EP0030321B1 - Verfahren und Vorrichtung zum Optimieren einer Elektrofilteranlage - Google Patents

Verfahren und Vorrichtung zum Optimieren einer Elektrofilteranlage Download PDF

Info

Publication number
EP0030321B1
EP0030321B1 EP80107359A EP80107359A EP0030321B1 EP 0030321 B1 EP0030321 B1 EP 0030321B1 EP 80107359 A EP80107359 A EP 80107359A EP 80107359 A EP80107359 A EP 80107359A EP 0030321 B1 EP0030321 B1 EP 0030321B1
Authority
EP
European Patent Office
Prior art keywords
energy
individual
dust
filters
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80107359A
Other languages
English (en)
French (fr)
Other versions
EP0030321A1 (de
Inventor
Helmut Dipl.-Ing. Herklotz
Franz Dipl.-Ing. Neulinger
Horst Dr. Dipl.-Ing. Daar
Heinrich Winkler
Günter Mehler
Helmut Dipl.-Ing. Schummer
Walter Dipl.-Ing. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Siemens AG
Original Assignee
Metallgesellschaft AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG, Siemens AG filed Critical Metallgesellschaft AG
Priority to AT80107359T priority Critical patent/ATE4374T1/de
Publication of EP0030321A1 publication Critical patent/EP0030321A1/de
Application granted granted Critical
Publication of EP0030321B1 publication Critical patent/EP0030321B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor

Definitions

  • the invention relates to a method and a device for optimizing an electric fitness system.
  • electrostatic filters For the separation of dust, electrostatic filters have been known for a long time, in which the dust particles are electrically charged and deposited on electrodes. The separation performance is roughly proportional to the square of the filter voltage. Control methods and circuits for such filters are known for example from Siemens magazine 1971, pages 567-572.
  • electrostatic precipitators that consist of a series of individual chambers that are connected in parallel and / or in series. If you provide a separate power supply system with control for each of these chambers, you can think of the entire system as being composed of a series of individual electrostatic filters. For reasons of keeping the air clean and / or recovering valuable useful dust, it is often of the greatest interest in an electrostatic precipitator to keep the separation efficiency and thus the degree of dedusting at a predetermined value. For this purpose, the dust load of the smoke or gas leaving the system can be measured and then intervened accordingly in the system.
  • the object of the present invention is to optimize an electrostatic filter system with regard to energy expenditure and separation.
  • the electrical energies supplied to the individual electrostatic filters are automatically changed iteratively in such a way that the total sum of the energies tends to a minimum for a given dust load at the system outlet.
  • the dust load to be specified is automatically determined by comparing the total energy to be used with the amount of usable dust that can be separated.
  • the separating power is distributed to the respective filter in such a way that the most favorable efficiency - d. H. electrical effort for the separated amount of dust - results.
  • a master controller controlling dust loading and energy minimum is advantageously superimposed on the energy controllers of the individual filters, which regulates the reference variables for the controllers.
  • the individual controllers are preferably designed as microcomputer systems which are connected via a collective bus to a master computer serving as a master controller.
  • the schematically shown electrostatic filter system consists of the individual filters 1, 2 and 3; the gas stream 6 to be cleaned flows through the individual filters 3 to 1 in the direction of arrow 7 one after the other.
  • each electrostatic filter 1 consists of the actual filter part 11 with the electrodes for separating the dust and a voltage drop 12, which is constructed in a manner known per se from a thyristor actuator connected to an AC network, a high-voltage transformer and a secondary-side high-voltage rectifier .
  • a thyristor actuator connected to an AC network, a high-voltage transformer and a secondary-side high-voltage rectifier .
  • the dust load prevailing at the outlet of the system is recorded with a measuring device 5 and the degree of dedusting D ; in a master controller 4 designed as a computer, compared with a predetermined target value D. This then specifies the individual energy setpoints U s via the data bus 41 to the controllers 13, 23 and 33 of the filters 1, 2 and 3.
  • the power E1 supplied to the electrostatic filter 1 is e.g. B. detectable by the product of primary voltage and primary current or by the secondary filter sizes.
  • a signal proportional to this power E1 is fed to an energy minimum controller 42 in the master controller 4.
  • the signals E2 and E3 of the filters 2 and 3 are supplied with signals proportional to this controller 42.
  • This forms the sum ⁇ of the energies and influences the master controller 4 in such a way that the energy sum becomes a minimum; This is done by appropriately specifying the individual setpoint energies U s to the individual controllers 13, 23 and 33.
  • the energy of filter 1 is reduced by the amount ⁇ E. This does result in a reduction in the total energy ⁇ E, but at the same time in a reduction in the actual dedusting degree D i .
  • the power E2 supplied to the filter 2 is therefore increased. This brings the dedusting level back to the old value D ; , but results in an increase in the total energy consumption ⁇ E compared to the original state.
  • a different strategy is therefore used at time t3, namely the energy E1 is increased. This also increases the rejection degradation above the required dimension D s , therefore at time t4 the performance of the filter 2 is reduced to such an extent that the predefined degree of dedusting D, results again.
  • the total energy ⁇ E required for the electrostatic precipitator system is also reduced for a given degree of dedusting.
  • the method described above is then continued iteratively by changing the individual values during the operation of the electrostatic filter system, so that the system always works at the optimum energy.
  • a further optimization strategy for an electrostatic precipitator with regard to energy consumption and separation is given by placing the cost of electrical energy in relation to the value of the useful dust in the master computer and by this resulting in the degree of dedusting to be specified - which of course must be above the legally prescribed standard - is determined.

