine vorgebbare Charakteristik zugeordnet wird. Entsprechend dieser Charakteristik wird die Energiezufuhr für eine vorgebbare Anzahl dieser Modellzonen in Abhängigkeit vom Sollwert der Partikelemission geregelt.
Bei dem erfindungsgemäßen Verfahren werden Spitzenwerte, wie sie häufig bei der Plattenklopfung auftreten, begrenzt, so dass die sichere Einhaltung der vorgegebenen Grenzwerte gewährleistet ist. Durch die Transformation des realen Elektrofilters auf ein Filtermodell, welches wenigstens eine Eingangszone, wenigstens eine Mittelzone und wenigstens eine Ausgangszone umfasst, ist das Verfahren nach Anspruch 1 auf beliebige Anordnungen von Elektrofiltern anwendbar. Jede der drei Modellzonen wird hierbei eine bestimmte Charakteristik zugeordnet. Entsprechend dieser Charakteristik wird die Energiezufuhr für eine vorgebbaren Anzahl dieser Modellzonen in Abhängigkeit vom Sollwert der Partikelemission geregelt.
Durch die Modellbildung erhält man eine Vereinfachung der Algorithmen und eine Verkürzung der Optimierungsdauer für das betreffende Elektrofilter.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert. Es zeigen:
FIG 1
ein Diagramm der Partikelemission über den dem Elekt- rofilter zugeführten elektrischen Strom,
FIG 2
eine graphische Darstellung der Transformation eines realen mehrstufigen Elektrofilters auf ein Filtermo- dell,
FIG 3
ein Beispiel für eine Vernetzung von Hochspannungsge- räten eines Elektrofilters,
FIG 4
eine Regelung der Partikelemission und der Filter- ströme,
FIG 5
eine Bedienoberfläche bei einer Ausführungsform des erfindungsgemäßen Verfahrens.
FIG 1 zeigt in einem Diagramm den prinzipiellen Verlauf der Staubpartikelemission in Abhängigkeit von der Stromstärke, die einem Elektrofilter zugeführt wird. Durch Änderung im Produktionsprozess können sich die Abgaseigenschaften ändern, so dass sich die im Beispiel gezeigte Kurve quantitativ ändert.
In FIG 2 ist mit 1 ein sechsstufiges reales Elektrofilter bezeichnet, das erfindungsgemäß auf ein Filtermodell 2 transformiert wird. Die Transformation ist in FIG 2 durch einen Doppelpfeil symbolisiert. Das Filtermodell 2 umfasst im dargestellten Ausführungsbeispiel eine Eingangszone 2a, eine Mittelzone 2b und eine Ausgangszone 2c.
Der Eingangszone 2a, der die Stufen 1a und 1b des realen Filters entsprechen, weist eine hohe, inhomogene Staubkonzentration im Abgas auf. Die Aufladung möglichst vieler Partikel wirkt sich günstig auf die Wirksamkeit der Mittelzone 2b und der Ausgangszone 2c aus.
In der Mittelzone 2b, die aus den Stufen 1c und 1d des realen Filters 1 gebildet wird, weist eine deutlich geringere Staubkonzentration (ca. 1/20) auf. In der mittleren Zone 2b kann in seltenen Fällen ein Rücksprühen auftreten. Unter Rücksprühen versteht man das Ende des linearen Spannungsanstiegs trotz Erhöhung der Stromstärke.
In der Ausgangszone 2c, die aus den Stufen le und lf des realen Filters 1 gebildet wird, ist ein hoher Anteil an feinen Staubpartikeln vorhanden. Aufgrund des hochohmigen Staubbelags an den Platten tritt häufiger ein Rücksprühen auf. Der Emissionswert reagiert sensibel auf Plattenklopfung.
Nach Modifikationen im Betrieb, z. B. durch Änderung der Stromzufuhr, in einer Zone müssen alle nachfolgenden Zonen neu adaptiert werden.
Für die Transformation des realen Elektrofilters auf ein Filtermodell wird zumindest einer der folgenden Parameter berücksichtigt:
  • Istwert und Sollwert des Filterstromes,
  • Istwerte, Minimalwerte, Maximalwerte und Mittelwerte der Filterspannung,
  • elektrische Leistung,
  • Betriebsart (kontinuierlicher Betrieb oder Pulsbetrieb) und/oder
  • falls Pulsbetrieb aktiv - wenigstens ein Pulsmuster.
  • Im Gasstrom parallele Modellzonen werden zunächst mit identischen Sollwerten versorgt. Bei der Feinoptimierung werden die Gewichtungsfaktoren für die parallelen Modellzonen bestimmt. Bei seriellen Modellzonen wird eine lineare Interpolation der Parameter, insbesondere der Istwerte, verwendet. Auch hier sind unterschiedliche Gewichtungen der einzelnen Modellzonen denkbar.
