EP1287248B1 - Procede et dispositif servant a filtrer un signal - Google Patents

Procede et dispositif servant a filtrer un signal Download PDF

Info

Publication number
EP1287248B1
EP1287248B1 EP01943013A EP01943013A EP1287248B1 EP 1287248 B1 EP1287248 B1 EP 1287248B1 EP 01943013 A EP01943013 A EP 01943013A EP 01943013 A EP01943013 A EP 01943013A EP 1287248 B1 EP1287248 B1 EP 1287248B1
Authority
EP
European Patent Office
Prior art keywords
variable
filter means
input
filter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01943013A
Other languages
German (de)
English (en)
Other versions
EP1287248A1 (fr
Inventor
Horst Wagner
Dirk Samuelsen
Ruediger Fehrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1287248A1 publication Critical patent/EP1287248A1/fr
Application granted granted Critical
Publication of EP1287248B1 publication Critical patent/EP1287248B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/103Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being alternatively mechanically linked to the pedal or moved by an electric actuator

Definitions

  • the invention relates to a method and a device for filtering a signal according to the preambles of the independent claims.
  • a method and a device for filtering a signal is known for example from DE 195 37 787.
  • the driver's desired amount is filtered by a specialistssformers.
  • the filtering is designed such that e.g. rapid change in the desired quantity (pedal value) does not have an undiminished effect on the metering of fuel, thus avoiding the excitation of vehicle longitudinal vibrations.
  • Such filtering to dampen the excitation of systems have the disadvantage that they generate a following error in a ramp-like change in the input variable. That is, the output follows the input only delayed. This has an effect, for example, in an application in an internal combustion engine by a reduced drive torque.
  • US Pat. No. 5,775,293 discloses filtering a variable with a first filter medium to form an output variable as a function of the input variable.
  • a second filter means predetermines a coefficient which determines the transmission behavior of the first filter means. This means that, based on the input variable of the first filter means, coefficients are determined with which the transmission behavior of the first filter means is influenced. This procedure is based on the task of greatly attenuating small minor pedal value changes, while in the case of large changes an as instantaneous transmission of the signal as possible should take place.
  • the procedure according to the invention offers the advantage that corresponding tracking errors can be compensated without that restrictions of the filter effect must be taken into account, in particular in the case of sudden changes in the input quantity.
  • FIG. 1 shows the basic structure of a Kraftstoffzumesssystems
  • Figure 2 is a block diagram of the procedure according to the invention.
  • the invention is illustrated below using the example of a fuel quantity signal in a self-igniting internal combustion engine.
  • the invention is not limited to this application. It can also be used for other signals, in particular for signals used in the control of internal combustion engines.
  • the method is suitable for signals that influence or characterize the emitted torque.
  • signals are, for example, a fuel quantity signal, signals for controlling power-influencing actuators, a quantity request signal, the output signal of an accelerator pedal or a speed signal.
  • FIG. 1 shows the basic structure of a fuel metering system of an internal combustion engine.
  • 10 is an accelerator pedal position transmitter and denoted by 11 a speed sensor.
  • a set point control 12 is connected to the accelerator pedal position sensor and the speed sensor 11.
  • the output signal MEW the setpoint control, the driver's desired amount
  • the output signal MEF of the guide former 13 and the output signal MES of the disturbance regulator 14 are superimposed in an addition point and form the quantity signal MEA, which is fed to an actuating device 15 , Depending on this signal MEA, the engine not shown, a corresponding amount of fuel is metered.
  • the driver's desired amount MEW which is required to provide the driver desired performance.
  • this signal is fed directly to the actuator 15.
  • the adjusting device 15 converts this signal into a drive signal for acting on the corresponding actuating elements. For example, in the case of series pumps, it is provided that an adjusting control loop adjusts the rack position to a corresponding value.
  • the actuator 15 outputs a drive signal for a quantity-determining solenoid valve or a piezoelectric actuator.
  • the driver's desired signal MEW is filtered by means of a guide former 13.
  • the guide former 13 has at least one retarding effect.
  • filters with PT1 behavior can be used. It is particularly advantageous if filters are used as guide formers, which comprise further components.
  • the filter 13 which forms the guide former, has at least delaying behavior, for example a T1 element, a tracking error occurs with certain changes in the input variable of the filter 13. That is, the output follows the input only delayed.
  • this tracking error is remedied by the fact that at the input of the filter, a correction value is switched, which is formed on the basis of the input variable.
  • the input quantity is derived in time, i. differentiated and then weighted with a particular specifiable value.
  • This weighting factor is preferably specified depending on the transmission behavior of the filter to be corrected.
  • the time derivative of the input variable is limited in order to maintain the filter effect with rapidly changing input variable despite the measures against lag errors.
  • the actual filter of the handheldsformers is referred to as the first filter 100.
  • the input variable MEW of the guide former 13 reaches the first positive-sign to a node 125 and the second filter 110.
  • the output signal of the node 125 reaches the first filter 100.
  • the output signal of the second filter 110 passes via a limiter 112 to a second node 115.
  • the output signal of the node 115 preferably passes with a positive sign to the node 125.
  • the output signal of a factor specification 120 is applied.
  • the output signal of the first filter 100 forms the output variable MEF.
  • the limiter 112 is arranged after the connection point 115. This means that the limiter 112 limits the correction variable with which the input of the first filter 100 is corrected at the node 125.
  • the input quantity additionally passes via an amplifier 140 to a connection point 130, at the second input of which the output variable of the first filter 100 is present.
  • These two quantities then form the output variable MEF.
  • the second filter 110 is preferably designed as a differentiator. At least the second filter 110 comprises a differentiating component.
  • the second filter may also be designed as a PD element or as a DT element.
  • the output variable of the second filter 110 is limited by the limiter 112 to the maximum permissible values in order to ensure the filter effect in the event of a rapid, in particular step-like, change in the input variable MEW.
  • the limiter 112 is dimensioned such that the limitation is ineffective with slowly changing input quantity and the filter 110 provides an uninfluenced contribution to the correction of the input variable of the first filter 100.
  • the second filter 120 With slow changes in the input, the second filter 120 has a relatively large influence on the filtered quantity.
  • the limitation In the case of step-shaped, ie with rapid changes of the input variable, the limitation is effective, whereby the corresponding contribution of the second filter 110 for correcting the input variable of the first filter is only small. With rapid changes in the input, the second filter 120 has a relatively small effect on the filtered size. In this case, the first filter 100 has a great influence on the filtered size.
  • the output signal of the second filter 110 is weighted with a predefinable weighting factor of the factor setting 120.
  • the weighting factor is specifiable in particular as a function of the transmission behavior of the first filter 100.
  • the first filter 100 has the transition function: K / T * s + 1
  • the size T is usually referred to as a delay time constant and the size K as a proportional gain.
  • the factor of the factor specification 120 is preferably identical to the time constant T. This means that the output signal of the second filter 110, which is limited by the limiter 112, is multiplied by the factor of the factorization factor 120, i. with the delay time constant T of the first filter 100, is weighted.
  • the amplifier 140 has the amplification factor V.
  • the input quantity MEW of the first filter 100 is corrected as a function of the input quantity MEW of the first filter 100.
  • a correction variable for the correction of this input variable is determined.
  • the input variable is derived in time or differentiated and then weighted by a factor.
  • the factor is determined essentially by the transmission behavior of the first filter.
  • the factor preferably corresponds to the delay time constant T of the first filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)
  • Networks Using Active Elements (AREA)

Claims (7)