Description

  • Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Optimieren einer Elektrofitteraniage.
  • Zur Abscheidung von Staub sind bereits seit längerer Zeit Elektrofilter bekannt, bei denen die Staubteilchen elektrisch geladen und an Elektroden abgeschieden werden. Die Abscheideleistung ist dabei in etwa dem Quadrat der Filterspannung proportional. Steuerverfahren und Schaltungen für derartige Filter sind beispielsweise aus der Siemens-Zeitschrift 1971, Seiten 567-572 bekannt.
  • Es gibt nun Elektrofilteranlagen, die aus einer Reihe von Einzelkammern bestehen, die parallel und/oder in Reihe geschaltet sind. Sieht man für jede dieser Kammern eine eigene Spannungsversorgungsanlage mit Regelung vor, so kann man sich die Gesamtanlage aus einer Reihe von einzelnen Elektrofiltern zusammengesetzt denken. Aus Gründen der Reinhaltung der Luft und/oder Rückgewinnung wertvollen Nutzstaubes ist es häufig bei einer Elektrofilteranlage von größtem Interesse, die Abscheideleistung und damit den Entstaubungsgrad auf einen vorgegebenen Wert zu halten. Hierzu kann die Staubbeladung des die Anlage veriassenden Rauches oder Gases gemessen und dann entsprechend in die Anlage eingegriffen werden.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, eine Elektrofilteranlage im Hinblick auf Energieaufwand und Abscheidung zu optimieren.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die den einzelnen Elektrofiltern zugeführten elektrischen Energien auf iterativem Wege derart selbsttätig verändert werden, daß die Gesamtsumme der Energien bei vorgegebener Staubbeladung am Anlagenausgang einem Minimum zustrebt. Alternativ wird zur Optimierung die vorzugebende Staubbeladung selbsttätig aus dem Vergleich der aufzuwendenden Gesamtenergie mit der Menge des abscheidbaren Nutzstaubes ermittelt.
  • Auf die erste Weise werden die Abscheideleistungen so auf die jeweiligen Filter verteilt, daß sich für die einzelnen Filter der günstigste Wirkungsgrad - d. h. elektrischer Aufwand zur abgeschiedenen Staubmenge ― ergibt.
  • Bei einer Einrichtung zur Durchführung des Verfahrens ist vorteilhafterweise den Energiereglern der einzelnen Filter ein Staubbeladung und Energieminimum steuernder Leitregler überlagert, der die Führungsgrößen für die Regler vorgibt. Hierbei sind vorzugsweise die einzelnen Regler als Mikrocomputersysteme ausgebildet, die über einen Sammelbus mit einem als Leitregler dienenden Leitrechner verbunden sind.
  • Anhand eines in der Zeichnung dargestellten Ausführungsbeispieles sei die Erfindung näher erläutert ;
  • es zeigen :
    • Figur 1 ein schematisches Schaltbild der Anlage und
    • Figur 2 Zusammenhänge zwischen Staubbeladung und Energieaufwand in den einzelnen Filtern.
  • Die schematisch gezeigte Elektrofilteranlage besteht aus den einzelnen Filtern 1, 2 und 3 ; der zu reinigende Gasstrom 6 durchfließt in Richtung des Pfeiles 7 nacheinander die einzelnen Filter 3 bis 1.
  • Wie schematisch in Figur 1 angedeutet, besteht jedes Elektrofilter 1 aus dem eigentlichen Filterteil 11 mit den Elektroden zur Abscheidung des Staubes und einer Spannungsverscrgung 12, die in an sich bekannter Weise aus einem an ein Wechselstromnetz angeschlossenen Thyristorstellglied, einem Hochspannungstransformator und einem sekundärseitigen Hochspannungsgleichrichter aufgebaut ist. Durch Ansteuerung des Thyristorstellgliedes über den Regler 13 kann sekundärseitig eine vorgegebene Gleichspannung eingehalten werden.