    Die Wahl der Betriebsart bei der Rücktransformation vom Filtermodell 2 in das reale Filter 1 hängt von der errechneten Stärke des Rücksprühens in den korrespondierenden Modellzonen ab.
    Im aktuellen Betriebspunkt des realen Elektrofilters 1 werden für die drei Modellzonen 2a, 2b und 2c die Gradienten der Emission (oder der Opazität) über der elektrischen Teil-Leistung gebildet. Dazu muss die elektrische Leistung in allen Zonen nacheinander um den aktuellen Betriebspunkt geringfügig variiert werden. Die Gradienten der drei Modellzonen sind ein Maß für den Einfluss einer Modellzone bei Änderung der elektrischen Leistung auf die Partikelemission. Nun werden die Leistungssollwerte der Modellzonen 2a, 2b und 2c so optimiert, dass alle drei Gradienten gleich groß sind und der gewünschte Emissionswert genau erreicht wird. In diesem Betriebspunkt wird das Elektrofilter mit der minimalen möglichen Leistung betrieben, bei der der vorgeschriebene oder gewünschte Emissionswert gerade erreicht wird.
    Zur gezielten Suche des optimalen Betriebspunktes hat sich der Einsatz von Fuzzy-Logik bewährt. Der Einsatz von anderen Methoden, wie z. B. neuronale Netze oder konventionelle Suchalgorithmen, sind hier ebenfalls möglich. Aufgrund der schnellen Realisierbarkeit und der verwendeten abstrakten Regeln sowie der daraus gewonnenen Übertragbarkeit auf andere reale Elektrofilter ist der Fuzzy-Logik der Vorzug zu geben. Ein weiterer Vorteil bei der Verwendung von Fuzzy-Logik ist die einfache Realisierbarkeit unsymmetrischer Regler durch Änderung der Zugehörigkeitsfunktionen eines Signals. Ein Anstieg der Emissionen erfordert eine schnelle starke Reaktion des Systems wegen der Gefahr von Grenzwertüberschreitungen, wohingegen bei Verringerung der elektrischen Leistung erheblich mehr Zeit zur Verfügung steht. Durch die Verwendung von Fuzzy-Logik wird also die Betriebssicherheit erhöht.
    Als Istwerte werden außer dem Mittelwert der Partikelemission auch die Spitzenwerte und die Augenblickswerte verwendet. Die Betrachtung der aktuellen Werte ermöglicht eine schnelle Reaktion auf ansteigende Werte aufgrund von unvorhersehbaren Prozessänderungen (z. B. Rußblasen). Die Überwachung der Maxima verhindert unerwünschte bzw. unerlaubte Emissionsspitzenwerte auch bei periodischen bzw. wiederkehrenden Vorgängen (z. B. Plattenklopfung).
    Bei dem in FIG 3 dargestellten Ausführungsbeispiel sind die Hochspannungsversorgungen des Elektrofilters vernetzt, wobei ein optischer Profibus 5 als Übertragungssystem gewählt wurde. Über den optischen Profibus 5 sind damit die Hochspannungsversorgung 3 sowie die Hochspannungsversorgungen 41, 42, 43, 44 und 45 über ihre Kontrolleinrichtungen 3K sowie 41K, 42K, 43K, 44K und 45K miteinander verbunden. Das Energiemanagement läuft auf einem Personalcomputer 6, der im dargestellten Ausführungsbeispiel unter dem Betriebssystem Windows NT® betrieben wird. Im Rahmen der Erfindung ist auch der Einsatz auf einem Automatisierungssystem, z. B. Simatic® S7, möglich.
    Die einzelnen Hochspannungsversorgungen enthalten einen Satz von Parametern, der bei Verlust der Datenkommunikation aktiviert wird. Hier kann z. B. Betrieb mit Nennstrom hinterlegt werden. Bei Überschreitung der Emissionswerte um einen vorgebbaren Wert, wird bei allen Hochspannungsversorgungen eine Stromerhöhung bewirkt, unabhängig von der laufenden Optimierung. In einer zweiten Stufe kann bei einer weiter ansteigenden Partikelemission bei allen Hochspannungsversorgungen der Nennstrom aktiviert werden.
    FIG 4 zeigt die konstant bleibende Partikelemission E sowie die Regelung der Filterströme I(Z1) bis I(Z5) in den Zonen Z1 bis Z5 auf kleinere Werte während Abfahren des Kessels. Mit U(Z1) ist der Spannungsverlauf in der Zone Zlgekennzeichnet. Die Zeitpunkte der Gradientenbestimmung sind an den kurzen Stromänderungen in beide Richtungen zu erkennen.
    In FIG 5 ist die benutzerfreundliche Bedienoberfläche der auf dem Personalcomputer 6 eingesetzten Software zu erkennen.

