EP1287248B1 - Method and device for filtering a signal - Google Patents

Method and device for filtering a signal Download PDF

Info

Publication number
EP1287248B1
EP1287248B1 EP01943013A EP01943013A EP1287248B1 EP 1287248 B1 EP1287248 B1 EP 1287248B1 EP 01943013 A EP01943013 A EP 01943013A EP 01943013 A EP01943013 A EP 01943013A EP 1287248 B1 EP1287248 B1 EP 1287248B1
Authority
EP
European Patent Office
Prior art keywords
variable
filter means
input
filter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01943013A
Other languages
German (de)
French (fr)
Other versions
EP1287248A1 (en
Inventor
Horst Wagner
Dirk Samuelsen
Ruediger Fehrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1287248A1 publication Critical patent/EP1287248A1/en
Application granted granted Critical
Publication of EP1287248B1 publication Critical patent/EP1287248B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/103Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being alternatively mechanically linked to the pedal or moved by an electric actuator

Definitions

  • the invention relates to a method and a device for filtering a signal according to the preambles of the independent claims.
  • a method and a device for filtering a signal is known for example from DE 195 37 787.
  • the driver's desired amount is filtered by a specialistssformers.
  • the filtering is designed such that e.g. rapid change in the desired quantity (pedal value) does not have an undiminished effect on the metering of fuel, thus avoiding the excitation of vehicle longitudinal vibrations.
  • Such filtering to dampen the excitation of systems have the disadvantage that they generate a following error in a ramp-like change in the input variable. That is, the output follows the input only delayed. This has an effect, for example, in an application in an internal combustion engine by a reduced drive torque.
  • US Pat. No. 5,775,293 discloses filtering a variable with a first filter medium to form an output variable as a function of the input variable.
  • a second filter means predetermines a coefficient which determines the transmission behavior of the first filter means. This means that, based on the input variable of the first filter means, coefficients are determined with which the transmission behavior of the first filter means is influenced. This procedure is based on the task of greatly attenuating small minor pedal value changes, while in the case of large changes an as instantaneous transmission of the signal as possible should take place.
  • the procedure according to the invention offers the advantage that corresponding tracking errors can be compensated without that restrictions of the filter effect must be taken into account, in particular in the case of sudden changes in the input quantity.
  • FIG. 1 shows the basic structure of a Kraftstoffzumesssystems
  • Figure 2 is a block diagram of the procedure according to the invention.
  • the invention is illustrated below using the example of a fuel quantity signal in a self-igniting internal combustion engine.
  • the invention is not limited to this application. It can also be used for other signals, in particular for signals used in the control of internal combustion engines.
  • the method is suitable for signals that influence or characterize the emitted torque.
  • signals are, for example, a fuel quantity signal, signals for controlling power-influencing actuators, a quantity request signal, the output signal of an accelerator pedal or a speed signal.
  • FIG. 1 shows the basic structure of a fuel metering system of an internal combustion engine.
  • 10 is an accelerator pedal position transmitter and denoted by 11 a speed sensor.
  • a set point control 12 is connected to the accelerator pedal position sensor and the speed sensor 11.
  • the output signal MEW the setpoint control, the driver's desired amount
  • the output signal MEF of the guide former 13 and the output signal MES of the disturbance regulator 14 are superimposed in an addition point and form the quantity signal MEA, which is fed to an actuating device 15 , Depending on this signal MEA, the engine not shown, a corresponding amount of fuel is metered.
  • the driver's desired amount MEW which is required to provide the driver desired performance.
  • this signal is fed directly to the actuator 15.
  • the adjusting device 15 converts this signal into a drive signal for acting on the corresponding actuating elements. For example, in the case of series pumps, it is provided that an adjusting control loop adjusts the rack position to a corresponding value.
  • the actuator 15 outputs a drive signal for a quantity-determining solenoid valve or a piezoelectric actuator.
  • the driver's desired signal MEW is filtered by means of a guide former 13.
  • the guide former 13 has at least one retarding effect.
  • filters with PT1 behavior can be used. It is particularly advantageous if filters are used as guide formers, which comprise further components.
  • the filter 13 which forms the guide former, has at least delaying behavior, for example a T1 element, a tracking error occurs with certain changes in the input variable of the filter 13. That is, the output follows the input only delayed.
  • this tracking error is remedied by the fact that at the input of the filter, a correction value is switched, which is formed on the basis of the input variable.
  • the input quantity is derived in time, i. differentiated and then weighted with a particular specifiable value.
  • This weighting factor is preferably specified depending on the transmission behavior of the filter to be corrected.
  • the time derivative of the input variable is limited in order to maintain the filter effect with rapidly changing input variable despite the measures against lag errors.
  • the actual filter of the handheldsformers is referred to as the first filter 100.
  • the input variable MEW of the guide former 13 reaches the first positive-sign to a node 125 and the second filter 110.
  • the output signal of the node 125 reaches the first filter 100.
  • the output signal of the second filter 110 passes via a limiter 112 to a second node 115.
  • the output signal of the node 115 preferably passes with a positive sign to the node 125.
  • the output signal of a factor specification 120 is applied.
  • the output signal of the first filter 100 forms the output variable MEF.
  • the limiter 112 is arranged after the connection point 115. This means that the limiter 112 limits the correction variable with which the input of the first filter 100 is corrected at the node 125.
  • the input quantity additionally passes via an amplifier 140 to a connection point 130, at the second input of which the output variable of the first filter 100 is present.
  • These two quantities then form the output variable MEF.
  • the second filter 110 is preferably designed as a differentiator. At least the second filter 110 comprises a differentiating component.
  • the second filter may also be designed as a PD element or as a DT element.
  • the output variable of the second filter 110 is limited by the limiter 112 to the maximum permissible values in order to ensure the filter effect in the event of a rapid, in particular step-like, change in the input variable MEW.
  • the limiter 112 is dimensioned such that the limitation is ineffective with slowly changing input quantity and the filter 110 provides an uninfluenced contribution to the correction of the input variable of the first filter 100.
  • the second filter 120 With slow changes in the input, the second filter 120 has a relatively large influence on the filtered quantity.
  • the limitation In the case of step-shaped, ie with rapid changes of the input variable, the limitation is effective, whereby the corresponding contribution of the second filter 110 for correcting the input variable of the first filter is only small. With rapid changes in the input, the second filter 120 has a relatively small effect on the filtered size. In this case, the first filter 100 has a great influence on the filtered size.
  • the output signal of the second filter 110 is weighted with a predefinable weighting factor of the factor setting 120.
  • the weighting factor is specifiable in particular as a function of the transmission behavior of the first filter 100.
  • the first filter 100 has the transition function: K / T * s + 1
  • the size T is usually referred to as a delay time constant and the size K as a proportional gain.
  • the factor of the factor specification 120 is preferably identical to the time constant T. This means that the output signal of the second filter 110, which is limited by the limiter 112, is multiplied by the factor of the factorization factor 120, i. with the delay time constant T of the first filter 100, is weighted.
  • the amplifier 140 has the amplification factor V.
  • the input quantity MEW of the first filter 100 is corrected as a function of the input quantity MEW of the first filter 100.
  • a correction variable for the correction of this input variable is determined.
  • the input variable is derived in time or differentiated and then weighted by a factor.
  • the factor is determined essentially by the transmission behavior of the first filter.
  • the factor preferably corresponds to the delay time constant T of the first filter.