  1. Dispositif de filtrage d'une grandeur, comprenant un premier filtre pour former une grandeur de sortie en fonction d'une grandeur d'entrée du filtre, le premier filtre présentant au moins une action de temporisation, la grandeur étant un signal de commande d'actionneurs de définition de puissance, un signal de souhait d'un dosage, un signal de sortie d'une pédale d'accélérateur ou un signal de vitesse de rotation,
    caractérisé en ce qu'
    une grandeur de correction est adaptée à l'entrée du premier filtre pour corriger sa grandeur d'entrée, cette grandeur de correction étant obtenue à partir de la grandeur d'entrée du premier filtre par filtrage au moyen d'un deuxième filtre.
  2. Dispositif selon la revendication 1,
    caractérisé en ce que
    le deuxième filtre présente au moins un comportement différentiel.
  3. Dispositif selon la revendication 1 ou 2,
    caractérisé en ce qu'
    une grandeur de sortie du deuxième filtre peut être pondérée avec un coefficient.
  4. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la grandeur de sortie du deuxième filtre ou la grandeur de correction est limitée.
  5. Dispositif selon la revendication 3,
    caractérisé en ce que
    le coefficient est dépendant de la réponse du premier filtre.
  6. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la grandeur de sortie du premier filtre peut être en outre corrigée avec la grandeur d'entrée pondérée du premier filtre.
  7. Procédé de filtrage d'une grandeur, à l'aide d'un premier filtre pour former une grandeur de sortie en fonction d'une grandeur d'entrée du filtre, le premier filtre présentant au moins une action de temporisation, la grandeur étant un signal de commande d'actionneurs de définition de puissance, un signal de souhait d'un dosage, un signal de sortie d'une pédale d'accélérateur ou un signal de vitesse de rotation,
    caractérisé en ce qu'
    on adapte à l'entrée du premier filtre pour corriger la grandeur d'entrée du premier filtre, une grandeur de correction obtenue à partir de la grandeur d'entrée du premier filtre par filtrage au moyen d'un deuxième filtre.
EP01943013A 2000-05-17 2001-05-03 Procede et dispositif servant a filtrer un signal Expired - Lifetime EP1287248B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10024269A DE10024269A1 (de) 2000-05-17 2000-05-17 Verfahren und Vorrichtung zur Filterung eines Signals
DE10024269 2000-05-17
PCT/DE2001/001685 WO2001088357A1 (fr) 2000-05-17 2001-05-03 Procede et dispositif servant a filtrer un signal

Publications (2)

Publication Number Publication Date
EP1287248A1 EP1287248A1 (fr) 2003-03-05
EP1287248B1 true EP1287248B1 (fr) 2006-11-29

Family

ID=7642453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943013A Expired - Lifetime EP1287248B1 (fr) 2000-05-17 2001-05-03 Procede et dispositif servant a filtrer un signal

Country Status (9)