  • Die am Ausgang der Anlage herrschende Staubbeladung wird mit einem Meßgerät 5 erfaßt und der Entstaubungsgrad D; in einem als Rechner ausgebildeten Leitregler 4 mit einem vorgegebenen Sollwert D, verglichen. Dieser gibt dann die einzelnen Energiesollwerte Us über den Datenbus 41 an die Regler 13, 23 und 33 der Filter 1, 2 und 3 vor.
  • Die dem Elektrofilter 1 zugeführte Leistung E1 ist z. B. über das Produkt von Primärspannung und Primärstrom oder durch die sekundärseitigen Filtergrößen erfaßtbar. Ein dieser Leistung E1 proportionales Signal wird an einen Energieminimumregler 42 im Leitregler 4 geführt. Gleichzeitig werden auch den Energien E2 und E3 der Filter 2 und 3 proportionale Signale diesem Regler 42 zugeführt. Dieser bildet die Summe Σ der Energien und beeinflußt den Leitregler 4 derart, daß die Energiesumme ein Minimum wird ; und zwar geschieht dies dann durch entsprechende Vorgabe der einzelnen Sollwertenergien Us an die einzelnen Regler 13, 23 bzw. 33.
  • Figur 2 zeigt diese Zusammenhänge der Regelung.
  • Es ist z. B. gefordert, die Entstaubung auf den mit Da angegebenen Wert zu halten. Dies geschieht bis zum Zeitpunkt t1 durch die gezeigte Verteilung der elektrischen Energien E1, E2 und E3 auf die einzelnen Filter 1, 2 und 3. Dies ergibt dann die Gesamtenergie ΣE.
  • Zum Zeitpunkt t1 wird die Energie des Filters 1 um den Betrag ΔE abgesenkt. Dies hat zwar eine Absenkung der Gesamtenergie ΣE zur Folge, aber gleichzeitig auch eine Senkung des tatsächlichen Entstaubungsgrades Di. Zum Zeitpunkt t2 wird daher die dem Filter 2 zugeführte Leistung E2 erhöht. Dies bringt zwar wieder den Entstaubungsgrad auf den alten Wert D;, ergibt aber eine Vergrößerung des Gesamtenergieverbrauches ΣE gegenüber dem ursprünglichen Zustand. Im Zeitpunkt t3 wird daher zu einer anderen Strategie gegriffen, und zwar wird die Energie E1 erhöht. Dies erhöht gleichzeitig den Abscheidegrad über das geforderte Maß Ds, daher wird zum Zeitpunkt t4 die Leistung des Filters 2 soweit herabgesetzt, daß sich wieder der vorgegebene Entstaubungsgrad D, ergibt. Durch diesen Eingriff wird auch gleichzeitig die erforderliche Gesamtenergie ΣE des Elektrofiltersystems bei vorgegebenem Entstaubungsgrad geringer. Das vorstehend beschriebene Verfahren wird dann auf iterativem Wege durch Verändern der einzelnen Werte während des Betriebes der Elektrofilteranlage fortgesetzt, so daß die Anlage stets am Energieoptimum arbeitet.
  • Durch das vorbeschriebene Vorgehen, das mit Hilfe der Rechnersysteme relativ leicht und relativ schnell ausgeführt werden kann, wird sichergestellt, daß nicht mehr wertvolle elektrische Energie verbraucht wird, als für das Erreichen eines vorgegebenen Entstaubungsgrades erforderlich ist.
  • Eine weitere Optimierungsstrategie bei einer Elektrofilteranlage im Hinblick auf Energieaufwand und Abscheidung ist dadurch gegeben, daß im Leitrechner die Kosten der elektrischen Energie in bezug zu dem Wert des Nutzstaubes gesetzt wird und daß hieraus der vorzugebende Entstaubungsgrad - der selbstverständlich über dem gesetzlich vorgeschriebenen Standard liegen muß - ermittelt wird.

