EP1178202B1 - Method and apparatus for controlling an internal combustion engine - Google Patents

Method and apparatus for controlling an internal combustion engine Download PDF

Info

Publication number
EP1178202B1
EP1178202B1 EP01112510A EP01112510A EP1178202B1 EP 1178202 B1 EP1178202 B1 EP 1178202B1 EP 01112510 A EP01112510 A EP 01112510A EP 01112510 A EP01112510 A EP 01112510A EP 1178202 B1 EP1178202 B1 EP 1178202B1
Authority
EP
European Patent Office
Prior art keywords
variable
filter means
basis
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01112510A
Other languages
German (de)
French (fr)
Other versions
EP1178202A2 (en
EP1178202A3 (en
Inventor
Peter Skala
Dirk Samuelsen
Rüdiger FEHRMANN
Markus Jung
Gabriel Scolan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1178202A2 publication Critical patent/EP1178202A2/en
Publication of EP1178202A3 publication Critical patent/EP1178202A3/en
Application granted granted Critical
Publication of EP1178202B1 publication Critical patent/EP1178202B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the preambles of the independent claims.
  • Such a method and such a device for controlling an internal combustion engine is known from DE 195 27 218. There, a method and a device for controlling the smoothness of an internal combustion engine will be described.
  • a manipulated variable Based on at least one measured variable, which is here the speed of the internal combustion engine, a manipulated variable can be specified.
  • the measured variable is filtered with at least one filter medium.
  • each cylinder of the internal combustion engine is assigned a control which, depending on a control deviation assigned to it, forms an actuating variable for the cylinder assigned to it.
  • the control deviation results from the actual values and setpoints assigned to the individual cylinders.
  • the actual values are the time intervals between two burns or the duration of at least one segment that is defined by a segment wheel.
  • the setpoints preferably result from an averaging over all actual values.
  • the segment usually refers to the distance between two pulses on a so-called segment wheel.
  • the segmented wheel can be mounted on the camshaft or the crankshaft and delivers two pulses per combustion process. Alternatively, it can also be provided that the segment pulses are generated on the basis of other signals.
  • the actual and setpoint values are determined frequency-specifically, ie the output signal of the speed sensor is filtered with bandpass filters and, based on this filtered signal, the actual and setpoint values for a frequency are formed. It is provided that the gain of the bandpasses and / or the frequency-specific Regefabweichung is weighted. These weighting factors are usually specified within the scope of the application. Furthermore, it is provided that different segments are selected to form the frequency-specific actual values for different frequencies and different vehicle types, which takes into account the frequency- and vehicle-specific phase shifts between quantity and speed oscillation. In the context of the application, it is therefore also determined which segments are used for actual value formation or setpoint formation.
  • the effort in the application can be significantly reduced.
  • the time required and the expenditure on measuring technology can be reduced since no external measuring devices are necessary.
  • the properties of the filter medium can be adapted individually to the respective vehicle.
  • the determination of the properties of the filter medium in preferred operating conditions preferably takes place at the end of the production of the vehicle and / or as part of the maintenance of the vehicle. As a result, the properties over the entire life of the vehicle can be optimally selected.
  • the filter means are designed as a bandpass with adjustable gain.
  • the gain of the bandpass is adapted.
  • the filter means determine an actual value and / or a desired value by evaluating specific rotational speed segments, then this segment selection is referred to as a property of the filter medium.
  • the gain and the segment selection essentially determine the properties of a running restraint. By precisely adapting these variables to the respective vehicle, the driving behavior of the vehicle can be favorably influenced.
  • Figure 1 is a block diagram of the device according to the invention
  • Figure 2 is a detailed representation as a block diagram of the actual value
  • Figure 3 is a flow chart illustrating the procedure of the invention.
  • the procedure according to the invention is illustrated below using the example of a truing control.
  • the procedure according to the invention is not limited to this exemplary embodiment; it can also be used in other controls and / or regulation for internal combustion engines. It can be used in particular if, based on at least one measured variable, a manipulated variable can be predetermined. If the internal combustion engine is acted upon by this manipulated variable, this results in a corresponding change in the measured variable.
  • FIG. 1 shows a rough-running scheme for an internal combustion engine as a block diagram.
  • the internal combustion engine is designated 100.
  • a desired quantity 110 specifies a desired quantity MW via a node 115 to a quantity control station of the internal combustion engine 100, not shown.
  • the rotational speed N the internal combustion engine is detected by means of a transmitter 125.
  • a corresponding signal reaches a tiller control 130.
  • the speed signal is evaluated by the filter 140, which then in turn acts on a control variable determination 145 with a corresponding signal.
  • the manipulated variable determination 145 determines a correction quantity K, which is linked in the node 115 to the desired quantity MW.
  • a desired quantity MW is determined by the desired quantity input 110. With this size or a size corresponding to this size is the quantity of the internal combustion engine 100 is supplied, said quantity control then sets the amount of fuel to be injected according to this signal.
  • Solenoids, piezo actuators or other actuators are usually used as a quantity control device, which, depending on their control signal, determine the start of injection, the end of injection and thus also the injection quantity.
  • a running restraint system which, on the basis of the speed signal, provides a corresponding correction value K, which is determined in such a way that all cylinders contribute the same torque to the total torque.
  • a cylinder-specific actual value and setpoint value are calculated and the actual value is set to the desired value adjusted.
  • a corresponding filtering 140 is shown in more detail in FIG.
  • the filter means includes at least one adjustable gain bandpass. Furthermore, the filter means 140 determines at least one actual value and / or at least one desired value by evaluating certain segments of a rotational speed signal. The properties of the filter medium are determined by the gain of the bandpass and the segments used to form the actual values and / or setpoints.
  • the output signal of the sensor 125 is supplied to a first filter 210 and a second filter 220.
  • the output signal of the first filter 210 passes through a node 215 to a first reference value determination 212 and a first actual value determination 214.
  • the output signal of the second filter 220 passes through a node 225 to a second reference value determination 222 and a second actual value determination 224th
  • connection points 215 and 225 are acted upon by a gain factor input 230, each with a predefinable amplification factor. With this, the outputs of the bandpass filters 210 and 220 are multiplicatively linked. As a result, bandpasses with adjustable gain can be realized.
  • the output signal NWS of the first setpoint determination 212 passes with a positive sign and the output signal NWI of the first actual value determination 214 with a negative sign to a connection point 216.
  • the first control deviation NWL arrives at a summing point 240 and from there to block 145.
  • the output signal KWS of the second setpoint determination 222 arrives with a positive sign and the output signal KWI of the second actual value determination 224 with a negative sign reaches a connection point 226.
  • the second control deviation KWL reaches the summation point 240
  • control deviation L is available, which is forwarded to the manipulated variable determination 145, which essentially includes the actual impeller.
  • the filters 210 and 220 are bandpass filters whose center frequencies are at the camshaft frequency at the filter 210 and at the crankshaft frequency at the filter 220. In embodiments of the invention, further filters may be provided with integer multiples of the crankshaft frequency and / or the camshaft frequency.
  • the center frequencies are at an integer multiple of the camshaft frequency.
  • the speed signal is separated into spectral components.
  • the first, second and third actual value formers and the first, second and third setpoint formers determine frequency-specific desired and actual values. The calculation of the desired and actual values preferably takes place differently for the individual spectral components.
  • the speed signal for the individual frequencies is separated.
  • the first actual value specification 214 and the second actual value specification 224 calculate a frequency-specific actual value. Accordingly, it can be provided that for each frequency, the first setpoint input 212 and the second setpoint input 220 calculates a frequency-specific setpoint value.
  • the frequency-specific system deviations can be weighted by means of weighting factors.
  • the weighting factors and / or the gain of the bandpasses are chosen so that the loop gain is the same for all frequencies.
  • the segment selection is frequency-specific. This means that different segments are used for calculating the actual values and / or the setpoint values for the individual frequencies. In the connection points 216 and 226, the frequency-specific control deviation is then determined. Furthermore, the segment selection can be specified almost arbitrarily.
  • the properties of the filter means are determined in the context of the application and stored in the control unit. A correction of these application sizes is no longer done. As a result, due to aging effects, the rest control system no longer works optimally.
  • the properties of the filter means which are also referred to below as control parameters, are adapted. This applies in particular to the reinforcement of bandpasses and for the Segment selection.
  • the procedure according to the invention is as follows.
  • the assignment of a speed response to the causative cylinder is crucial for the function of the tiller control. This is namely to receive correspondingly more or less fuel.
  • the assignment can be determined from the frequency response. In the frequency response, the phase shift between fuel quantity and speed is decisive.
  • the segments are calculated, in which the reaction falls. These segments are evaluated to form the actual values.
  • the actual value determinations 214 and 224 and / or the set value determinations 212 and 222 evaluate the segments thus determined to form the actual values and / or setpoint values. That the segment selection is calculated as a function of the phase shift of the controlled system.
  • one or more segments result, in which the reaction following the injection falls.
  • the segments are usually different for each frequency.
  • the manipulated variable which is applied to the quantity actuator, an excitation quantity is superimposed.
  • a periodic signal is superimposed on the fuel quantity signal.
  • This quantity excitation generates speed oscillations that have a similar effect as the tolerances of the system, ie there are speed oscillations.
  • the transmission behavior of the internal combustion engine 100 can be determined.
  • the transmission behavior of the internal combustion engine is in essentially defined by the phase shift and the path gain.
  • control parameters are then calculated. These are essentially the bandpass gain and the segment selection.
  • FIG. 3 shows a corresponding procedure as a flow chart.
  • a first step 300 it is checked whether there is an operating state in which the adaptation can take place. It is particularly advantageous if the adaptation is triggered by external influences.
  • the adaptation can preferably be carried out after the assembly of the internal combustion engine during the first operation thereof. Furthermore, it is advantageous if the adaptation takes place at regular intervals in the maintenance of the internal combustion engine or the vehicle.
  • the normal operation of the internal combustion engine is not hindered. Furthermore, it is possible that in certain stationary operating states, such as idling, the adaptation takes place.
  • this additional signal which is also referred to as the excitation variable, is a periodic signal whose frequency preferably corresponds to the crankshaft frequency, the camshaft frequency and / or an integer multiple of these frequencies.
  • the subsequent query 320 checks whether a waiting time since the quantity request in step 310 has expired. If this is not the case, then the amount of excitation is superimposed on the excitation quantity. If the waiting time has expired, the resulting speed oscillations are detected in step 330. In the subsequent step 340, a counter Z is increased. The query 350 checks if the counter Z is greater than a value K. The value K corresponds to the number of different quantity excitations.
  • step 360 the transmission behavior of the motor is determined.
  • the Drehrahschwingungen are determined in particular by the gain, the amplitude response and the phase shift by the motor. Based on these variables, the control parameters are determined in step 370.
  • the analysis phase is subdivided into a transient process, which is defined by the waiting time in step 320, in which the internal combustion engine and the operating parameters reach stationary states again. Subsequently, the measurement of the engine speed amplitudes takes place. Starting from the quantity excitation and the rotational speed amplitude, the calculation of the path gain and the phase shift caused by the internal combustion engine takes place.
  • the calculated Running control 130 Based on these values for the path gain and the phase shift, which may differ from internal combustion engine to internal combustion engine, the calculated Running control 130, the control parameters for the tether control, in particular the segment selection and the gain of the band pass filters 210 and 220.
  • control automatically determines the control parameters that are required for the truing control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regelung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a method and a device for controlling an internal combustion engine according to the preambles of the independent claims.