Abstract

A method and a device are described for filtering a variable. A first filtering arrangement is used for forming an output variable as a function of an input variable, the first filtering arrangement having at least a delaying effect. The input variable of the first filtering arrangement is corrected using a correcting variable which is obtained by starting from the input variable of the first filtering arrangement and by filtering, using a second filtering arrangement.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Filterung eines Signals gemäß den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a method and a device for filtering a signal according to the preambles of the independent claims.

Ein Verfahren und eine Vorrichtung zur Filterung eines Signals ist beispielsweise aus der DE 195 37 787 bekannt. Dort wird die Fahrerwunschmenge mittels eines Führungsformers gefiltert. Die Filterung ist derart ausgebildet, dass sich z.B. schnelle Fahrermengenwunschänderungen (Pedalwert) nicht ungedämpft auf die Kraftstoffzumessung auswirken und so die Anregung von Fahrzeuglängsschwingungen vermieden wird. Solche Filterung zur Dämpfung der Anregung von Systemen haben den Nachteil, dass sie bei rampenähnlicher Änderung der Eingangsgröße einen Schleppfehler erzeugen. D.h., die Ausgangsgröße folgt der Eingangsgröße nur verzögert. Dies wirkt sich beispielsweise bei einer Anwendung bei einer Brennkraftmaschine durch ein vermindertes Antriebsmoment aus.A method and a device for filtering a signal is known for example from DE 195 37 787. There, the driver's desired amount is filtered by a Führungsformers. The filtering is designed such that e.g. rapid change in the desired quantity (pedal value) does not have an undiminished effect on the metering of fuel, thus avoiding the excitation of vehicle longitudinal vibrations. Such filtering to dampen the excitation of systems have the disadvantage that they generate a following error in a ramp-like change in the input variable. That is, the output follows the input only delayed. This has an effect, for example, in an application in an internal combustion engine by a reduced drive torque.

Ferner ist aus der US 5,775,293 eine Filterung einer Größe mit einem ersten Filtermittel zur Bildung einer Ausgangsgröße abhängig von der Eingangsgröße bekannt. Ausgehend von der Eingangsgröße des ersten Filtermittels gibt ein zweites Filtermittel einen Koeffizienten vor, der das Übertragungsverhalten des ersten Filtermittels bestimmt. Dies bedeutet dass ausgehend von der Eingangsgröße des ersten Filtermittels Koeffizienten bestimmt werden, mit denen das Übertragungsverhalten des ersten Filtermittels beeinflusst wird. Dieser Vorgehensweise liegt die Aufgabe zu Grunde, kleine geringfügige Pedalwertänderungen stark zu dämpfen, während bei großen Änderungen eine möglichst unverzögerte Weiterleitung des Signals erfolgen soll.Furthermore, US Pat. No. 5,775,293 discloses filtering a variable with a first filter medium to form an output variable as a function of the input variable. Starting from the input variable of the first filter means, a second filter means predetermines a coefficient which determines the transmission behavior of the first filter means. This means that, based on the input variable of the first filter means, coefficients are determined with which the transmission behavior of the first filter means is influenced. This procedure is based on the task of greatly attenuating small minor pedal value changes, while in the case of large changes an as instantaneous transmission of the signal as possible should take place.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Vorgehensweise bietet den Vorteil, dass entsprechende Schleppfehler kompensiert werden können, ohne dass Einschränkungen der Filterwirkung insbesondere bei sprungförmigen Änderungen der Eingangsgröße in Kauf genommen werden müssen.The procedure according to the invention offers the advantage that corresponding tracking errors can be compensated without that restrictions of the filter effect must be taken into account, in particular in the case of sudden changes in the input quantity.

Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous and expedient refinements and developments of the invention are characterized in the subclaims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 den prinzipiellen Aufbau eines Kraftstoffzumesssystems und Figur 2 ein Blockdiagramm der erfindungsgemäßen Vorgehensweise.The invention will be explained below with reference to the embodiments shown in the drawing. 1 shows the basic structure of a Kraftstoffzumesssystems and Figure 2 is a block diagram of the procedure according to the invention.

Die Erfindung wird im folgenden am Beispiel eines Kraftstoffmengensignals bei einer selbstzündenden Brennkraftmaschine dargestellt. Die Erfindung ist nicht auf diese Anwendung beschränkt. Sie kann auch bei anderen Signalen, insbesondere bei Signalen, die bei Steuerung von Brennkraftmaschinen verwendet werden, eingesetzt werden. Insbesondere ist das Verfahren geeignet für Signale, die das abgegebene Moment beeinflussen oder charakterisieren. Solche Signale sind beispielsweise ein Kraftstoffmengensignal, Signale zur Ansteuerung von leistungsbeeinflussenden Stellern, ein Mengenwunschsignal, das Ausgangssignal eines Fahrpedalgebers oder ein Drehzahlsignal.The invention is illustrated below using the example of a fuel quantity signal in a self-igniting internal combustion engine. The invention is not limited to this application. It can also be used for other signals, in particular for signals used in the control of internal combustion engines. In particular, the method is suitable for signals that influence or characterize the emitted torque. Such signals are, for example, a fuel quantity signal, signals for controlling power-influencing actuators, a quantity request signal, the output signal of an accelerator pedal or a speed signal.

In Figur 1 ist der prinzipielle Aufbau eines Kraftstoffzumessystems einer Brennkraftmaschine dargestellt. Mit 10 ist ein Fahrpedalstellungsgeber und mit 11 ein Drehzahlgeber bezeichnet. Eine Sollwertsteuerung 12 ist mit dem Fahrpedalstellungsgeber und dem Drehzahlgeber 11 verbunden. Das Ausgangssignal MEW der Sollwertsteuerung, die der Fahrerwunschmenge entspricht, gelangt zu einem Führungsformer 13. Das Drehzahlsignal N des Drehzahlgebers 11 gelangt zu einem Störgrößenregler 14. Das Ausgangssignal MEF des Führungsformers 13 und das Ausgangssignal MES des Störungsreglers 14 werden in einem Additionspunkt überlagert und bilden das Mengensignal MEA, das einer Stelleinrichtung 15 zugeleitet wird. Abhängig von diesem Signal MEA wird der nicht dargestellten Brennkraftmaschine eine entsprechende Kraftstoffmenge zugemessen.FIG. 1 shows the basic structure of a fuel metering system of an internal combustion engine. With 10 is an accelerator pedal position transmitter and denoted by 11 a speed sensor. A set point control 12 is connected to the accelerator pedal position sensor and the speed sensor 11. The output signal MEW the setpoint control, the driver's desired amount The output signal MEF of the guide former 13 and the output signal MES of the disturbance regulator 14 are superimposed in an addition point and form the quantity signal MEA, which is fed to an actuating device 15 , Depending on this signal MEA, the engine not shown, a corresponding amount of fuel is metered.