Claims (4)

1. Verfahren zum Optimieren des Energieaufwandes bei einer aus mehreren Elektrofiltern bestehenden Anlage, dadurch gekennzeichnet, daß die den einzelnen Elektrofiltern (1, 2, 3) zugeführten elektrischen Energien (E1, E2) auf iterativem Wege derart selbsttätig verändert werden, daß die Gesamtsumme (ΣE) der Energien bei vorgegebener Staubbeladung (Ds) am Anlagenausgang einem Minimum zustrebt.
2. Verfahren zum Optimieren der Reingasstaubbeladung einer Elektrofilteranlage, dadurch gekennzeichnet, daß die vorzugebende Staubbeladung (D,) selbsttätig aus dem Vergleich der aufzuwendenden Gesamtenergie (ΣE) mit der Menge des abscheidbaren Nutzstaubes ermittelt wird.
3. Einrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß den Energiereglern (13, 23, 33) der einzelnen Filter (1, 2, 3) ein Reingasstaubbeladung und Energieminimum steuernder Leitregler (4) überlagert ist, der die Führungsgrößen (Us) für die Regler vorgibt.
4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die einzelnen Regler (13, 23, 33) als Mikrocomputersysteme ausgebildet sind, die über einen Sammelbus (41) mit einem als Leitregler dienenden Leitrechner (4) verkehren.
EP80107359A 1979-12-11 1980-11-25 Verfahren und Vorrichtung zum Optimieren einer Elektrofilteranlage Expired EP0030321B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80107359T ATE4374T1 (de) 1979-12-11 1980-11-25 Verfahren und vorrichtung zum optimieren einer elektrofilteranlage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2949797 1979-12-11
DE19792949797 DE2949797A1 (de) 1979-12-11 1979-12-11 Verfahren zum optimieren einer elektrofilteranlage

Publications (2)

Publication Number Publication Date
EP0030321A1 EP0030321A1 (de) 1981-06-17
EP0030321B1 true EP0030321B1 (de) 1983-08-03

Family

ID=6088145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107359A Expired EP0030321B1 (de) 1979-12-11 1980-11-25 Verfahren und Vorrichtung zum Optimieren einer Elektrofilteranlage

Country Status (4)

Country Link
EP (1) EP0030321B1 (de)
AR (1) AR227383A1 (de)
AT (1) ATE4374T1 (de)
DE (2) DE2949797A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027172A1 (de) * 1980-07-17 1982-02-18 Siemens AG, 1000 Berlin und 8000 München Verfahren zum betrieb eines elektrofilters
IN158842B (de) * 1981-11-13 1987-01-31 Blue Circle Ind Plc
SE430472B (sv) * 1982-03-25 1983-11-21 Flaekt Ab Anordning for att i en elektrofilteranleggning med ett flertal elektrodgrupper mojliggora en reglering av strom- och/eller spenningsverdena anslutna till resp elektrodgrupp sa att totala energibehovet kan minimeras mot.
DK355382A (da) * 1982-08-09 1984-02-10 Smidth & Co As F L Fremgangsmaade til styring af et impulsdrevet elektrofilter til minimal effektoptagelse ved en given rensningsgrad
DE3326041A1 (de) * 1983-07-20 1985-02-07 Siemens AG, 1000 Berlin und 8000 München Regeleinrichtung fuer ein elektrofilter
DE3910123C1 (en) * 1989-03-29 1990-05-23 Walther & Cie Ag, 5000 Koeln, De Method for optimising the energy consumption when operating an electrostatic precipitator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039252A (en) * 1956-01-12 1962-06-19 Research Corp Electrical precipitator power system