Ein solches Verfahren und eine solche Vorrichtung zur Regelung einer Brennkraftmaschine ist aus der DE 195 27 218 bekannt. Dort wird ein Verfahren und eine Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine beschrieben. Ausgehend von wenigstens einer Messgröße, bei der es sich hier um die Drehzahl der Brennkraftmaschine handelt, ist eine Stellgröße vorgebbar. Zur Bildung der Stellgröße wird die Messgröße mit wenigstens einem Filtermittel gefiltert. Üblicherweise ist bei einer Laufruheregelung jedem Zylinder der Brennkraftmaschine eine Regelung zugeordnet, die abhängig von einer ihr zugeordneten Regelabweichung eine Stellgröße für den ihr zugeordneten Zylinder bildet. Die Regelabweichung ergibt sich aus den den einzelnen Zylindern zugeordneten Istwerten und Sollwerten. Als Istwert dienen die Zeitabstände zwischen zwei Verbrennungen bzw. die Dauer wenigstens eines Segmentes, dass durch ein Segmentrad definiert ist. Die Sollwerte ergeben sich vorzugsweise durch eine Mittelwertbildung über alle Istwerte.Such a method and such a device for controlling an internal combustion engine is known from DE 195 27 218. There, a method and a device for controlling the smoothness of an internal combustion engine will be described. Based on at least one measured variable, which is here the speed of the internal combustion engine, a manipulated variable can be specified. To form the manipulated variable, the measured variable is filtered with at least one filter medium. Usually, in a rudimentary system, each cylinder of the internal combustion engine is assigned a control which, depending on a control deviation assigned to it, forms an actuating variable for the cylinder assigned to it. The control deviation results from the actual values and setpoints assigned to the individual cylinders. The actual values are the time intervals between two burns or the duration of at least one segment that is defined by a segment wheel. The setpoints preferably result from an averaging over all actual values.