Ausgehend von der Fahrpedalstellung der Drehzahl berechnet die Sollwertsteuerung 12 die Fahrerwunschmenge MEW, die erforderlich ist, um die vom Fahrer gewünschte Fahrleistung bereitzustellen. Bei Systemen ohne Ruckeldämpfung wird dieses Signal unmittelbar der Stelleinrichtung 15 zugeleitet. Die Stelleinrichtung 15 setzt dieses Signal in ein Ansteuersignal zur Beaufschlagung der entsprechenden Stellelemente um. So ist beispielsweise bei Reihenpumpen vorgesehen, dass ein Stellregelkreis die Regelstangenposition auf einen entsprechenden Wert einregelt. Bei zeitgesteuerten Systemen gibt die Stelleinrichtung 15 ein Ansteuersignal für ein mengenbestimmendes Magnetventil oder einen Piezoaktor ab.Based on the accelerator pedal position of the speed calculates the setpoint control 12, the driver's desired amount MEW, which is required to provide the driver desired performance. In systems without anti-jerking this signal is fed directly to the actuator 15. The adjusting device 15 converts this signal into a drive signal for acting on the corresponding actuating elements. For example, in the case of series pumps, it is provided that an adjusting control loop adjusts the rack position to a corresponding value. In timed systems, the actuator 15 outputs a drive signal for a quantity-determining solenoid valve or a piezoelectric actuator.

Um auftretende Ruckelschwingungen kompensieren zu können, ist vorgesehen, dass das Fahrerwunschsignal MEW mittels eines Führungsformers 13 gefiltert wird. Der Führungsformer 13 besitzt wenigstens eine verzögernde Wirkung. So können beispielsweise Filter mit PT1-Verhalten eingesetzt werden. Besonders vorteilhaft ist es, wenn als Führungsformer Filter eingesetzt werden, die noch weitere Komponenten umfassen.In order to be able to compensate occurring jerky vibrations, it is provided that the driver's desired signal MEW is filtered by means of a guide former 13. The guide former 13 has at least one retarding effect. For example, filters with PT1 behavior can be used. It is particularly advantageous if filters are used as guide formers, which comprise further components.

Desweiteren wird das Drehzahlsignal N einem Störungsregler 14 zugeleitet. Die neue Wirkungsweise dieser Vorrichtung ist in der DE 195 37 787 beschrieben.Furthermore, the speed signal N is fed to a fault controller 14. The new mode of action of this device is described in DE 195 37 787.

Besitzt der Filter 13, der den Führungsformer bildet, zumindest verzögerndes Verhalten, beispielsweise ein T1-Glied, so tritt bei bestimmten Änderungen der Eingangsgröße des Filters 13 ein Schleppfehler auf. D.h., die Ausgangsgröße folgt der Eingangsgröße nur verzögert.If the filter 13, which forms the guide former, has at least delaying behavior, for example a T1 element, a tracking error occurs with certain changes in the input variable of the filter 13. That is, the output follows the input only delayed.

Erfindungsgemäß wird dieser Schleppfehler dadurch behoben, dass am Eingang des Filters ein Korrekturwert aufgeschaltet wird, der ausgehend von der Eingangsgröße gebildet wird. Vorzugsweise wird hierzu die Eingangsgröße nach der Zeit abgeleitet, d.h. differenziert und anschließend mit einem insbesondere vorgebbaren Wert gewichtet. Dieser Wichtungsfaktor wird vorzugsweise abhängig vom Übertragungsverhalten des zu korrigierenden Filters vorgegeben. Dabei wird die zeitliche Ableitung der Eingangsgröße begrenzt, um die Filterwirkung bei sich schnell ändernder Eingangsgröße trotz der Maßnahmen gegen Schleppfehler beizubehalten.According to the invention, this tracking error is remedied by the fact that at the input of the filter, a correction value is switched, which is formed on the basis of the input variable. Preferably, for this purpose, the input quantity is derived in time, i. differentiated and then weighted with a particular specifiable value. This weighting factor is preferably specified depending on the transmission behavior of the filter to be corrected. In this case, the time derivative of the input variable is limited in order to maintain the filter effect with rapidly changing input variable despite the measures against lag errors.

In Figur 2 ist der Führungsformer mit einer solchen Korrektur detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind mit den entsprechenden Bezugszeichen bezeichnet.In Figure 2, the guide former is shown in more detail with such a correction. Already described in Figure 1 elements are denoted by the corresponding reference numerals.

Der eigentliche Filter des Führungsformers ist als erster Filter 100 bezeichnet. Die Eingangsgröße MEW des Führungsformers 13 gelangt zum einen mit positiven Vorzeichen zu einem Verknüpfungspunkt 125 und zum anderen zu einem zweiten Filter 110. Das Ausgangssignal des Verknüpfungspunktes 125 gelangt zu dem ersten Filter 100.The actual filter of the Führungsformers is referred to as the first filter 100. The input variable MEW of the guide former 13 reaches the first positive-sign to a node 125 and the second filter 110. The output signal of the node 125 reaches the first filter 100.