Also Published As

Publication number Publication date
EP0030321A1 (de) 1981-06-17
DE2949797A1 (de) 1981-06-19
ATE4374T1 (de) 1983-08-15
AR227383A1 (es) 1982-10-29
DE3064503D1 (en) 1983-09-08

Similar Documents

Publication Publication Date Title
EP0044488B1 (de) Verfahren und Einrichtung zum Betrieb eines Elektrofilters mit in der Höhe veränderbarer Gleichspannung und überlagerten Impulsen
EP1371129B1 (de) Verfahren zum regeln eines wechselrichtersystems
DE4491316C2 (de) Verfahren zum Steuern der Zufuhr eines Konditioniermittels zu einem elektrostatischen Abscheider
DE3604513A1 (de) Steuereinrichtung fuer eine photovoltaische energiequelle
DE3017685A1 (de) Verfahren zum regeln der spannung eines in einer anlage eingesetzten elektrofilters
DE3301772C2 (de)
EP3555712B1 (de) Steuerelektronik für mehrere elektrofilter
EP0030321B1 (de) Verfahren und Vorrichtung zum Optimieren einer Elektrofilteranlage
EP0031056B1 (de) Verfahren zum Ermitteln der Filterstromgrenze eines Elektrofilters
DE3327443A1 (de) Energiesteuerung fuer elektrostatische staubabscheider
EP0030657B1 (de) Verfahren zum selbsttätigen Führen der Spannung eines Elektrofilters an der Durchschlagsgrenze und Vorrichtung zur Durchführung des Verfahrens
DE10050188C1 (de) Verfahren zum Betrieb eines Elektrofilters
EP0132659B1 (de) Regeleinrichtung für ein Elektrofilter
EP0032689B1 (de) Verfahren zum Optimieren der Klopfungshäufigkeit einer Elektrofilteranlage
DE3703218C2 (de)
EP0038505B1 (de) Verfahren zum selbsttätigen Führen der Spannung eines Elektro-Filters an der Durchschlagsgrenze
EP0035209B1 (de) Verfahren zum Betrieb eines Elektrofilters
DE19546495A1 (de) Schaltungsanordnung und Verfahren für eine gleichmäßige Aufteilung der elektrischen Leistung
EP0039816B1 (de) Verfahren zur fortlaufenden Optimierung des elektrischen Arbeitspunktes eines elektrostatischen Nassfilters
WO2022194433A1 (de) Vorrichtung und verfahren zur elektrischen versorgung eines niedervolt-bordnetzes eines kraftfahrzeugs, insbesondere elektrokraftfahrzeugs
EP1872858A2 (de) Verfahren zur Optimierung eines mehrzonigen Elektrofilters
DE3910123C1 (en) Method for optimising the energy consumption when operating an electrostatic precipitator
EP0704777B1 (de) Verfahren zur Last- und Energieverteilung einer Industrieanlage sowie zugehörige Anordnung
DE1463666B2 (de) Schaltungsanordnung zur individuell geregelten speisung parallelgeschalteter verbraucher
DE102021116525A1 (de) Vorrichtung und Verfahren zur elektrischen Versorgung eines Niederspannungs-Bordnetzes eines Kraftfahrzeugs, insbesondere Elektrokraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB SE

Designated state(s): AT CH DE FR GB SE

17P Request for examination filed

Effective date: 19810730

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 4374

Country of ref document: AT

Date of ref document: 19830815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3064503

Country of ref document: DE

Date of ref document: 19830908

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 80107359.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951019

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951025

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951123

Year of fee payment: 16

Ref country code: FR

Payment date: 19951123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960216

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961125

Ref country code: AT

Effective date: 19961125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961130

Ref country code: CH

Effective date: 19961130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801

EUG Se: european patent has lapsed

Ref document number: 80107359.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST