EP1323195A1 - Elektrode und/oder leiterbahn für organische bauelemente und herstellungsverfahren dazu - Google Patents

Elektrode und/oder leiterbahn für organische bauelemente und herstellungsverfahren dazu

Info

Publication number
EP1323195A1
EP1323195A1 EP01978173A EP01978173A EP1323195A1 EP 1323195 A1 EP1323195 A1 EP 1323195A1 EP 01978173 A EP01978173 A EP 01978173A EP 01978173 A EP01978173 A EP 01978173A EP 1323195 A1 EP1323195 A1 EP 1323195A1
Authority
EP
European Patent Office
Prior art keywords
conductive
electrode
conductor track
functional polymer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01978173A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Clemens
Adolf Bernds
Henning Rost
Walter Fix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10047171A external-priority patent/DE10047171A1/de
Priority claimed from DE10122213A external-priority patent/DE10122213C1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1323195A1 publication Critical patent/EP1323195A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the invention relates to electrodes and / or conductor tracks for organic components, in particular for components such as field effect transistors (OFETs), photoelectronic components and / or light emitting diodes (OLEDs), which have conductive and finely structured electrode tracks.
  • OFETs field effect transistors
  • OLEDs light emitting diodes
  • the object of the present invention is to rationalize the process steps in the production of long-lasting, high-resolution conductive tracks and / or electrodes of organic functional layers on a substrate.
  • the invention relates to an electrode and / or conductor track (2 l ) which can be produced by treating an organic functional polymer with a chemical compound.
  • the invention also relates to a method for producing an electrode and / or a conductor track by treating an organic functional polymer with a chemical compound.
  • the electrode and / or conductor track is produced by partial activation or deactivation of the organic functional polymer.
  • An advantageous embodiment of the invention is a method for producing high-resolution, conductive structures on a substrate by applying a conductive organic layer and producing a non-conductive organic matrix in the conductive organic layer by structuring, which is characterized in that the non-conductive matrix is subsequently connected selectively removed with a non-basic solvent or using oxidative etching.
  • the conductive structures formed that is to say webs or fingers on the substrate, are thus effectively diffused from being destroyed by the non-conductive areas. protected basic species.
  • the structures formed are not sensitive to air, which guarantees a long service life of all-organic, optoelectronic components produced from them, such as field effect transistors (OFET) or light-emitting diodes (OLED).
  • OFET field effect transistors
  • OLED light-emitting diodes
  • substrate is understood to mean, for example, a flexible substrate such as a carrier film. You or a non-flexible substrate may or may not already have one or more functional layers.
  • the conductive organic layer is preferably applied to the substrate by knife coating, spraying, spin coating or by screen printing. Since the polymer materials can be applied from the solution, an extremely homogeneous thin layer is produced in particular by the latter method.
  • the conductive organic polymer is preferably polyaniline doped with, for example, camphorsulfonic acid (CSA). All conductive organic materials that are selectively deactivated can be used here. In particular, other conductive polymers can also be used, provided they change to the non-conductive state under the action of a base or can be etched away oxidatively.
  • CSA camphorsulfonic acid
  • the non-conductive organic matrix is formed in selected areas by deprotonation of the conductive layer.
  • the conductive layer is first made of doped polyaniline (PANI) or another conductive organic material such as polyethylene dioxythiophene (PEDOT).
  • PANI doped polyaniline
  • PEDOT polyethylene dioxythiophene
  • the photoresist is made base-soluble in selected areas by structured exposure, for example using a shadow mask, and these base-soluble areas are detached by a basic solvent.
  • An advantage of this procedure is that the underlying, that is, exposed, polyaniline layer is deprotonated by the basic solvent and thus becomes non-conductive.
  • Liquid tetrabutylammonium compounds or solutions thereof can be used as basic solvents.
  • Another basic solvent or developer is, for example, "AZ 1512 HS" (Merck).
  • the remaining photoresist is then stripped off with a suitable solvent, such as, for example, lower alcohols or etons.
  • a suitable solvent such as, for example, lower alcohols or etons.
  • the non-conductive matrix can be extracted with a non-basic solvent before or after this step.
  • Dimethylformamide which has been freshly distilled can be used in particular as the non-basic solvent. This ensures that this solvent is free of amines. At the same time, this ensures that deprotonation of the fine conductive fingers by the amine is prevented. If the non-conductive matrix, e.g. oxidative, etched away, this step must be done before removing the photoresist.
  • the organic functional layer is applied in a conductive and planar manner to a substrate. At the points where this layer of organic functional polymer is treated with the chemical compound, it is converted into its non-conductive form.
  • the organic functional polymer is treated by printing with the chemical compound.
  • Preferred printing processes for this are offset printing, screen printing, pad printing and / or micro-contact printing ( ⁇ CP printing).
  • Printing with the chemical compound causes a drastic change in the conductivity in the organic functional polymer.
  • a fine structuring of the functional layer can be achieved through the printing technique. The resolution depends on the performance of the respective printing process.
  • the pressure can e.g. with a stamp, as with pad printing or with a stamp roll in a continuous process.
  • the chemical compound that deactivates or activates the organic functional polymer is absorbed in the stamp.
  • the stamp can be made of an absorbent silicone elastomer.
  • the chemical compound is preferably a base such as e.g. an amine, a hydroxide etc.
  • a base such as e.g. an amine, a hydroxide etc.
  • all bases, and especially those that deprotonate, can be used.
  • organic material or "organic functional polymer” here encompasses all types of organic, organometallic and / or organic-inorganic plastics (hybrids), in particular those which are described in English e.g. With
  • plastics are called. These are all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors. A restriction in the dogmatic sense to organic material as carbon-containing material is therefore not provided, but rather is also due to the widespread use of e.g. Silicones thought. Furthermore, the ter should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but instead the use of
  • a thin layer of conductive polyaniline is produced by casting, spin coating, knife coating, etc.
  • a basic compound amine, hydroxide
  • the PANI is deprotonated at the point of contact with the base, as a result of which it loses its conductivity.
  • the entire layer can still be rinsed and dried and thus fixed. The final rinsing can selectively remove non-protonated, non-conductive areas of the functional polymer.
  • a combination of the printing process with radiation and / or exposure through a shadow mask is also possible.
  • the method according to the invention is particularly suitable for the production of organic field effect transistors (OFETs), organic light emitting diodes (OLEDs) or photoelectronic components in which conductive and finely structured electrodes or electrode tracks are required.
  • OFETs organic field effect transistors
  • OLEDs organic light emitting diodes
  • photoelectronic components in which conductive and finely structured electrodes or electrode tracks are required.
  • a conductive layer 2 is formed from a substrate 1, which is formed, for example, from polyethylene, polyimide, but preferably polyterephthalate film Camphorsulfonic acid (CSA) doped polyaniline (PANI), for example by spin coating, applied homogeneously.
  • a thin layer 4 of a positive photoresist is then spin-coated onto this conductive layer 2, for example by spin coating, which is then exposed to UV light through a shadow mask 5.
  • the photoresist is made soluble by a chemical reaction, in particular here made soluble in base.
  • the entire substrate is then immersed in a basic solvent, such as a tetrabutylammonium compound or AZ 1512
  • the substrate can be subsequently placed in an aqueous camphorsulfonic acid (CSA) solution for a short time in order to saturate the surface of the PANI electrodes or electrode tracks with camphorsulfonic acid, which ensures high conductivity.
  • CSA camphorsulfonic acid
  • the non-conductive matrix could also be extracted with dimethylformamide (DMF), which has already been treated with camphorsulfonic acid (CSA).
  • Another possibility is to immerse the substrate in a reactive etching solution after the development of the photoresist layer, so that the exposed areas (3) are removed by oxidation.
  • a reactive etching solution for example, a mixture of 250ml centered sulfuric acid used with an aqueous solution of 7.5g potassium permanganate in 100ml water.
  • a positive photoresist it is of course also possible to use a negative photoresist which is crosslinked in the exposed areas by UV radiation. The unexposed areas remain soluble and can be removed with a suitable solvent. Suitable photoresist systems are described, for example, in Kirk-Othmer (3.) 17, pages 680 to 708.
  • the method according to the invention can thus reliably produce high-resolution conductive structures on substrates which have a long service life.
  • the invention relates to electrodes for organic components, in particular for components such as field effect transistors (0-FETs) and / or light-emitting diodes (OLEDs), which have conductive and finely structured electrode tracks.
  • the electrode / conductor track is produced by simply contacting a conductive or non-conductive layer of organic material with a chemical compound, because the chemical compound deactivates or activates the layer of organic material at the contact point, i.e. makes conductive or non-conductive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

Die Erfindung betrifft Elektroden für organische Bauelemente, insbesondere für Bauelemente wie Feldeffekttransistoren (OFETs) und/oder Leuchtdioden (OLEDs), die leitfähige und hochaufgelöste, fein strukturierte Elektrodenbahnen haben. Die Elektrode und/oder Leiterbahn wird dabei durch Behandeln einer leitenden oder nicht-leitenden Schicht aus organischem Funktionspolymer mit einer chemischen Verbindung hergestellt, weil die chemische Verbindung die Schicht aus organischem Material an der Kontaktstelle deaktiviert oder aktiviert, d.h. leitend oder nicht-leitend macht. Die nicht leitenden Bereiche der Schicht können entfernt werden.

Description

Beschreibung
Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungsverfahren dazu
Die Erfindung betrifft Elektroden und/oder Leiterbahnen für organische Bauelemente, insbesondere für Bauelemente wie Feldeffekttransistoren (OFETs) , photoelektronische Bauteile und/oder Leuchtdioden (OLEDs) , die leitfähige und fein strukturierte Elektrodenbahnen haben.
Bekannt sind leitfähige Elektrodenbahnen auf organischer Basis aus "Lithographie patterning of conductive polyaniline" von T. Mäkelä et al . in "Synthetic Metals" 101, (1999),
S. 705-706. Dort wird beschrieben, wie auf ein Substrat eine leitfähige Polyanilinschicht (PANI) aufgebracht wird, die dann mit einer positiven Photoresistschicht bedeckt wird. Nach dem Trocknen wird die Photoresistschicht durch eine Schattenmaske mit UV-Licht bestrahlt. An den belichteten
Stellen wird der Photoresist durch einen basischen Entwickler entfernt, der gleichzeitig durch eine chemische Reaktion das an den belichteten Stellen dann freiliegende Polyanilin in eine nicht-leitende Form überführt. Der Nachteil dieser Me- thode besteht allerdings darin, dass im Verlauf der Zeit von den mit Base behandelten Bereichen basische Spezies in die extrem dünnen, leitfähigen Fingerstrukturen hineindiffundieren, diese partiell deprotonieren und damit deren Leitfähigkeit nachhaltig negativ beeinflussen.
Ausserdem ist aus der Schrift "Low-cost all polymer integra- ted cireuits" von C.J. Dury et al . in "Applied Physics Letters" Vol 73, No.l, p.108/110 bekannt, dass Polyanilin zusammen mit einem Photoinitiator auf das Substrat aufgebracht werden kann, wiederum nach dem Trocknen durch eine Schattenmaske bestrahlt und an den belichteten Stellen chemisch behandelt in eine nicht-leitende Form überführt werden kann. Nachteilig an den oben genannten Verfahren mit Photoresistschicht bzw. Photoinitiator ist, dass die Verfahren relativ aufwendig sind, weil sie mehrere Arbeitsschritte selbst bei vorliegender Schicht aus leitfähigem organischen Material wie PANI benötigen, um die Elektroden zu erzeugen.
Aufgabe der vorliegenden Erfindung ist die Rationalisierung der Prozessschritte beim Erzeugen langlebiger, hochaufgelös- ter leitfähiger Bahnen und/oder Elektroden organischer Funktionsschichten auf einem Substrat.
Gegenstand der Erfindung ist eine Elektrode und/oder Leiterbahn (2l) , die durch Behandeln eines organischen Funktionspo- ly ers mit einer chemischen Verbindung herstellbar ist. Aus- serdem ist Gegenstand der Erfindung ein Verfahren zur Herstellung einer Elektrode und/oder einer Leiterbahn durch Behandeln eines organischen Funktionspolymers mit einer chemischen Verbindung.
Nach einer vorteilhaften Ausgestaltung wird die Elektrode und/oder Leiterbahn durch partielle Aktivierung oder Desakti- vierung des organischen Funktionspolymers hergestellt.
Eine vorteilhafte Ausgestaltung der Erfindung ist ein Verfahren zur Erzeugung von hochaufgelösten, leitfähigen Strukturen auf einem Substrat durch Aufbringen einer leitfähigen organischen Schicht und die Erzeugung einer nichtleitfähigen organischen Matrix in der leitfähigen organischen Schicht durch Strukturierung, dass sich dadurch auszeichnet, dass man die nichtleitfähige Matrix anschließend mit einem nichtbasischen Lösungsmittel oder mittels oxidativer Ätzung selektiv entfernt .
Damit werden die ausgebildeten leitfähigen Strukturen, das sind Stege oder Finger auf dem Substrat, effektiv vor Zerstörung durch aus den nichtleitenden Bereichen herausdiffundie- renden basischen Spezies geschützt. Die ausgebildeten Strukturen sind nicht luftempfindlich, wodurch eine große Langlebigkeit von daraus erzeugten all-organischen, optoelektronischen Bauelementen wie Feldeffekttransistoren (OFET) oder Leuchtdioden (OLED) garantiert ist.
Im Rahmen der vorliegenden Erfindung wird unter Substrat beispielsweise ein flexibles Substrat wie eine Trägerfolie verstanden. Sie oder ein nicht flexibles Substrat kann bereits eine oder mehrere Funktionsschichten tragen oder nicht.