Das Ausgangssignal des zweiten Filters 110 gelangt über einen Begrenzer 112 zu einem zweiten Verknüpfungspunkt 115. Das Ausgangssignal des Verknüpfungspunktes 115 gelangt vorzugsweise mit positivem Vorzeichen zu dem Verknüpfungspunkt 125. An dem zweiten Eingang des zweiten Verknüpfungspunkts 115 liegt das Ausgangssignal einer Faktorvorgabe 120 an. Das Ausgangssignal des ersten Filters 100 bildet die Ausgangsgröße MEF.The output signal of the second filter 110 passes via a limiter 112 to a second node 115. The output signal of the node 115 preferably passes with a positive sign to the node 125. At the second input of the second node 115, the output signal of a factor specification 120 is applied. The output signal of the first filter 100 forms the output variable MEF.

Bei einer Ausgestaltung kann auch vorgesehen sein, dass der Begrenzer 112 nach dem Verknüpfungspunkt 115 angeordnet ist. Dies bedeutet der Begrenzer 112 begrenzt die Korrekturgröße mit der im Verknüpfungspunkt 125 die Eingangsgröße des ersten Filters 100 korrigiert wird.In an embodiment, it can also be provided that the limiter 112 is arranged after the connection point 115. This means that the limiter 112 limits the correction variable with which the input of the first filter 100 is corrected at the node 125.

Eine besonders vorteilhafte Ausgestaltung der erfindungsgemäßen Vorgehensweise ist strichpunktiert dargestellt. Bei dieser gelangt die Eingangsgröße zusätzlich über einen Verstärker 140 zu einem Verknüpfungspunkt 130, an dessen zweiten Eingang die Ausgangsgröße des ersten Filters 100 anliegt. Diese beiden Größen verknüpft bilden dann die Ausgangsgröße MEF.A particularly advantageous embodiment of the procedure according to the invention is shown in phantom. In this case, the input quantity additionally passes via an amplifier 140 to a connection point 130, at the second input of which the output variable of the first filter 100 is present. These two quantities then form the output variable MEF.

Der zweite Filter 110 ist vorzugsweise als Differenzierer ausgebildet. Zumindestens umfaßt der zweite Filter 110 eine differenzierende Komponente. Beispielsweise kann der zweite Filter auch als PD-Glied oder als DT-Glied ausgebildet sein. Die Ausgangsgröße des zweiten Filters 110 wird durch den Begrenzer 112 auf betragsmässig höchstzulässige Werte begrenzt, um die Filterwirkung bei schneller, insbesondere sprungförmiger, Änderung der Eingangsgröße MEW zu gewährleisten.The second filter 110 is preferably designed as a differentiator. At least the second filter 110 comprises a differentiating component. For example, the second filter may also be designed as a PD element or as a DT element. The output variable of the second filter 110 is limited by the limiter 112 to the maximum permissible values in order to ensure the filter effect in the event of a rapid, in particular step-like, change in the input variable MEW.

Der Begrenzer 112 ist derart dimensioniert, dass die Begrenzung bei sich langsam ändernder Eingangsgröße unwirksam ist und das Filter 110 einen unbeinflussten Beitrag zur Korrektur der Eingangsgröße des ersten Filters 100 liefert. Bei langsamen Änderungen der Eingangsgröße besitzt das zweite Filter 120 einen relativen großen Einfluß auf die gefilterte Größe. Dadurch wird erfindungsgemäß der Schleppfehler vermieden. Bei sprungförmigen, das heisst bei schnellen Änderungen der Eingangsgröße ist die Begrenzung wirksam, wodurch der entsprechende Beitrag des Zweiten Filters 110 zur Korrektur der Eingangsgröße des ersten Filters nur gering ist. Bei schnellen Änderungen der Eingangsgröße besitzt das zweite Filter 120 einen relativen kleinen Einfluß auf die gefilterte Größe. In diesem Fall besitzt der erste Filter 100 einen großen Einfluß auf die gefilterte Größe.The limiter 112 is dimensioned such that the limitation is ineffective with slowly changing input quantity and the filter 110 provides an uninfluenced contribution to the correction of the input variable of the first filter 100. With slow changes in the input, the second filter 120 has a relatively large influence on the filtered quantity. As a result, the following error is avoided according to the invention. In the case of step-shaped, ie with rapid changes of the input variable, the limitation is effective, whereby the corresponding contribution of the second filter 110 for correcting the input variable of the first filter is only small. With rapid changes in the input, the second filter 120 has a relatively small effect on the filtered size. In this case, the first filter 100 has a great influence on the filtered size.

Im Verknüpfungspunkt 115 wird das Ausgangssignal des zweiten Filters 110 mit einem vorgebbaren Wichtungsfaktor der Faktorvorgabe 120 gewichtet. Der Wichtungsfaktor ist insbesondere abhängig vom Übertragungsverhalten des ersten Filters 100 vorgebbar.In the connection point 115, the output signal of the second filter 110 is weighted with a predefinable weighting factor of the factor setting 120. The weighting factor is specifiable in particular as a function of the transmission behavior of the first filter 100.

In einer bevorzugten Ausführungsform besitzt das erste Filter 100 die Übergangsfunktion: K / T * s + 1

Figure imgb0001
In a preferred embodiment, the first filter 100 has the transition function: K / T * s + 1
Figure imgb0001

Hierbei werden üblicherweise die Größe T als Verzögerungszeitkonstante und die Größe K als Proportionalverstärkung bezeichnet.Here, the size T is usually referred to as a delay time constant and the size K as a proportional gain.

Der Faktor der Faktorvorgabe 120 ist vorzugsweise identisch mit der Zeitkonstante T. Dies bedeutet, dass das durch den Begrenzer 112 begrenzte Ausgangssignal des zweiten Filters 110 mit dem Faktor der Faktorvorgabe 120, d.h. mit der Verzögerungszeitkonstante T des ersten Filters 100, gewichtet wird.The factor of the factor specification 120 is preferably identical to the time constant T. This means that the output signal of the second filter 110, which is limited by the limiter 112, is multiplied by the factor of the factorization factor 120, i. with the delay time constant T of the first filter 100, is weighted.

Bei der zweiten besonders vorteilhaften Ausgestaltung besitzt der Verstärker 140 den Verstärkungsfaktor V. Die Proportionalverstärkung K des ersten Filters nimmt dann den Wert K = 1 - V an.In the second particularly advantageous embodiment, the amplifier 140 has the amplification factor V. The proportional gain K of the first filter then assumes the value K = 1-V.

Erfindungsgemäß wird die Eingangsgröße MEW des ersten Filters 100 abhängig von der der Eingangsgröße MEW des ersten Filters 100 korrigiert. Dies bedeutet ausgehend von der Eingangsgröße MEW des ersten Filters wird eine Korrekturgröße zur Korrektur dieser Eingangsgröße bestimmt. Bei einer einfachen Ausführungsform wird die Eingangsgröße zeitlich abgeleitet bzw. differenziert und anschließend mit einem Faktor gewichtet. Der Faktor wird dabei im wesentlichen durch das Übertragungsverhalten des ersten Filters bestimmt. Vorzugsweise entspricht der Faktor der Verzögerungszeitkonstanten T des ersten Filters.According to the invention, the input quantity MEW of the first filter 100 is corrected as a function of the input quantity MEW of the first filter 100. This means, starting from the input variable MEW of the first filter, a correction variable for the correction of this input variable is determined. In a simple embodiment, the input variable is derived in time or differentiated and then weighted by a factor. The factor is determined essentially by the transmission behavior of the first filter. The factor preferably corresponds to the delay time constant T of the first filter.

Besonders vorteilhaft ist es, wenn lediglich ein Teil des Signals korrigiert wird. Dies wird dadurch realisiert, dass die Proportionalverstärkung K des ersten Filters kleiner als 1 gewählt wird und dem Ausgangssignal des ersten Filters ein entsprechend verstärktes Eingangssignal zugeführt wird.It is particularly advantageous if only a part of the signal is corrected. This is realized by selecting the proportional gain K of the first filter to be smaller than 1 and by supplying a correspondingly amplified input signal to the output signal of the first filter.

Claims (7)

  1. Device for filtering a variable, having a first filter means for forming an output variable as a function of an input variable of the filter means, the first filter means having at least one delaying effect, the variable being a signal for actuating power-determining actuators, a quantity request signal, an output signal of an accelerator pedal or a rotational speed signal, characterized in that a correction variable is applied at the input of the first filter means in order to correct the input variable of the first filter means, a correction variable is applied to the input of the first filter means in order to correct the input variable of the first filter means, the correction variable being acquired on the basis of the input variable of the first filter means by filtering using a second filter means.
  2. Device according to Claim 1, characterized in that the second filter means have at least differentiating behaviour.
  3. Device according to Claim 1 or 2, characterized in that an output variable of the second filter means can be weighted with a factor.
  4. Device according to one of the preceding claims, characterized in that the output variable of the second filter means or the correction variable is limited.
  5. Device according to Claim 3, characterized in that the factor is dependent on the transmission behaviour of the first filter means.
  6. Device according to one of the preceding claims, characterized in that in addition the output variable of the first filter means can be corrected using the weighted input variable of the first filter means.
  7. Method for filtering a variable, having a first filter means for forming an output variable as a function of an input variable of the filter means, the first filter means having at least one delaying effect, the variable being a signal for actuating power-determining actuators, a quantity request signal, an output signal of an accelerator pedal or a rotational speed signal, characterized in that a correction variable is applied at the input of the first filter means in order to correct the input variable of the first filter means, a correction variable is applied to the input of the first filter means in order to correct the input variable of the first filter means, the correction variable being acquired on the basis of the input variable of the first filter means by filtering using a second filter means.
EP01943013A 2000-05-17 2001-05-03 Method and device for filtering a signal Expired - Lifetime EP1287248B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10024269 2000-05-17
DE10024269A DE10024269A1 (en) 2000-05-17 2000-05-17 Method and device for filtering a signal
PCT/DE2001/001685 WO2001088357A1 (en) 2000-05-17 2001-05-03 Method and device for filtering a signal