Als Segment wird üblicherweise der Abstand zweier Impulse auf einem so genannten Segmentrad bezeichnet. Dabei ist üblicherweise der Abstand zwischen zwei Verbrennungen in zwei Segmente aufgeteilt. Das Segmentrad kann dabei auf der Nockenwelle oder der Kurbelwelle angebracht sein und liefert pro Verbrennungsvorgang zwei Impulse. Alternativ kann auch vorgesehen sein, dass die Segmentimpulse ausgehend von anderen Signalen erzeugt werden.The segment usually refers to the distance between two pulses on a so-called segment wheel. Usually, the distance between two burns is divided into two segments. The segmented wheel can be mounted on the camshaft or the crankshaft and delivers two pulses per combustion process. Alternatively, it can also be provided that the segment pulses are generated on the basis of other signals.

Vorzugsweise werden die Ist- und Sollwerte frequenzspezifisch ermittelt, d. h. das Ausgangssignal des Drehzahlsensors wird mit Bandpässen gefiltert und ausgehend von diesem gefiltertem Signal werden die Ist- und Sollwerte für eine Frequenz gebildet. Dabei ist vorgesehen, dass die Verstärkung der Bandpässe und/oder die frequenzspezifische Regefabweichung gewichtet wird. Diese Wichtungsfaktoren werden üblicherweise im Rahmen der Applikation festgelegt. Des weiteren ist vorgesehen, dass zur Bildung der frequenzspezifischen Istwerte für unterschiedliche Frequenzen und unterschiedliche Fahrzeugtypen unterschiedliche Segmente ausgewählt werden, die den frequenz- und fahrzeugspezifischen Phasenverschiebungen zwischen Mengen- und Drehzahlschwingung Rechnung trägt. Im Rahmen der Applikation wird daher ebenfalls festgelegt, welche Segmente zur Istwertbildung und oder Sollwertbildung herangezogen werden.Preferably, the actual and setpoint values are determined frequency-specifically, ie the output signal of the speed sensor is filtered with bandpass filters and, based on this filtered signal, the actual and setpoint values for a frequency are formed. It is provided that the gain of the bandpasses and / or the frequency-specific Regefabweichung is weighted. These weighting factors are usually specified within the scope of the application. Furthermore, it is provided that different segments are selected to form the frequency-specific actual values for different frequencies and different vehicle types, which takes into account the frequency- and vehicle-specific phase shifts between quantity and speed oscillation. In the context of the application, it is therefore also determined which segments are used for actual value formation or setpoint formation.

Durch diese Vorgabe der Segmentauswahl und der Bandpassverstärkung ergibt sich ein erheblicher Aufwand bei der Applikation.By this specification of the segment selection and the bandpass gain results in a considerable effort in the application.

Ferner ist aus der US 4,674,459 eine Steuerung einer Brennkraftmaschine bekannt. Dieser Einrichtung liegt die Aufgabe zugrunde, das Übertragungsverhalten der Brennkraftmaschine zu ermitteln. Hierzu wird der Stellgröße eine Anregungsgröße überlagert und ausgehend von der Reaktion der Messgröße das Übertragungsverhalten der Brennkraftmaschine ermittelt. Zur Ermittlung des Übertragungsverhaltens der Brennkraftmaschine ist ein Filter vorgesehen, das Signalanteile herausfiltert, die von der Frequenz der Anregungsgröße abhängen.Furthermore, from US 4,674,459 a control of an internal combustion engine is known. This device has the object to determine the transmission behavior of the internal combustion engine. For this purpose, an excitation variable is superimposed on the manipulated variable and, based on the reaction of the measured variable, the transmission behavior of the internal combustion engine is determined. To determine the transmission behavior of the internal combustion engine, a filter is provided which filters out signal components which depend on the frequency of the excitation variable.

Vorteile der ErfindungAdvantages of the invention

Mittels der erfindungsgemäßen Vorgehensweise kann der Aufwand bei der Applikation deutlich reduziert werden. Insbesondere kann der zeitliche Aufwand und der Aufwand an Messtechnik reduziert werden, da keine externen Messgeräte nötig sind.By means of the procedure according to the invention, the effort in the application can be significantly reduced. In particular, the time required and the expenditure on measuring technology can be reduced since no external measuring devices are necessary.

Dadurch dass der Stellgröße eine Anregungsgröße überlagert wird, und dass ausgehend von der daraus resultierenden Reaktion der Messgröße Eigenschaften der Filtermittel bestimmt werden, lassen sich die Eigenschaften der Filtermittel individuell an das jeweilige Fahrzeug anpassen.Characterized in that the manipulated variable is superimposed on an excitation variable, and that properties of the filter medium are determined on the basis of the resulting reaction of the measured variable, the properties of the filter medium can be adapted individually to the respective vehicle.

Erfindungsgemäß erfolgt die Bestimmung der Eigenschaften des Filtermittels in bevorzugten Betriebszuständen. Bevorzugt erfolgt die Bestimmung am Ende der Fertigung des Fahrzeugs und/oder im Rahmen der Wartung des Fahrzeugs. Dadurch können die Eigenschaften über die gesamte Lebensdauer des Fahrzeugs optimal gewählt werden.According to the invention, the determination of the properties of the filter medium in preferred operating conditions. The determination preferably takes place at the end of the production of the vehicle and / or as part of the maintenance of the vehicle. As a result, the properties over the entire life of the vehicle can be optimally selected.

Besonders vorteilhaft ist es, wenn die Filtermittel als Bandpass mit einstellbarer Verstärkung ausgebildet sind. In diesem Fall wird die Verstärkung des Bandpasses adaptiert.It is particularly advantageous if the filter means are designed as a bandpass with adjustable gain. In this case, the gain of the bandpass is adapted.