    Claims (9)

    1. Verfahren zum Betrieb eines Elektrofilters, bei dem das reale Elektrofilter (1) auf ein Filtermodell (2) transformiert wird, das wenigstens eine Eingangszone (2a), wenigstens eine Mittelzone (2b) und wenigstens eine Ausgangszone (2c) umfasst, wobei jeder der mindestens drei Modellzonen (2a - 2c) eine vorgebbare Charakteristik zugeordnet wird, nach der die Energiezufuhr für eine vorgebbare Anzahl dieser Modellzonen (2a - 2c) in Abhängigkeit vom Sollwert der Partikelemission (E) geregelt wird.
    2. Verfahren nach Anspruch 1, wobei für die Transformation des realen Elektrofilters (1) auf ein Filtermodell (2) zumindest einer der folgenden Parameter berücksichtigt wird:
      Istwerte und Sollwerte der Filterströme,
      Istwerte, Minimalwerte, Maximalwerte und Mittelwerte der Filterspannung,
      elektrische Leistung,
      Betriebsart (kontinuierlicher Betrieb oder Pulsbetrieb) und - falls der Elektrofilter im Pulsbetrieb betrieben wird - wenigstens ein Pulsmuster.
    3. Verfahren nach Anspruch 2, wobei im Abgasstrom parallele Zonen zunächst mit identischen Sollwerten versorgt werden.
    4. Verfahren nach Anspruch 2 oder 3, wobei durch eine Feinoptimierung für im Abgasstrom parallele Modellzonen Gewichtungsfaktoren bestimmt werden.
    5. Verfahren nach einem der Ansprüche 2 bis 4, wobei für serielle Zonen eine lineare Interpolation der Parameter, insbesondere der Istwerte, verwendet wird.
    6. Verfahren nach Anspruch 5, wobei für die im Abgasstrom seriellen Modellzonen durch eine Feinoptimierung Gewichtungsfaktoren bestimmt werden.
    7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der optimale Betriebspunkt des realen Elektrofilters unter Verwendung einer Fuzzy-Logik ermittelt wird.
    8. Verfahren nach einem der Ansprüche 1 bis 6, wobei der optimale Betriebspunkt des realen Elektrofilters unter Verwendung eines neuronalen Netzes ermittelt wird.
    9. Verfahren nach einem der Ansprüche 1 bis 6, wobei der optimale Betriebspunkt des realen Elektrofilters unter Verwendung konventioneller Suchalgorithmen ermittelt wird.
    EP01986624A 2000-10-09 2001-10-08 Verfahren zum betrieb eines elektrofilters Expired - Lifetime EP1324831B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10050188 2000-10-09
    DE10050188A DE10050188C1 (de) 2000-10-09 2000-10-09 Verfahren zum Betrieb eines Elektrofilters
    PCT/DE2001/003845 WO2002030574A1 (de) 2000-10-09 2001-10-08 Verfahren zum betrieb eines elektrofilters

    Publications (2)

    Publication Number Publication Date
    EP1324831A1 EP1324831A1 (de) 2003-07-09
    EP1324831B1 true EP1324831B1 (de) 2005-12-21

    Family

    ID=7659297

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01986624A Expired - Lifetime EP1324831B1 (de) 2000-10-09 2001-10-08 Verfahren zum betrieb eines elektrofilters

    Country Status (7)

    Country Link
    US (1) US20040098173A1 (de)
    EP (1) EP1324831B1 (de)
    AT (1) ATE313383T1 (de)
    AU (2) AU2347402A (de)
    DE (2) DE10050188C1 (de)
    ES (1) ES2253442T3 (de)
    WO (1) WO2002030574A1 (de)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20050210902A1 (en) 2004-02-18 2005-09-29 Sharper Image Corporation Electro-kinetic air transporter and/or conditioner devices with features for cleaning emitter electrodes
    US20030206837A1 (en) 1998-11-05 2003-11-06 Taylor Charles E. Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability
    US7695690B2 (en) 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
    US6176977B1 (en) 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
    US6632407B1 (en) 1998-11-05 2003-10-14 Sharper Image Corporation Personal electro-kinetic air transporter-conditioner
    DE10214185A1 (de) 2002-03-28 2003-10-16 Siemens Ag PC-Anordnung für Visualisierungs-, Diagnose- und Expertensysteme zur Überwachung und Steuerung bzw. Regelung von Hochspannungsversorgungseinheiten von Elektrofiltern
    US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
    US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
    US7767169B2 (en) 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
    US20060018809A1 (en) 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
    DE102004036210B4 (de) * 2004-07-26 2006-08-31 Siemens Ag Steuereinrichtung sowie Steuerverfahren für Elektrofilter mit einer konfigurierbaren Anzahl paralleler und serieller Filterzonen
    US7833322B2 (en) 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
    EP1872858A3 (de) * 2006-06-29 2011-05-11 Siemens Aktiengesellschaft Verfahren zur Optimierung eines mehrzonigen Elektrofilters