Vorzugsweise wird die leitfähige organische Schicht durch Rakeln, Aufsprühen, Spin-Coating oder im Siebdruckverfahren auf das Substrat aufgebracht. Da die Polymermaterialien aus der Lösung auftragbar sind, wird insbesondere durch das letztere Verfahren eine überaus homogene dünne Schicht erzeugt. Das leitfähige organische Polymer ist vorzugsweise mit beispielsweise Camphersulfonsäure (CSA) dotiertes Polyanilin. Alle leitfähigen organischen Materialien, die selektiv deaktiviert werden, sind an dieser Stelle einsetzbar. Es können insbesondere auch andere leitfähige Polymere eingesetzt werden, sofern diese unter Einwirkung einer Base in den nicht-leitenden Zustand übergehen oder oxidativ weggeätzt werden können.
Nach einer Ausgestaltung wird die nichtleitfähige organische Matrix durch Deprotonierung der leitfähigen Schicht in ausgewählten Bereichen ausgebildet. Hierzu wird beispielsweise zunächst die leitfähige Schicht aus dotiertem Polyanilin (PANI) oder einem anderen leitfähigen organischen Material wie Poly- ethylendioxythiophen (PEDOT) erzeugt. Darauf wird eine dünne Schicht aus einem Photoresist, vorzugsweise einem positiv Photoresist, welcher kommerziell verfügbar ist, erzeugt. Der Photoresist wird durch strukturiertes Belichten, beispielsweise mittels einer Schattenmaske, in ausgewählten Bereichen basenlöslich gemacht und diese basenlöslichen Bereiche werden durch ein basisches Lösungsmittel abgelöst. Vorteilhaft bei dieser Vorgehensweise ist, dass die darunter liegende, also freigelegte Polyanilinschicht durch das basische Lösungsmittel deprotoniert und damit nichtleitfähig wird. Als basische Lösungsmittel können flüssige Tetrabutyl- ammoniumverbindungen bzw. Lösungen davon verwendet werden. Ein anderes basisches Lösungsmittel oder Entwickler ist beispielsweise das "AZ 1512 HS" (Fa. Merck) .
Der verbliebene Photoresist wird dann mit einem geeigneten Lösungsmittel, wie beispielsweise niedrigen Alkoholen oder etonen, abgelöst.
Das Herauslösen der nichtleitfähigen Matrix mit einem nichtbasischen Lösungsmittel kann vor oder nach diesem Schritt er- folgen. Als nichtbasisches Lösungsmittel kann man insbesondere Dimethylformamid, das vorher frisch destilliert wurde, verwenden. Damit wird gewährleistet, dass dieses Lösungsmittel aminfrei ist. Gleichzeitig wird damit gewährleistet, dass eine Deprotonierung der feinen leitfähigen Finger durch das Amin unterbunden wird. Wird die nicht leitende Matrix, z.B. oxidativ, weggeätzt, uss dieser Schritt vor dem Entfernen des Photoresist erfolgen.
Nach einer vorteilhaften Ausgestaltung der Erfindung ist die organische Funktionsschicht leitfähig und flächig auf einem Substrat aufgebracht. An den Stellen, an denen diese Schicht organischen Funktionspolymers mit der chemischen Verbindung behandelt wird, wird sie in ihre nicht-leitfähige Form überführt.
Nach einer Ausgestaltung wird das organische Funktionspolymer durch Bedrucken mit der chemischen Verbindung behandelt. Bevorzugte Druckverfahren dafür sind (geordnet nach steigender Auflösung) Offsetdruck, Siebdruck, Tampondruck und/oder Mic- ro-contact-printing (μCP-Druck) . Durch das Bedrucken mit der chemischen Verbindung wird eine drastische Änderung in der Leitfähigkeit im organischen Funktionspolymer herbeigeführt. Durch die Drucktechnik kann eine feine Strukturierung der funktioneilen Schicht erreicht wer- den. Die Auflösung hängt dabei von der Leistungsfähigkeit des jeweiligen Druckverfahrens ab.
Der Druck kann z.B. mit einem Stempel, wie beim Tampondruck oder mit einer Stempelrolle im kontinuierlichen Verfahren, erfolgen.
Nach einer Ausgestaltung (micro-contact-printing) wird die chemische Verbindung, die das organische Funktionspolymer deaktiviert oder aktiviert, in dem Stempel aufgesogen. Dabei kann der Stempel aus einem saugfähigen Silicon-Elastomer sein.
Die chemische Verbindung ist bevorzugt eine Base wie z.B. ein Amin, ein Hydroxid etc. Prinzipiell können alle Basen, und insbesondere die, die deprotonieren, eingesetzt werden.
Der Begriff "organisches Material" oder "organisches Funktionspolymer" umfasst hier alle Arten von organischen, metallorganischen und/oder organisch-anorganischen Kunststoffen (Hybride), insbesondere die, die im Englischen z.B. mit
"plastics" bezeichnet werden. Es handelt sich um alle Arten von Stoffen mit Ausnahme der Halbleiter, die die klassischen Dioden bilden (Germanium, Silizium) , und der typischen metallischen Leiter. Eine Beschränkung im dogmatischen Sinn auf organisches Material als Kohlenstoff-enthaltendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Ter keiner Beschränkung im Hinblick auf die Molekülgrösse, insbesondere auf polymere und/oder oligomere Materialien un- terliegen, sondern es ist druchaus auch der Einsatz von
"small molecules" möglich. Der Wortbestandteil "polymer" im Funktionspolymer ist historisch bedingt und enthält insofern keine Aussage über das Vorliegen einer tatsächlich polymeren Verbindung.