Ermitteln die Filtermittel einen Istwert und/oder einen Sollwert durch Auswerten bestimmter Drehzahl-Segmente, so wird diese Segmentauswahl als Eigenschaft der Filtermittel bezeichnet.If the filter means determine an actual value and / or a desired value by evaluating specific rotational speed segments, then this segment selection is referred to as a property of the filter medium.

Die Verstärkung und die Segmentauswahl bestimmen im wesentlichen die Eigenschaften einer Laufruheregelung. Durch eine genaue Anpassung dieser Größen auf das jeweilige Fahrzeug können das Fahrverhalten des Fahrzeuges günstig beeinflusst werden.The gain and the segment selection essentially determine the properties of a running restraint. By precisely adapting these variables to the respective vehicle, the driving behavior of the vehicle can be favorably influenced.

Besonders vorteilhaft ist es, wenn als Anregungsgröße eine periodisches Signal verwendet wird, dessen Frequenz der Kurbelwellenfrequenz, der Nockenwellenfrequenz und/oder einem ganzzahligen Vielfachen einer dieser Frequenzen entspricht. Diese Frequenzen entsprechen den üblicherweise auftretenden Störungen.It is particularly advantageous if a periodic signal whose frequency corresponds to the crankshaft frequency, the camshaft frequency and / or an integer multiple of one of these frequencies is used as the excitation variable. These frequencies correspond to the usually occurring disturbances.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsform erläutert, es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 eine detaillierte Darstellung als Blockdiagramm der Istwerterfassung und Figur 3 ein Flussdiagramm zur Verdeutlichung der erfindungsgemäßen Vorgehensweise.The invention will be explained below with reference to the embodiment shown in the drawing, in which Figure 1 is a block diagram of the device according to the invention, Figure 2 is a detailed representation as a block diagram of the actual value and Figure 3 is a flow chart illustrating the procedure of the invention.

Beschreibung eines AusführungsbeispielsDescription of an embodiment

Im Folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel einer Laufruheregelung dargestellt. Die erfindungsgemäße Vorgehensweise ist aber nicht auf dieses Ausführungsbeispiel beschränkt, sie kann auch bei anderen Steuerungen und/oder Regelung für Brennkraftmaschinen eingesetzt werden. Sie kann insbesondere dann eingesetzt werden, wenn ausgehend von wenigstens einer Messgröße eine Stellgröße vorgebbar ist. Wird die Brennkraftmaschine mit dieser Stellgröße beaufschlagt, so hat dies eine entsprechende Änderung der Messgröße zur Folge.The procedure according to the invention is illustrated below using the example of a truing control. However, the procedure according to the invention is not limited to this exemplary embodiment; it can also be used in other controls and / or regulation for internal combustion engines. It can be used in particular if, based on at least one measured variable, a manipulated variable can be predetermined. If the internal combustion engine is acted upon by this manipulated variable, this results in a corresponding change in the measured variable.

In Figur 1 ist eine Laufruheregelung für eine Brennkraftmaschine grobschematisch als Blockdiagramm dargestellt. Die Brennkraftmaschine ist mit 100 bezeichnet. Eine Mengenwunschvorgabe 110 gibt einen Mengenwunsch MW über einen Verknüpfungspunkt 115 zu einem nicht dargestellten Mengenstellwerk der Brennkraftmaschine 100. Die Drehzahl N der Brennkraftmaschine wird mittels eines Gebers 125 erfasst. Ein entsprechendes Signal gelangt zu einer Laufruheregelung 130. Das Drehzahlsignal wird von der Filterung 140 ausgewertet, die dann wiederum eine Stellgrößenbestimmung 145 mit einem entsprechenden Signal beaufschlagt. Die Stellgrößenbestimmung 145 bestimmt eine Korrekturmenge K, die im Verknüpfungspunkt 115 mit dem Mengenwunsch MW verknüpft wird.FIG. 1 shows a rough-running scheme for an internal combustion engine as a block diagram. The internal combustion engine is designated 100. A desired quantity 110 specifies a desired quantity MW via a node 115 to a quantity control station of the internal combustion engine 100, not shown. The rotational speed N the internal combustion engine is detected by means of a transmitter 125. A corresponding signal reaches a tiller control 130. The speed signal is evaluated by the filter 140, which then in turn acts on a control variable determination 145 with a corresponding signal. The manipulated variable determination 145 determines a correction quantity K, which is linked in the node 115 to the desired quantity MW.

Üblicherweise wird ausgehend von dem Fahrerwunsch, der beispielsweise mit einem Fahrpedal erfasst wird, von der Mengenwunschvorgabe 110 ein Mengenwunsch MW bestimmt. Mit dieser Größe oder einer dieser Größe entsprechenden Größe wird dem Mengenstellwerk der Brennkraftmaschine 100 zugeleitet, wobei dieses Mengenstellwerk dann die einzuspritzende Kraftstoffmenge entsprechend diesem Signal festlegt. Als Mengenstellwerk werden üblicherweise Magnetventile, Piezoaktoren oder andere Steller verwendet, die abhängig von ihrem Ansteuersignal den Einspritzbeginn, das Einspritzende und damit auch die Einspritzmenge festlegen.Usually, based on the driver's request, which is detected for example with an accelerator pedal, a desired quantity MW is determined by the desired quantity input 110. With this size or a size corresponding to this size is the quantity of the internal combustion engine 100 is supplied, said quantity control then sets the amount of fuel to be injected according to this signal. Solenoids, piezo actuators or other actuators are usually used as a quantity control device, which, depending on their control signal, determine the start of injection, the end of injection and thus also the injection quantity.

Üblicherweise wird gewünscht, dass alle Zylinder einer Brennkraftmaschine das gleiche Moment zum Gesamtdrehmoment beitragen. Auf Grund von Toleranzen tragen die einzelnen Zylinder bei gleichem Ansteuersignal unterschiedlich zum Gesamtdrehmoment bei. Um dies auszugleichen ist eine Laufruheregelung vorgesehen, die ausgehend von dem Drehzahlsignal einen entsprechenden Korrekturwert K bereitstellt, der derart bestimmt wird, dass alle Zylinder dasselbe Drehmoment zum Gesamtdrehmoment beitragen.It is usually desired that all cylinders of an internal combustion engine contribute the same torque to the total torque. Due to tolerances, the individual cylinders contribute differently to the total torque with the same drive signal. In order to compensate for this, a running restraint system is provided which, on the basis of the speed signal, provides a corresponding correction value K, which is determined in such a way that all cylinders contribute the same torque to the total torque.