Publications (2)

Publication Number Publication Date
EP1287248A1 EP1287248A1 (en) 2003-03-05
EP1287248B1 true EP1287248B1 (en) 2006-11-29

Family

ID=7642453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943013A Expired - Lifetime EP1287248B1 (en) 2000-05-17 2001-05-03 Method and device for filtering a signal

Country Status (9)

Country Link
US (1) US7051058B2 (en)
EP (1) EP1287248B1 (en)
JP (1) JP2003533632A (en)
KR (1) KR100771288B1 (en)
CN (1) CN1236204C (en)
DE (2) DE10024269A1 (en)
ES (1) ES2275692T3 (en)
RU (1) RU2266416C2 (en)
WO (1) WO2001088357A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027650B4 (en) * 2005-06-15 2018-02-08 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102005044853A1 (en) * 2005-09-20 2007-03-29 Robert Bosch Gmbh Method and device for filtering a signal
DE102011087179B4 (en) 2011-11-28 2023-03-30 Bayerische Motoren Werke Aktiengesellschaft Method for operating a motor vehicle
US9534547B2 (en) * 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9399959B2 (en) 2014-03-26 2016-07-26 GM Global Technology Operations LLC System and method for adjusting a torque capacity of an engine using model predictive control
US9388758B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Model predictive control systems and methods for future torque changes
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9378594B2 (en) 2014-03-26 2016-06-28 GM Global Technology Operations LLC Fault diagnostic systems and methods for model predictive control
US9388754B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Artificial output reference for model predictive control
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9243524B2 (en) 2014-03-26 2016-01-26 GM Global Technology Operations LLC Engine control systems and methods for transmission upshifts
US9376965B2 (en) 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9347381B2 (en) 2014-03-26 2016-05-24 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US9789876B1 (en) 2016-06-16 2017-10-17 GM Global Technology Operations LLC Axle torque control system for a motor vehicle
JP7062644B2 (en) * 2016-09-21 2022-05-06 アプライド マテリアルズ インコーポレイテッド End point detection with compensation for filtering
US10125712B2 (en) 2017-02-17 2018-11-13 GM Global Technology Operations LLC Torque security of MPC-based powertrain control
US10119481B2 (en) 2017-03-22 2018-11-06 GM Global Technology Operations LLC Coordination of torque interventions in MPC-based powertrain control
GB2553172A (en) * 2017-04-13 2018-02-28 Detroit Electric Ev Ltd Electrical vehicle drive train and method of operation
US10399574B2 (en) 2017-09-07 2019-09-03 GM Global Technology Operations LLC Fuel economy optimization using air-per-cylinder (APC) in MPC-based powertrain control
US10358140B2 (en) 2017-09-29 2019-07-23 GM Global Technology Operations LLC Linearized model based powertrain MPC
CN107725202B (en) * 2017-10-10 2019-10-29 中国第一汽车股份有限公司 The processing unit of tach signal
US10619586B2 (en) 2018-03-27 2020-04-14 GM Global Technology Operations LLC Consolidation of constraints in model predictive control
US10661804B2 (en) 2018-04-10 2020-05-26 GM Global Technology Operations LLC Shift management in model predictive based propulsion system control
US10859159B2 (en) 2019-02-11 2020-12-08 GM Global Technology Operations LLC Model predictive control of torque converter clutch slip
US11312208B2 (en) 2019-08-26 2022-04-26 GM Global Technology Operations LLC Active thermal management system and method for flow control
US11008921B1 (en) 2019-11-06 2021-05-18 GM Global Technology Operations LLC Selective catalytic reduction device control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233245A (en) * 1991-04-10 1993-08-03 General Electric Company Rate controlled noise filter