Für das Verfahren wird z.B. auf einem Substrat (Kunststoff, Glas etc.) durch Gießen, Spincoating, Rakeln, etc. eine dünne Schicht von leitfähigem Polyanilin erzeugt. Beim Bedrucken mit einer basischen Verbindung (Amin, Hydroxid) wird das PANI an der Kontaktstelle mit der Base deprotoniert, wodurch es seine Leitfähigkeit verliert. Nach der Herstellung der Elekt- rode und/oder Leiterbahn kann die ganze Schicht noch gespült und getrocknet und damit fixiert werden. Durch die abschließende Spülung können nicht protonierte nicht leitende Bereicht des Funktionspolymers selektiv entfernt werden.
Ebenso wie das Bedrucken der Bereiche, die nicht-leitend gemacht werden sollen ist es möglich nur die dünnen leitfähigen Fingerbereiche zu bedrucken, die die Elektroden/Leiterbahnen ergeben.
Eine Kombination des Druckverfahrens mit einer Bestrahlung und/oder einer Belichtung durch eine Schattenmaske ist auch möglich.
Das erfindungsgemäße Verfahren ist insbesondere zur Herstel- lung von organischen Feldeffekttransistoren (OFETs) , organischen Leuchtdioden (OLEDs) oder photoelektronischen Bauteilen geeignet, bei denen leitfähige und feinstrukturierte Elektroden bzw. Elektrodenbahnen benötigt werden.
Nachfolgend wird das erfindungsgemäße Verfahren unter Bezugnahme auf das in der einzigen Fig. 1 gezeigte Ablaufdiagramm, das nur eine Ausgestaltung der Erfindung zeigt, näher erläutert.
Zunächst wird auf einem Substrat 1, das beispielsweise aus Polyethylen-, Polyimid-, vorzugsweise jedoch Polyterephtha- latfolie gebildet ist, eine leitfähige Schicht 2 aus mit Camphersulfonsäure (CSA) dotiertem Polyanilin (PANI) , beispielsweise durch Spin-Coating, homogen aufgebracht. Auf dieser leitfähigen Schicht 2 wird dann beispielsweise wieder durch Spin-Coating eine dünne Schicht 4 eines positiv- Photoresists aufgeschleudert, welche dann durch eine Schattenmaske 5 mit UV-Licht belichtet wird. An den von Licht getroffenen Stellen wird der Photoresist durch eine chemische Reaktion löslich, hier insbesondere basenlöslich gemacht. Das gesamte Substrat wird anschließend in ein basisches Lösungs- mittel, wie eine Tetrabutylammoniumverbindung oder AZ 1512
(Merck) , getaucht, so dass die bestrahlten Bereiche des Photoresists weggelöst werden. Gleichzeitig kommen die darunter liegenden leitfähigen Polyanilinbereiche, das sogenannte grüne PANI, in Kontakt mit dem basischen Lösungsmittel bzw. Ent- wickler, wobei das PANI deprotoniert und in eine nichtleitende Modifikation, das sogenannte blaue PANI, überführt wird. Die Photoresistreste werden mit einem geeigneten Lösungsmittel, vorzugsweise Isopropanol, entfernt. Dann wird das Substrat in frisch destilliertes und damit aminfreies Dimethyl- formamid (DMF) getaucht, wobei sich die nichtleitende Matrix 3 auflöst. Man erhält so leitfähige PANI-Stege bzw. - Elektroden bzw. -Elektrodenbahnen 2 ' in der durch die Schattenmaske vorgegebenen Struktur. Gegebenenfalls kann das Substrat nachträglich für kurze Zeit in eine wässrige Campher- sulfonsäure (CSA) -Lösung eingelegt werden, um die Oberfläche der PANI-Elektroden bzw. -Elektrodenbahnen mit Camphersulfonsäure zu sättigen, wodurch eine hohe Leitfähigkeit sichergestellt wird. Andererseits könnte man das Herauslösen der nichtleitenden Matrix auch mit Dimethylformamid (DMF) durch- führen, das bereits mit Camphersulfonsäure (CSA) versetzt ist.
Eine weitere Möglichkeit besteht darin, das Substrat nach dem Entwickeln der Photoresistschicht in eine reaktive Ätzlösung einzutauchen, so dass die freiliegenden Bereiche (3) oxidativ entfernt werden. Dazu wird z.B. eine Mischung aus 250ml kon- zentrierter Schwefelsäure mit einer wässrigen Lösung von 7,5g Kaliumpermanganat in 100ml Wasser verwendet.
Statt eines positiv-Photoresists kann natürlich auch ein ne- gativ-Photoresist verwendet werden, welcher durch UV- Bestrahlung in den belichteten Bereichen vernetzt wird. Die nichtbelichteten Bereiche bleiben löslich und können durch ein geeignetes Lösungsmittel entfernt werden. Geeignete Pho- toresistsysteme sind beispielsweise in Kirk-Othmer (3.) 17, Seiten 680 bis 708 beschrieben.
Mit dem erfindungsgemäßen Verfahren lassen sich so zuverlässig hochaufgelöste leitende Strukturen auf Substraten erzeugen, welche über eine große Langlebigkeit verfügen.
Die Erfindung betrifft Elektroden für organische Bauelemente, insbesondere für Bauelemente wie Feldeffekttransistoren (0- FETs) und/oder Leuchtdioden (OLEDs), die leitfähige und fein strukturierte Elektrodenbahnen haben. Die Elektrode/Leiter- bahn wird dabei durch einfachen Kontakt einer leitenden oder nicht-leitenden Schicht aus organischem Material mit einer chemischen Verbindung hergestellt, weil die chemische Verbindung die Schicht aus organischem Material an der Kontaktstelle deaktiviert oder aktiviert, d.h. leitend oder nicht- leitend macht.