Hierzu wird, wie im Stand der Technik dargestellt, ausgehend von dem Drehzahlwert ein zylinderspezifischer Istwert und Sollwert berechnet und der Istwert auf den Sollwert eingeregelt. Eine entsprechende Filterung 140 ist in Figur 2 detaillierter dargestellt.For this purpose, as shown in the prior art, based on the speed value, a cylinder-specific actual value and setpoint value are calculated and the actual value is set to the desired value adjusted. A corresponding filtering 140 is shown in more detail in FIG.

Vorzugsweise beinhaltet das Filtermittel wenigstens einen Bandpass mit einstellbarer Verstärkung. Ferner bestimmt das Filtermittel 140 wenigstens einen Istwert und oder wenigstens einen Sollwert durch Auswerten bestimmter Segmente eines Drehzahlsignals. Die Eigenschaften des Filtermittels werden durch die Verstärkung des Bandpasses und die Segmente, die zur Bildung der Istwerte und/oder Sollwerte herangezogen werden, bestimmt.Preferably, the filter means includes at least one adjustable gain bandpass. Furthermore, the filter means 140 determines at least one actual value and / or at least one desired value by evaluating certain segments of a rotational speed signal. The properties of the filter medium are determined by the gain of the bandpass and the segments used to form the actual values and / or setpoints.

In Figur 2 ist die Istwerterfassung 140 detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind in Figur 2 mit entsprechenden Bezugszeichen bezeichnet. Das Ausgangssignal des Sensors 125 wird einem ersten Filter 210 und einem zweiten Filter 220 zugeführt. Das Ausgangssignal des ersten Filters 210 gelangt über einen Verknüpfungspunkt 215 zu einer ersten Sollwertermittlung 212 und einer ersten Istwertermittlung 214. Das Ausgangssignal des zweiten Filters 220 gelangt über einen Verknüpfungspunkt 225 zu einer zweiten Sollwertermittlung 222 und einer zweiten Istwertermittlung 224.In Figure 2, the actual value detection 140 is shown in more detail. Already described in Figure 1 elements are designated in Figure 2 with corresponding reference numerals. The output signal of the sensor 125 is supplied to a first filter 210 and a second filter 220. The output signal of the first filter 210 passes through a node 215 to a first reference value determination 212 and a first actual value determination 214. The output signal of the second filter 220 passes through a node 225 to a second reference value determination 222 and a second actual value determination 224th

Die Verknüpfungspunkte 215 und 225 werden von einer Verstärkungsfaktorvorgabe 230 mit jeweils einem vorgebbaren Verstärkungsfaktor beaufschlagt. Mit diesem werden die Ausgangsgrößen der Bandpässe 210 und 220 multiplikativ verknüpft. Dadurch können Bandpässe mit einstellbarer Verstärkung realsiert werden.The connection points 215 and 225 are acted upon by a gain factor input 230, each with a predefinable amplification factor. With this, the outputs of the bandpass filters 210 and 220 are multiplicatively linked. As a result, bandpasses with adjustable gain can be realized.

Das Ausgangssignal NWS der ersten Sollwertermittlung 212 gelangt mit positiven Vorzeichen und das Ausgangssignal NWI der ersten Istwertermittlung 214 mit negativen Vorzeichen zu einem Verknüpfungspunkt 216. Die erste Regelabweichung NWL gelangt zu einem Additionspunkt 240 und von dort zum Block 145.The output signal NWS of the first setpoint determination 212 passes with a positive sign and the output signal NWI of the first actual value determination 214 with a negative sign to a connection point 216. The first control deviation NWL arrives at a summing point 240 and from there to block 145.

Das Ausgangssignal KWS der zweiten Sollwertermittlung 222 gelangt mit positiven Vorzeichen und das Ausgangssignal KWI der zweiten Istwertermittlung 224 mit negativen Vorzeichen zu einem Verknüpfungspunkt 226. Die zweite Regelabweichung KWL gelangt zu dem Additionspunkt 240The output signal KWS of the second setpoint determination 222 arrives with a positive sign and the output signal KWI of the second actual value determination 224 with a negative sign reaches a connection point 226. The second control deviation KWL reaches the summation point 240

Am Ausgang des Additionspunktes 240 steht die Regelabweichung L zur Verfügung, die zur Stellgrößenbestimmung 145, die im wesentlichen den eigentlichen Laufruheregler beinhaltet, weitergeleitet wird.At the output of the addition point 240, the control deviation L is available, which is forwarded to the manipulated variable determination 145, which essentially includes the actual impeller.

Bei der dargestellten Ausführungsform einer Brennkraftmaschine mit vier Zylindern handelt es sich bei den Filtern 210 und 220 um Bandpaßfilter, deren Mittenfrequenzen beim Filter 210 bei der Nockenwellenfrequenz, und beim Filter 220 bei der Kurbelwellenfrequenz liegen. Bei Ausgestaltungen der Erfindung können noch weitere Filter mit ganzzahligen Vielfachen der Kurbelwellenfrequenz und/oder der Nockenwellenfrequenz vorgesehen sein.In the illustrated embodiment of a four-cylinder engine, the filters 210 and 220 are bandpass filters whose center frequencies are at the camshaft frequency at the filter 210 and at the crankshaft frequency at the filter 220. In embodiments of the invention, further filters may be provided with integer multiples of the crankshaft frequency and / or the camshaft frequency.

Insbesondere bei einer Brennkraftmaschine mit 2*1 Zylindern, wobei 1 eine natürliche Zahl ist, sind 1 Bandpässe vorzusehen, der Mittenfrequenzen bei einem ganzzahligen Vielfachen der Nockenwellenfrequenz liegen.In particular, in an internal combustion engine with 2 * 1 cylinders, where 1 is a natural number, 1 band passes are provided, the center frequencies are at an integer multiple of the camshaft frequency.