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3017685A1 (de) * 1980-05-08 1981-11-12 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum regeln der spannung eines in einer anlage eingesetzten elektrofilters
    US4624685A (en) * 1985-01-04 1986-11-25 Burns & McDonnell Engineering Co., Inc. Method and apparatus for optimizing power consumption in an electrostatic precipitator
    DE3526754A1 (de) * 1985-07-26 1987-01-29 Metallgesellschaft Ag Regelverfahren fuer ein elektrofilter
    DE4140228C2 (de) * 1991-12-06 1994-01-20 Veba Kraftwerke Ruhr Verfahren zur Entstaubung von Rauchgasen
    DE4222069A1 (de) * 1992-07-04 1994-01-05 Rothemuehle Brandt Kritzler Verfahren zum Betrieb eines Elektrofilters sowie Elektrofilter zur Ausübung des Verfahrens

    Also Published As

    Publication number Publication date
    DE50108483D1 (de) 2006-01-26
    WO2002030574A1 (de) 2002-04-18
    ES2253442T3 (es) 2006-06-01
    AU2347402A (en) 2002-04-22
    US20040098173A1 (en) 2004-05-20
    EP1324831A1 (de) 2003-07-09
    DE10050188C1 (de) 2002-01-24
    AU2002223474B2 (en) 2004-08-12
    ATE313383T1 (de) 2006-01-15

    Similar Documents

    Publication Publication Date Title
    EP1324831B1 (de) Verfahren zum betrieb eines elektrofilters
    DE2727973C2 (de) Verfahren zum Abscheiden hochohmiger Stäube aus Gasen
    DE3301772C2 (de)
    DE3525557A1 (de) Verfahren zum ueberwachen und regeln eines elektrostatischen filters
    DE3327443A1 (de) Energiesteuerung fuer elektrostatische staubabscheider
    EP0031056B1 (de) Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters
    WO1987001306A1 (en) Circuit for regulating the high-voltage supply of an electrostatic filter
    DE112012007077B4 (de) Elektrische Entladungs-Bearbeitungsvorrichtung
    DE3314168C2 (de) Verfahren und Vorrichtung zum Reinigen von Gasen von elektrisch leitfähigen Partikeln
    DE3048979C2 (de) Verfahren zum Betrieb eines Elektroabscheiders für die Gasentstaubung und Vorrichtung dazu
    EP0689688B1 (de) Fuzzy-standard-automatisierungssystem für industrielle anlagen
    EP0548516B1 (de) Verfahren zur Steuerung einer Funkenerosionsmaschine
    EP0339598A2 (de) Schutzschaltung für kapazitive Lasten
    DE3249184T1 (de) Verfahren und einrichtung fuer eine elektrostatische staubausfaellung
    EP0030321B1 (de) Verfahren und Vorrichtung zum Optimieren einer Elektrofilteranlage
    DE3300552C2 (de)
    EP0210675B1 (de) Regelverfahren für ein Elektrofilter
    EP0615466B1 (de) Verfahren zur entstaubung von rauchgasen
    DE4033679C2 (de) Verfahren zum Steuern der Funktion eines elektrischen Filtergeräts und elektrisches Filtergerät
    WO2009100932A2 (de) Vorrichtung und verfahren zur aufladung von aerosolen
    EP0039816A1 (de) Verfahren zur fortlaufenden Optimierung des elektrischen Arbeitspunktes eines elektrostatischen Nassfilters
    EP0549007B1 (de) Verfahren zur Einstellung der Zielspannung UZF nach einem Durchschlag in einem elektrostatischen Abscheider
    DE10023821A1 (de) Verfahren und Vorrichtung zum optimierten Betrieb eines Elektrofilters
    DE3804385C1 (de)
    DE4008561C2 (de) Verfahren zum Betreiben einer Spannungsversorgungseinrichtung für ein Elektrofilter

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030306

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20041007

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051221

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051221

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051221

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051221

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50108483

    Country of ref document: DE

    Date of ref document: 20060126

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060215

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060321

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060321

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060522

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2253442

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061031

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061031

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061031

    26N No opposition filed

    Effective date: 20060922

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061008

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061008

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051221

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051221

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20081030

    Year of fee payment: 8

    BERE Be: lapsed

    Owner name: *SIEMENS A.G.

    Effective date: 20091031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091031

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20121119

    Year of fee payment: 12

    Ref country code: IT

    Payment date: 20121030

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131008

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20141107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131009

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20171219

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20180924

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20181005

    Year of fee payment: 18

    Ref country code: FR

    Payment date: 20181018

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50108483

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20191009

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20191008

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20191008

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20191031