Claims

Patentansprüche
1. Elektrode und/oder Leiterbahn (2 ), die durch Behandeln eines organischen Funktionspolymers mit einer chemischen Ver- bindung herstellbar ist.
2. Elektrode und/oder Leiterbahn nach Anspruch 1, wobei das organische Funktionspolymer vor dem Behandeln mit der chemischen Verbindung leitfähig ist und als Schicht (2) vorliegt.
3. Elektrode und/oder Leiterbahn nach Anspruch 1 oder 2, wobei das organische Funktionspolymer Polyanilin, dotiertes Polyanilin oder ein anderes leitfähiges organisches Material ist.
4. Elektrode und/oder Leiterbahn nach einem der vorstehenden Ansprüche, wobei die chemische Verbindung eine Base oder ein Oxidationsmittel ist.
5. Elektrode und/oder Leiterbahn nach einem der vorstehenden Ansprüche, die durch selektives Entfernen der Bereiche (3) der Schicht, die nach dem Behandeln nichtleitend sind, herstellbar ist.
6. Elektrode und/oder Leiterbahn nach einem der vorstehenden Ansprüche, wobei die betroffenen Bereiche (3) der Schicht nach dem Behandeln deprotoniert sind.
7. Verfahren zur Herstellung einer Elektrode und/oder einer Leiterbahn durch Behandeln eines organischen Funktionspolymers mit einer chemischen Verbindung.
8. Verfahren nach Anspruch 7, bei dem das organische Funktionspolymer durch Bedrucken mit der chemischen Verbindung be- handelt wird.
9. Verfahren nach einem der Ansprüche 7 oder 8 , bei dem die Elektrode und/oder Leiterbahn durch partielle Aktivierung oder Deaktivierung des organischen Funktionspolymers hergestellt wird.
10. Verfahren nach einem der Ansprüche 7 oder 9, bei dem eine Schicht (2) aus organischem Funktionspolymer erzeugt wird, darauf eine Schicht (4) aus einem Photoresist erzeugt wird, welcher durch strukturiertes Belichten in ausgewählten Berei- chen löslich gemacht wird, die löslichen Bereiche entfernt werden, die dann freiliegenden Bereiche (3) entweder durch Kontakt mit Base deprotoniert oder durch Kontakt mit Oxidati- onsmittel weggeäzt werden und in einem weiteren Schritt der verbliebene Photoresist abgelöst wird.
11. Verfahren nach Anspruch 10, bei dem die Schicht aus organischem Funktionspolymer durch Rakeln, Spin-Coating ,Aufsprühen oder im Siebdruckverfahren hergestellt wird.
12. Verfahren nach einem der Ansprüche 10 oder 11, wobei die löslichen Bereiche des belichteten Photoresist mit einem basischen Lösungsmittel, das zugleich mit der selektiven Entfernung des Photoresist die darunter liegenden Bereiche (3) deprotoniert, entfernt werden.
13. Verfahren nach Anspruch 10 oder 11, bei dem als Oxidati- onsmittel eine Mischung aus Schwefelsäure mit wässrigem Kali- umpermanganat verwendet wird.
14. Verfahren nach einem der Ansprüche 7 bis 13, zur Herstellung von organischen Feldeffekttransistoren (OFETs) .
15. Verfahren nach einem der Ansprüche 7 bis 14, zur Herstellung von organischen Leuchtdioden (OLEDs) .
16. Verfahren nach einem der Ansprüche 7 bis 15, zur Herstellung von photoelektronischen Bauteilen.
EP01978173A 2000-09-22 2001-09-20 Elektrode und/oder leiterbahn für organische bauelemente und herstellungsverfahren dazu Withdrawn EP1323195A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10047171A DE10047171A1 (de) 2000-09-22 2000-09-22 Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungverfahren dazu
DE10047171 2000-09-22
DE10122213 2001-05-08
DE10122213A DE10122213C1 (de) 2001-05-08 2001-05-08 Verfahren zur Erzeugung von hochaufgelösten leitfähigen Strukturen
PCT/DE2001/003645 WO2002025750A1 (de) 2000-09-22 2001-09-20 Elektrode und/oder leiterbahn für organische bauelemente und herstellungsverfahren dazu

Publications (1)