Mittels der Bandpässe 210 und 220 wird das Drehzahlsignal in Spektralanteile getrennt. Für jeden Spektralanteil ermitteln die ersten, zweiten und dritten Istwertbildner und die ersten, zweiten und dritten Sollwertbildner frequenzspezifische Soll- und Istwerte. Die Berechnung der Soll- und Istwerte erfolgt für die einzelnen Spektralanteile vorzugsweise unterschiedlich.By means of the bandpass filters 210 and 220, the speed signal is separated into spectral components. For each spectral component, the first, second and third actual value formers and the first, second and third setpoint formers determine frequency-specific desired and actual values. The calculation of the desired and actual values preferably takes place differently for the individual spectral components.

Mittels der Bandpässe 210 und 220 wird das Drehzahlsignal für die einzelnen Frequenzen getrennt. Für jede Frequenz berechnet die erste Istwertvorgabe 214 und die zweite Istwertvorgabe 224 einen frequenzspezifischen Istwert. Entsprechend kann vorgesehen sein, daß für jede Frequenz die erste Sollwertvorgabe 212 und die zweite Sollwertvorgabe 220 einen frequenzspezifischen Sollwert berechnet.By means of the bandpasses 210 and 220, the speed signal for the individual frequencies is separated. For each frequency, the first actual value specification 214 and the second actual value specification 224 calculate a frequency-specific actual value. Accordingly, it can be provided that for each frequency, the first setpoint input 212 and the second setpoint input 220 calculates a frequency-specific setpoint value.

Alternativ zu der einstellbaren Verstärkung der Bandpässe 210 und 220 kann auch vorgesehen sein, dass die frequenzspezifischen Regelabweichungen mittels Wichtungsfaktoren wichtbar sind. Die Wichtungsfaktoren und/oder die Verstärkung der Bandpässe wird so gewählt, dass die Regelkreisverstärkung für alle Frequenzen gleich ist.As an alternative to the adjustable amplification of the bandpass filters 210 and 220, it may also be provided that the frequency-specific system deviations can be weighted by means of weighting factors. The weighting factors and / or the gain of the bandpasses are chosen so that the loop gain is the same for all frequencies.

Vorzugsweise erfolgt die Segmentauswahl frequenzspezifisch. Dies bedeutet, für die einzelnen Frequenzen werden unterschiedliche Segmente zur Berechnung der Istwerte und/oder der Sollwerte herangezogen. In den Verknüpfungspunkten 216 und 226 wird dann die frequenzspezifische Regelabweichung ermittelt. Ferner ist die Segmentauswahl nahezu beliebig vorgebbar.Preferably, the segment selection is frequency-specific. This means that different segments are used for calculating the actual values and / or the setpoint values for the individual frequencies. In the connection points 216 and 226, the frequency-specific control deviation is then determined. Furthermore, the segment selection can be specified almost arbitrarily.

Beim Stand der Technik werden die Eigenschaften der Filtermittel im Rahmen der Applikation ermittelt und im Steuergerät abgespeichert. Eine Korrektur dieser Applikationsgrößen erfolgt nicht mehr. Dies führt dazu, dass aufgrund von Alterungseffekten die Laufruheregelung nicht mehr optimal arbeitet.In the prior art, the properties of the filter means are determined in the context of the application and stored in the control unit. A correction of these application sizes is no longer done. As a result, due to aging effects, the rest control system no longer works optimally.

Erfindungsgemäß ist daher vorgesehen, dass die Eigenschaften der Filtermittel, die im Folgenden auch als Regelparameter bezeichnet werden, adaptiert werden. Dies gilt insbesondere für die Verstärkung der Bandpässe und für die Segmentauswahl. Hierzu wird erfindungsgemäß wie folgt vorgegangen.According to the invention, it is therefore provided that the properties of the filter means, which are also referred to below as control parameters, are adapted. This applies in particular to the reinforcement of bandpasses and for the Segment selection. For this purpose, the procedure according to the invention is as follows.

Für die Funktion der Laufruheregelung ist die Zuordnung einer Drehzahlreaktion auf den verursachenden Zylinder entscheidend. Dieser soll nämlich entsprechend mehr oder weniger Kraftstoffmenge erhalten. Die Zuordnung läßt sich aus dem Frequenzgang ermitteln. Beim Frequenzgang ist die Phasenverschiebung zwischen Kraftstoffmenge und Drehzahl ausschlaggebend. Ausgehend von der Phasenverschiebung werden die Segmente errechnet, in das die Reaktion fällt. Diese Segmente werden zur Bildung der Istwerte ausgewertet. Die Istwertermittlungen 214 und 224 und/oder die Sollwertermitlungen 212 und 222 werten die so ermittelten Segmente zur Bildung der Istwerte und/oder Sollwerte aus. D.h. die Segementwahl wird abhängig von der Phasenverschiebung der Regelstrecke berechnet.The assignment of a speed response to the causative cylinder is crucial for the function of the tiller control. This is namely to receive correspondingly more or less fuel. The assignment can be determined from the frequency response. In the frequency response, the phase shift between fuel quantity and speed is decisive. Based on the phase shift, the segments are calculated, in which the reaction falls. These segments are evaluated to form the actual values. The actual value determinations 214 and 224 and / or the set value determinations 212 and 222 evaluate the segments thus determined to form the actual values and / or setpoint values. That the segment selection is calculated as a function of the phase shift of the controlled system.

Für jede betrachtet Frequenz ergeben sich ein oder mehrere Segmente, in die die auf die Einspritzung folgende Reaktion fällt. Die Segmente sind üblicherweise für jede Frequenz unterschiedlich.For each frequency considered, one or more segments result, in which the reaction following the injection falls. The segments are usually different for each frequency.

In bestimmten Betriebszuständen, in denen eine solche Adaption möglich ist, wird der Stellgröße, mit der das Mengenstellglied beaufschlagt wird, eine Anregungsgröße überlagert. Vorzugsweise wird dem Kraftstoffmengensignal ein periodisches Signal überlagert. Diese Mengenanregung erzeugt Drehzahlschwingungen, die eine ähnliche Auswirkung haben wie die Toleranzen des Systems, d. h. es treten Drehzahlschwingungen auf. Ausgehend von der Mengenanregung und den sich ergebenden Drehzahlschwingungen lässt sich das Übertragungsverhalten der Brennkraftmaschine 100 bestimmen. Das Übertragungsverhalten der Brennkraftmaschine wird im wesentlichen durch die Phasenverschiebung und die Streckenverstärkung definiert.In certain operating states, in which such an adaptation is possible, the manipulated variable, which is applied to the quantity actuator, an excitation quantity is superimposed. Preferably, a periodic signal is superimposed on the fuel quantity signal. This quantity excitation generates speed oscillations that have a similar effect as the tolerances of the system, ie there are speed oscillations. Based on the quantity excitation and the resulting speed oscillations, the transmission behavior of the internal combustion engine 100 can be determined. The transmission behavior of the internal combustion engine is in essentially defined by the phase shift and the path gain.