Country Link
US (1) US7051058B2 (fr)
EP (1) EP1287248B1 (fr)
JP (1) JP2003533632A (fr)
KR (1) KR100771288B1 (fr)
CN (1) CN1236204C (fr)
DE (2) DE10024269A1 (fr)
ES (1) ES2275692T3 (fr)
RU (1) RU2266416C2 (fr)
WO (1) WO2001088357A1 (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027650B4 (de) * 2005-06-15 2018-02-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005044853A1 (de) * 2005-09-20 2007-03-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Filterung eines Signals
DE102011087179B4 (de) 2011-11-28 2023-03-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Kraftfahrzeugs
US9534547B2 (en) * 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9388758B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Model predictive control systems and methods for future torque changes
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9378594B2 (en) 2014-03-26 2016-06-28 GM Global Technology Operations LLC Fault diagnostic systems and methods for model predictive control
US9599053B2 (en) 2014-03-26 2017-03-21 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9388754B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Artificial output reference for model predictive control
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9382865B2 (en) 2014-03-26 2016-07-05 GM Global Technology Operations LLC Diagnostic systems and methods using model predictive control
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9376965B2 (en) 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9243524B2 (en) 2014-03-26 2016-01-26 GM Global Technology Operations LLC Engine control systems and methods for transmission upshifts
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US9789876B1 (en) 2016-06-16 2017-10-17 GM Global Technology Operations LLC Axle torque control system for a motor vehicle
US10427272B2 (en) * 2016-09-21 2019-10-01 Applied Materials, Inc. Endpoint detection with compensation for filtering
US10125712B2 (en) 2017-02-17 2018-11-13 GM Global Technology Operations LLC Torque security of MPC-based powertrain control
US10119481B2 (en) 2017-03-22 2018-11-06 GM Global Technology Operations LLC Coordination of torque interventions in MPC-based powertrain control
GB2553172A (en) * 2017-04-13 2018-02-28 Detroit Electric Ev Ltd Electrical vehicle drive train and method of operation
US10399574B2 (en) 2017-09-07 2019-09-03 GM Global Technology Operations LLC Fuel economy optimization using air-per-cylinder (APC) in MPC-based powertrain control
US10358140B2 (en) 2017-09-29 2019-07-23 GM Global Technology Operations LLC Linearized model based powertrain MPC
CN107725202B (zh) * 2017-10-10 2019-10-29 中国第一汽车股份有限公司 转速信号的处理装置
US10619586B2 (en) 2018-03-27 2020-04-14 GM Global Technology Operations LLC Consolidation of constraints in model predictive control
US10661804B2 (en) 2018-04-10 2020-05-26 GM Global Technology Operations LLC Shift management in model predictive based propulsion system control
US10859159B2 (en) 2019-02-11 2020-12-08 GM Global Technology Operations LLC Model predictive control of torque converter clutch slip
US11312208B2 (en) 2019-08-26 2022-04-26 GM Global Technology Operations LLC Active thermal management system and method for flow control
US11008921B1 (en) 2019-11-06 2021-05-18 GM Global Technology Operations LLC Selective catalytic reduction device control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233245A (en) * 1991-04-10 1993-08-03 General Electric Company Rate controlled noise filter

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434743C2 (de) 1974-07-19 1984-09-20 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Einrichtung zur Regelung des Betriebsverhaltens einer Brennkraftmaschine
US4694414A (en) * 1984-12-19 1987-09-15 Rca Corporation Digital delay interpolation filter with amplitude and phase compensation
DE3738719C2 (de) * 1986-11-27 1997-09-25 Volkswagen Ag Verfahren und Anordnung zur Verhinderung störender Lastwechselschläge bei einer Fahrzeug-Brennkraftmaschine
JPH01151843A (ja) * 1987-12-09 1989-06-14 Nec Corp スペクトラム拡散復調装置
DE3936619A1 (de) 1989-11-03 1991-05-08 Man Nutzfahrzeuge Ag Verfahren zum einspritzen eines brennstoffes in einen brennraum einer luftverdichtenden, selbstzuendenden brennkraftmaschine, sowie vorrichtungen zur durchfuehrung dieses verfahrens
DE4108734A1 (de) * 1991-03-18 1992-09-24 Vdo Schindling Verfahren und anordnung zur daempfung von ruckelschwingungen eines kraftfahrzeugs
CA2108667C (fr) 1991-05-15 2001-08-14 Sam Russell Leighton Circuit d'alimentation de moteur a injection
JPH05313704A (ja) * 1992-05-13 1993-11-26 Mitsubishi Heavy Ind Ltd 適応制御装置
JPH05341806A (ja) * 1992-06-10 1993-12-24 Mitsubishi Heavy Ind Ltd 適応制御装置
JPH0612102A (ja) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd 適応制御装置
JPH0659706A (ja) * 1992-08-06 1994-03-04 Mitsubishi Heavy Ind Ltd 適応制御装置
JPH06124102A (ja) * 1992-10-14 1994-05-06 Mitsubishi Heavy Ind Ltd 適応制御装置
FR2724417B1 (fr) * 1994-09-12 1996-10-18 Siemens Automotive Sa Procede de commande d'un moteur a combustion interne a injection directe
DE19534633A1 (de) 1995-05-30 1996-12-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
DE19537787A1 (de) 1995-10-11 1997-04-17 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US5838599A (en) * 1996-09-13 1998-11-17 Measurex Corporation Method and apparatus for nonlinear exponential filtering of signals
US5775293A (en) 1996-10-01 1998-07-07 Cummins Engine Co., Inc. Electronic throttle pedal nonlinear filter
DE19722253A1 (de) * 1997-05-28 1998-11-05 Daimler Benz Ag Elektronische Ruckeldämpfungseinrichtung für Brennkraftmaschinen
DE19753996A1 (de) * 1997-12-05 1999-06-10 Siemens Ag Verfahren zum Dämpfen von Ruckelschwingungen oder Lastschlägen bei einer Brennkraftmaschine
DE19814743A1 (de) * 1998-04-02 1999-10-07 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit eines Fahrzeugs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233245A (en) * 1991-04-10 1993-08-03 General Electric Company Rate controlled noise filter