Publication Number Publication Date
EP1323195A1 true EP1323195A1 (de) 2003-07-02

Family

ID=26007148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01978173A Withdrawn EP1323195A1 (de) 2000-09-22 2001-09-20 Elektrode und/oder leiterbahn für organische bauelemente und herstellungsverfahren dazu

Country Status (4)

Country Link
US (1) US20040026121A1 (de)
EP (1) EP1323195A1 (de)
JP (1) JP2004512675A (de)
WO (1) WO2002025750A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043204A1 (de) * 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
EP1559147B1 (de) 2002-10-02 2014-11-12 Leonhard Kurz Stiftung & Co. KG Folie mit organischen halbleitern
DE10349963A1 (de) 2003-10-24 2005-06-02 Leonhard Kurz Gmbh & Co. Kg Verfahren zur Herstellung einer Folie
DE102004012319A1 (de) * 2004-03-11 2005-09-22 H.C. Starck Gmbh Funktionsschichten für optische Anwendungen auf Basis von Polythiophenen
DE102006039927A1 (de) * 2006-08-25 2008-03-06 Printed Systems Gmbh Navigationsgerät
KR20140057262A (ko) * 2011-07-08 2014-05-12 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 적층체의 제조 공정 및 이로부터 얻을 수 있는 마스킹이 없는 적층체
CN104205250A (zh) * 2012-03-30 2014-12-10 阿尔卑斯电气株式会社 导电图案形成基板的制造方法
DE102013112253A1 (de) * 2013-11-07 2015-05-07 Osram Oled Gmbh Optoelektronisches Bauelement, Verfahren zum Betreiben eines optoelektronischen Bauelementes und Verfahren zum Herstellen eines optoelektronischen Bauelementes
CN104851524A (zh) * 2015-05-28 2015-08-19 京东方科技集团股份有限公司 透明导电薄膜的制造方法和透明导电薄膜
WO2017174755A1 (en) * 2016-04-06 2017-10-12 Koninklijke Philips N.V. Imprint lithography stamp method of making and using the same
US10433689B2 (en) * 2016-08-29 2019-10-08 Omachron Intellectual Property Inc. Surface cleaning apparatus
US12055737B2 (en) * 2022-05-18 2024-08-06 GE Precision Healthcare LLC Aligned and stacked high-aspect ratio metallized structures

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512052A (en) * 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) * 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
US3955096A (en) * 1975-06-19 1976-05-04 E. I. Du Pont De Nemours And Company Implicit ratio computer for sequential signals
JPS54101176A (en) * 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) * 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4340657A (en) * 1980-02-19 1982-07-20 Polychrome Corporation Novel radiation-sensitive articles
US4926052A (en) * 1986-03-03 1990-05-15 Kabushiki Kaisha Toshiba Radiation detecting device
US4851487A (en) * 1988-02-22 1989-07-25 Lockheed Corporation Conductive polymer materials and method of producing same
GB2215307B (en) * 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
US5364735A (en) * 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) * 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) * 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) * 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
US5206525A (en) * 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FR2664430B1 (fr) * 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
FR2673041A1 (fr) * 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0580530A (ja) * 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) * 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
WO1993009469A1 (de) * 1991-10-30 1993-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Belichtungsvorrichtung
JP2709223B2 (ja) * 1992-01-30 1998-02-04 三菱電機株式会社 非接触形携帯記憶装置
JP3457348B2 (ja) * 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
FR2701117B1 (fr) * 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
US5567550A (en) * 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
JPH0722669A (ja) * 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
WO1995006240A1 (en) * 1993-08-24 1995-03-02 Metrika Laboratories, Inc. Novel disposable electronic assay device
JP3460863B2 (ja) * 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
FR2710413B1 (fr) * 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
US5556706A (en) * 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
KR100350817B1 (ko) * 1994-05-16 2003-01-24 코닌클리케 필립스 일렉트로닉스 엔.브이. 유기반도체물질로형성된반도체장치
JP3246189B2 (ja) * 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5574291A (en) * 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) * 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
JP3068430B2 (ja) * 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5652645A (en) * 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) * 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
GB2310493B (en) * 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (ja) * 1996-03-06 2000-08-28 富士機工電子株式会社 エアリア・グリッド・アレイ・パッケージの製造方法
DE19629656A1 (de) * 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US6344662B1 (en) * 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
US5946551A (en) * 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
KR100248392B1 (ko) * 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
JP4509228B2 (ja) * 1997-08-22 2010-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機材料から成る電界効果トランジスタ及びその製造方法
AU764920B2 (en) * 1997-09-11 2003-09-04 Precision Dynamics Corporation Radio frequency identification tag on flexible substrate
JP2001510670A (ja) * 1997-12-05 2001-07-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 識別トランスポンダ
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US5998805A (en) * 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
DE69937485T2 (de) * 1998-01-28 2008-08-21 Thin Film Electronics Asa Methode zur herstellung zwei- oder dreidimensionaler elektrisch leitender oder halbleitender strukturen, eine löschmethode derselben und ein generator/modulator eines elektrischen feldes zum gebrauch in der herstellungsmethode
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) * 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
GB9808061D0 (en) * 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
TW410478B (en) * 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
JP2002522906A (ja) * 1998-08-04 2002-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Esd保護手段を具備する集積回路
AU770909B2 (en) * 1998-08-26 2004-03-04 Sensors For Medicine And Science, Inc. Optical-based sensing devices
US6384804B1 (en) * 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) * 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) * 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
GB2347013A (en) * 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
WO2000052457A1 (en) * 1999-03-02 2000-09-08 Helix Biopharma Corporation Card-based biosensor device
US6207472B1 (en) * 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
US6498114B1 (en) * 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) * 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6383664B2 (en) * 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
US6593690B1 (en) * 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
EP1149420B1 (de) * 1999-10-11 2015-03-04 Creator Technology B.V. Integrierter schaltkreis
US6335539B1 (en) * 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) * 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
US6621098B1 (en) * 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6197663B1 (en) * 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
US6329226B1 (en) * 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10033112C2 (de) * 2000-07-07 2002-11-14 Siemens Ag Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung
WO2002015264A2 (de) * 2000-08-18 2002-02-21 Siemens Aktiengesellschaft Verkapseltes organisch-elektronisches bauteil, verfahren zu seiner herstellung und seine verwendung
DE10045192A1 (de) * 2000-09-13 2002-04-04 Siemens Ag Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers
KR20020036916A (ko) * 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
KR100390522B1 (ko) * 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
US20020170897A1 (en) * 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US6870180B2 (en) * 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
US7351660B2 (en) * 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6812509B2 (en) * 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) * 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0225750A1 *