Ausgehend von der so ermittelten Phasenverschiebung und der Streckenverstärkung bzw. dem Amplitudengang werden dann die Regelparameter berechnet. Dies sind im wesentlichen die Verstärkung der Bandpässe und die Segmentauswahl.Starting from the thus determined phase shift and the line gain or the amplitude response, the control parameters are then calculated. These are essentially the bandpass gain and the segment selection.

In Figur 3 ist eine entsprechende Vorgehensweise als Flussdiagramm dargestellt. In einem ersten Schritt 300 wird überprüft, ob ein Betriebszustand vorliegt, in dem die Adaption erfolgen kann. Besonders vorteilhaft ist es, wenn die Adaption durch äußere Einflüsse ausgelöst wird. So kann die Adaption vorzugsweise nach der Montage der Brennkraftmaschine beim ersten Betrieb derselben durchgeführt werden. Des weiteren ist es vorteilhaft, wenn die Adaption in regelmäßigen Abständen bei der Wartung der Brennkraftmaschine bzw. des Fahrzeuges erfolgt.FIG. 3 shows a corresponding procedure as a flow chart. In a first step 300, it is checked whether there is an operating state in which the adaptation can take place. It is particularly advantageous if the adaptation is triggered by external influences. Thus, the adaptation can preferably be carried out after the assembly of the internal combustion engine during the first operation thereof. Furthermore, it is advantageous if the adaptation takes place at regular intervals in the maintenance of the internal combustion engine or the vehicle.

Bei einer Adaption am Bandende bzw. im Rahmen der Wartung , wird der normale Betrieb der Brennkraftmaschine nicht behindert. Desweiteren ist es möglich, dass in bestimmten stationären Betriebszuständen, wie beispielsweise im Leerlauf, die Adaption erfolgt.In an adaptation at the end of the tape or during maintenance, the normal operation of the internal combustion engine is not hindered. Furthermore, it is possible that in certain stationary operating states, such as idling, the adaptation takes place.

Ist ein solcher Betriebszustand erreicht, so erfolgt in Schritt 310 die Mengenanregung, d. h. dem Mengenwunsch MW wird ein zusätzliches Signal überlagert. Vorzugsweise handelt es sich bei diesem zusätzlichen Signal, das auch als Anregungsgröße bezeichnet wird, um ein periodisches Signal, dessen Frequenz vorzugsweise der Kurbelwellenfrequenz, der Nockenwellenfrequenz und/oder einem ganzzahligen Vielfachen dieser Frequenzen entspricht.If such an operating state is reached, the quantity excitation takes place in step 310, ie an additional signal is superimposed on the desired quantity MW. Preferably, this additional signal, which is also referred to as the excitation variable, is a periodic signal whose frequency preferably corresponds to the crankshaft frequency, the camshaft frequency and / or an integer multiple of these frequencies.

Die anschließende Abfrage 320 überprüft, ob eine Wartezeit seit der Mengenanregung in Schritt 310 abgelaufen ist. Ist dies nicht der Fall, so wird weiterhin dem Mengenwunsch die Anregungsgröße überlagert. Ist die Wartezeit abgelaufen, so wird in Schritt 330 die resultierenden Drehzahlschwingungen erfasst. Im anschließenden Schritt 340 wird ein Zähler Z erhöht. Die Abfrage 350 überprüft, ob der Zähler Z größer als ein Wert K ist. Der Wert K entspricht der Zahl der verschiedenen Mengenanregungen.The subsequent query 320 checks whether a waiting time since the quantity request in step 310 has expired. If this is not the case, then the amount of excitation is superimposed on the excitation quantity. If the waiting time has expired, the resulting speed oscillations are detected in step 330. In the subsequent step 340, a counter Z is increased. The query 350 checks if the counter Z is greater than a value K. The value K corresponds to the number of different quantity excitations.

Erkennt die Abfrage 350, dass die Zahl Z größer als der Wert K ist, d. h. es wurden verschiedene Mengenanregungen durchgeführt und die entsprechenden Drehzahlschwingungen erfasst, so wird in Schritt 360 das Übertragungsverhalten des Motors ermittelt. Dabei sind die Drehrahschwingungen insbesondere durch die Verstärkung, den Amplitudengang und die Phasenverschiebung durch den Motor bestimmt. Ausgehend von diesen Größen werden in Schritt 370 die Regelparameter ermittelt.Recognizes query 350 that the number Z is greater than the value K, d. H. Different quantity excitations were carried out and the corresponding speed oscillations recorded, then in step 360 the transmission behavior of the motor is determined. The Drehrahschwingungen are determined in particular by the gain, the amplitude response and the phase shift by the motor. Based on these variables, the control parameters are determined in step 370.

Dies bedeutet, nacheinander werden verschiedene Mengenanregungen erzeugt und die zugehörige Motordrehzahl analysiert, um die Regelparameter der Laufruheregelung zu bestimmen. Die Analysephase unterteilt sich dabei in einen Einschwingvorgang, der durch die Wartezeit im Schritt 320 definiert ist, in dem die Brennkraftmaschine und die Betriebsparamter wieder stationäre Zustände erreichen. Anschließend erfolgt die Messung der Motordrehzahlamplituden. Ausgehend von der Mengenanregung und der Drehzahlamplitude erfolgt die Berechnung der Streckenverstärkung und der Phasenverschiebung, die durch die Brennkraftmaschine verursacht sind.This means successively generating different quantity excitations and analyzing the associated engine speed in order to determine the control parameters of the tiller control. The analysis phase is subdivided into a transient process, which is defined by the waiting time in step 320, in which the internal combustion engine and the operating parameters reach stationary states again. Subsequently, the measurement of the engine speed amplitudes takes place. Starting from the quantity excitation and the rotational speed amplitude, the calculation of the path gain and the phase shift caused by the internal combustion engine takes place.