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434743C2 (en) 1974-07-19 1984-09-20 Robert Bosch Gmbh, 7000 Stuttgart Method and device for regulating the operating behavior of an internal combustion engine
US4694414A (en) * 1984-12-19 1987-09-15 Rca Corporation Digital delay interpolation filter with amplitude and phase compensation
DE3738719C2 (en) * 1986-11-27 1997-09-25 Volkswagen Ag Method and arrangement for preventing disturbing load changes in a vehicle internal combustion engine
JPH01151843A (en) * 1987-12-09 1989-06-14 Nec Corp Spread spectrum demodulator
DE3936619A1 (en) 1989-11-03 1991-05-08 Man Nutzfahrzeuge Ag METHOD FOR INJECTING A FUEL INTO THE COMBUSTION CHAMBER OF AN AIR COMPRESSING, SELF-IGNITION ENGINE, AND APPARATUS FOR CARRYING OUT THIS METHOD
DE4108734A1 (en) * 1991-03-18 1992-09-24 Vdo Schindling Damping of engine torque oscillations - using controllable filter parameters in electronic circuit for fuel injectors
RU2104407C1 (en) 1991-05-15 1998-02-10 Орбитал Энджин Компани (Аустралиа) ПТИ Лимитед Method of control of operation of fuel system and fuel system for internal combustion engine
JPH05313704A (en) * 1992-05-13 1993-11-26 Mitsubishi Heavy Ind Ltd Adaptive controller
JPH05341806A (en) * 1992-06-10 1993-12-24 Mitsubishi Heavy Ind Ltd Adaptive controller
JPH0612102A (en) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd Adaptive controller
JPH0659706A (en) * 1992-08-06 1994-03-04 Mitsubishi Heavy Ind Ltd Adaptive controller
JPH06124102A (en) * 1992-10-14 1994-05-06 Mitsubishi Heavy Ind Ltd Adaptive controller
FR2724417B1 (en) * 1994-09-12 1996-10-18 Siemens Automotive Sa METHOD FOR CONTROLLING A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
DE19534633A1 (en) 1995-05-30 1996-12-05 Bosch Gmbh Robert Throttle control for vehicle IC engine
DE19537787A1 (en) 1995-10-11 1997-04-17 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
US5838599A (en) * 1996-09-13 1998-11-17 Measurex Corporation Method and apparatus for nonlinear exponential filtering of signals
US5775293A (en) * 1996-10-01 1998-07-07 Cummins Engine Co., Inc. Electronic throttle pedal nonlinear filter
DE19722253A1 (en) 1997-05-28 1998-11-05 Daimler Benz Ag Electronic bucking device for internal combustion engines
DE19753996A1 (en) * 1997-12-05 1999-06-10 Siemens Ag Judder vibrations damping method e.g. for motor vehicle turbo-diesel IC engine
DE19814743A1 (en) * 1998-04-02 1999-10-07 Bosch Gmbh Robert Drive unit operating method for cars

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233245A (en) * 1991-04-10 1993-08-03 General Electric Company Rate controlled noise filter

Also Published As

Publication number Publication date
DE50111554D1 (en) 2007-01-11
CN1236204C (en) 2006-01-11
KR20030010624A (en) 2003-02-05
ES2275692T3 (en) 2007-06-16
RU2002133094A (en) 2005-05-10
CN1429314A (en) 2003-07-09
DE10024269A1 (en) 2001-12-20
US7051058B2 (en) 2006-05-23
US20040254656A1 (en) 2004-12-16
JP2003533632A (en) 2003-11-11
EP1287248A1 (en) 2003-03-05
RU2266416C2 (en) 2005-12-20
WO2001088357A1 (en) 2001-11-22
KR100771288B1 (en) 2007-10-29

Similar Documents

Publication Publication Date Title
EP1287248B1 (en) Method and device for filtering a signal
DE3313036C2 (en) Device for preventing knocking in internal combustion engines
EP0747585A2 (en) Control of the supercharging pressure of a turbocharger for an internal combustion engine
DE4015415B4 (en) Device for detecting a variable operating parameter
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
EP0768455B1 (en) Method and apparatus for controlling an internal combustion engine
DE102005026503A1 (en) Method and device for controlling an internal combustion engine
EP0591139B1 (en) Process and device for controlling the air supply to an internal combustion engine
DE4333896B4 (en) Method and device for controlling an internal combustion engine
DE19723639B4 (en) Automobilaktuatorschnittstelle
EP1311751B1 (en) Method and device for controlling an internal combustion engine
DE19931823B4 (en) Method and device for controlling an internal combustion engine
EP0473914B1 (en) Control system for an actuator in an internal combustion engine
EP0324159B1 (en) Dwell control in a combustion engine with a separated final ignition stage
EP0877974B1 (en) Method of controlling a controlled system, in particular an internal-combustion engine
DE102007013253A1 (en) Method and device for operating a drive unit
EP1178202B1 (en) Method and apparatus for controlling an internal combustion engine
DE4322270B4 (en) Method and device for controlling an internal combustion engine
EP1078163A1 (en) Ignition control method
DE19860398B4 (en) Method and device for controlling the fuel metering in an internal combustion engine
EP0708233B1 (en) Method and apparatus for controlling an internal combustion engine
EP1672206A2 (en) Method and device for engine control in a vehicle
DE102011078609A1 (en) Method for operating an internal combustion engine
DE102005048048B4 (en) Method for operating an internal combustion engine
DE10206030B4 (en) Method for adjusting an injection parameter of an internal combustion engine to transient or dynamic processes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50111554

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070308

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2275692

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100520

Year of fee payment: 10

Ref country code: FR

Payment date: 20100608

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120521

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150723

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50111554

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201