Also Published As

Publication number Publication date
US20040026121A1 (en) 2004-02-12
WO2002025750A1 (de) 2002-03-28
JP2004512675A (ja) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4920963B2 (ja) 相分離複合膜の調製方法
US7238961B2 (en) Organic field effect transistor with a photostructured gate dielectric, method for the production and use thereof in organic electronics
DE10240105B4 (de) Herstellung organischer elektronischer Schaltkreise durch Kontaktdrucktechniken
WO2002025750A1 (de) Elektrode und/oder leiterbahn für organische bauelemente und herstellungsverfahren dazu
DE10140666A1 (de) Verfahren und Anordnung zur Herstellung eines leitfähigen strukturierten Polymerfilms
DE10047171A1 (de) Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungverfahren dazu
EP2050139B1 (de) Laminierte struktur, elektronisches element, das diese benutzt, herstellungsverfahren dafür, elektronische elementanordnung und anzeigeeinheit
KR100909481B1 (ko) 잉크젯으로 제조되는 집적회로 및 전자 디바이스 제조 방법
KR20120004974A (ko) 유기 반도체 잉크 조성물 및 이를 사용한 유기 반도체 패턴 형성 방법
EP1393387A1 (de) Organischer feldeffekt-transistor, verfahren zu seiner herstellung und verwendung zum aufbau integrierter schaltungen
DE10229118A1 (de) Verfahren zur kostengünstigen Strukturierung von leitfähigen Polymeren mittels Definition von hydrophilen und hydrophoben Bereichen
DE112014001478T5 (de) Nassablöseprozess für eine antireflektierende Beschichtungsschicht
EP1658647B1 (de) Integrierte schaltung mit einem organischen halbleiter und verfahren zur herstellung einer integrierten schaltung
DE10126859A1 (de) Verfahren zur Erzeugung von leitfähigen Strukturen mittels Drucktechnik sowie daraus hergestellte aktive Bauelemente für integrierte Schaltungen
DE10329262B3 (de) Verfahren zur Behandlung eines Substrates und ein Halbleiterbauelement
EP1563554B1 (de) Organisches elektronisches bauelement mit gleichem organischem material für zumindest zwei funktionsschichten
DE102004041497B4 (de) "Organisches Elektronik-Bauteil sowie Verfahren zur Herstellung eines solchen"
EP1658624A2 (de) Integrierte schaltung und verfahren zur herstellung einer integrierten schaltung
DE10122213C1 (de) Verfahren zur Erzeugung von hochaufgelösten leitfähigen Strukturen
JP5098269B2 (ja) 有機半導体素子の製造方法
US8202771B2 (en) Manufacturing method of organic semiconductor device
WO2004055922A2 (de) Verfahren zur herstellung von organischen feldeffekttransistoren mit top-kontakt-architektur aus leitfähigen polymeren
WO2016085063A1 (ko) 고밀도 유기 메모리 소자 제조 방법
DE102014117096B4 (de) Fotolithografieverfahren zum Herstellen organischer Leuchtdioden
DE102005005589A1 (de) Hybrider, organischer Feldeffekttransistor mit oberflächenmodifiziertem Kupfer als Source- und Drain-Elektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030314

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POLYIC GMBH & CO. KG

17Q First examination report despatched

Effective date: 20061010

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POLYIC GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120817