Also Published As

Publication number Publication date
CN1429314A (zh) 2003-07-09
CN1236204C (zh) 2006-01-11
WO2001088357A1 (fr) 2001-11-22
RU2002133094A (ru) 2005-05-10
JP2003533632A (ja) 2003-11-11
RU2266416C2 (ru) 2005-12-20
US20040254656A1 (en) 2004-12-16
KR100771288B1 (ko) 2007-10-29
DE50111554D1 (de) 2007-01-11
DE10024269A1 (de) 2001-12-20
US7051058B2 (en) 2006-05-23
ES2275692T3 (es) 2007-06-16
KR20030010624A (ko) 2003-02-05
EP1287248A1 (fr) 2003-03-05

Similar Documents

Publication Publication Date Title
EP1287248B1 (fr) Procede et dispositif servant a filtrer un signal
DE3313036C2 (de) Vorrichtung zur Verhinderung des klopfenden Betriebs bei Brennkraftmaschinen
DE4015415B4 (de) Vorrichtung zur Erfassung eines veränderlichen Betriebsparameters
EP0152604A1 (fr) Méthode de commande et de régulation des paramètres de fonctionnement d'un moteur à C.I.
DE3341015A1 (de) Einrichtung fuer die gemischaufbereitung bei einer brennkraftmaschine
EP0768455B1 (fr) Méthode et dispositif pour commander un moteur à combustion interne
DE102005026503A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0375710B1 (fr) Systeme de reglage (commande et/ou ajustement) pour vehicules a moteur
EP0591139B1 (fr) Procede et dispositif de commande d'arrivee d'air dans un moteur a combustion interne
DE4333896B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19723639B4 (de) Automobilaktuatorschnittstelle
EP1311751B1 (fr) Procede et dispositif pour la commande d'un moteur a combustion interne
EP0473914B1 (fr) Système de régulation d'un actuateur dans un moteur à combustion
DE19931823B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0877974B1 (fr) Procede pour reguler un systeme asservi, notamment un moteur a combustion interne
DE102007013253A1 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit
EP1178202B1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne
EP1078163A1 (fr) Procede de commande d'allumage
DE19860398B4 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
EP0708233B1 (fr) Procédé et dispositif pour commander un moteur à combustion interne
EP1672206A2 (fr) Procédé et dispositif de commande d'un moteur à combustion interne dans un véhicule
DE102011078609A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102005048048B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10206030B4 (de) Verfahren zum Anpassen eines Einspritzparameters eines Verbrennungsmotors an instationäre bzw. dynamische Vorgänge
DE102007035097B4 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50111554

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070308

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2275692

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100520

Year of fee payment: 10

Ref country code: FR

Payment date: 20100608

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120521

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150723

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50111554

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201