Ausgehend von diesen Werten für die Streckenverstärkung und die Phasenverschiebung, die von Brennkraftmaschine zu Brennkraftmaschine abweichen können, berechnet die Laufrueheregelung 130 die Regelparameter für die Laufruheregelung, wie insbesondere die Segmentauswahl und die Verstärkung der Bandpassfilter 210 und 220.Based on these values for the path gain and the phase shift, which may differ from internal combustion engine to internal combustion engine, the calculated Running control 130, the control parameters for the tether control, in particular the segment selection and the gain of the band pass filters 210 and 220.

Erfindungsgemäß ermittelt die Steuerung selbständig die Regelparameter, die für die Laufruheregelung erforderlich sind.According to the invention, the control automatically determines the control parameters that are required for the truing control.

Besonders vorteilhaft ist es, wenn im Rahmen der üblichen Applikation für die Regelparameter Standardgrößen verwendet werden können, die dann im ersten Betrieb der Brennkraftmaschine mit erfindungsgemäß ermittelten Werten überschrieben werden. Im Laufe des Betriebs der Brennkraftmaschine, beispielsweise im Rahmen der Wartung, können Alterungseffekte durch eine neue Applikation kompensiert werden. Dies bedeutet, der Applikationsaufwand wird stark verringert, wobei gleichzeitig die Genauigkeit der Daten deutlich verbessert wird. Insbesondere Alterungseffekte und Streuungen zwischen Brennkraftmaschinen gleichen Typs können deutlich vermindert werden.It is particularly advantageous if standard variables can be used within the scope of the customary application for the control parameters, which variables are then overwritten with values determined according to the invention in the first operation of the internal combustion engine. In the course of the operation of the internal combustion engine, for example in the context of maintenance, aging effects can be compensated by a new application. This means that the application effort is greatly reduced, at the same time the accuracy of the data is significantly improved. In particular, aging effects and scattering between internal combustion engines of the same type can be significantly reduced.

Claims (10)

  1. Method for controlling an internal combustion engine (100), wherein a manipulated variable is predefined (145) on the basis of at least one measured variable (N), and wherein the measured variable (N) is filtered using at least one filter means (140, 210, 220) and actual values and/or set point values of the control are determined (212, 214, 222, 224) on the basis of the filtered measured variable, characterized in that an excitation variable is superimposed (310) on the manipulated variable, and in that properties of the filter means (140, 210, 220) are determined (370) on the basis of the resulting reaction of the measured variable (N).
  2. Method according to Claim 1, characterized in that the properties of the at least one filter means (140, 210, 220) are determined in preferred operating states.
  3. Method according to one of the preceding claims, characterized in that the at least one filter means (140, 210, 220) is embodied as a bandpass filter with an adjustable gain.
  4. Method according to Claim 3, characterized in that the properties of the at least one filter means (140, 210, 220) are influenced by the gain of the bandpass filter.
  5. Method according to one of the preceding claims, characterized in that the at least one filter means (140, 210, 220) determines an actual value and/or a setpoint value by evaluating specific segments of a rotational speed signal.
  6. Method according to Claim 5, characterized in that the properties of the at least one filter means (140, 210, 220) are influenced by the segments of the rotational speed signal which are used to form the actual value and/or setpoint value.
  7. Method according to one of the preceding claims, characterized in that the excitation variable is a periodic signal whose frequency corresponds to the crankshaft frequency, the camshaft frequency and/or an integral multiple of one of these frequencies.
  8. Method according to one of the preceding claims, characterized in that a gain and a phase shift of the controlled system are determined on the basis of the excitation variable and a rotational speed amplitude resulting therefrom.
  9. Method according to one of the preceding claims, characterized in that the properties of the at least one filter means (140, 210, 220) are determined on the basis of the gain and phase shift of the controlled system.
  10. Device for controlling an internal combustion engine (100) which predefines (145) a manipulated variable on the basis of at least one measured variable (N), having a filter means (140, 210, 220) which filters the measured variable (N) and determines (212, 214, 222, 224) actual values and/or setpoint values of the control on the basis of the filtered measured variable (N), characterized in that means are provided which superimpose (310) an excitation variable on the manipulated variable and determine (370) properties of the filter means (140, 210, 220) on the basis of the resulting reaction of the measured variable (N).
EP01112510A 2000-08-05 2001-05-23 Method and apparatus for controlling an internal combustion engine Expired - Lifetime EP1178202B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10038339 2000-08-05
DE10038339A DE10038339A1 (en) 2000-08-05 2000-08-05 Method and device for monitoring a sensor

Publications (3)

Publication Number Publication Date
EP1178202A2 EP1178202A2 (en) 2002-02-06
EP1178202A3 EP1178202A3 (en) 2004-06-30
EP1178202B1 true EP1178202B1 (en) 2006-05-17

Family

ID=7651490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01112510A Expired - Lifetime EP1178202B1 (en) 2000-08-05 2001-05-23 Method and apparatus for controlling an internal combustion engine

Country Status (4)

Country Link
US (1) US6665607B2 (en)
EP (1) EP1178202B1 (en)
JP (1) JP2002097991A (en)
DE (2) DE10038339A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202949A1 (en) 2015-02-18 2016-08-18 Robert Bosch Gmbh Method and device for controlling a multi-cylinder reciprocating engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221681B4 (en) * 2002-05-16 2005-12-08 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine-generator unit
DE102004005325A1 (en) * 2004-02-04 2005-08-25 Conti Temic Microelectronic Gmbh Method for detecting the start of combustion of an internal combustion engine
DE102005027650B4 (en) * 2005-06-15 2018-02-08 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102006056860A1 (en) * 2006-12-01 2008-06-05 Conti Temic Microelectronic Gmbh Method and device for controlling the operation of an internal combustion engine
DE102007002782A1 (en) 2007-01-18 2008-07-31 Siemens Ag Rotary drive with straight primary section segments
GB2463022B (en) * 2008-08-28 2012-04-11 Gm Global Tech Operations Inc A method for correcting the cylinder unbalancing in an internal combustion engine
FR2955387B1 (en) * 2010-01-21 2012-03-09 Commissariat Energie Atomique MEASUREMENT OF A CYCLIC MOVEMENT OF A FERROMAGNETIC PIECE
CN113093705B (en) * 2021-04-02 2022-02-11 宁夏大学 Excitation signal generation method and excitation signal generation system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204171A (en) * 1978-05-30 1980-05-20 Rca Corporation Filter which tracks changing frequency of input signal
DE3243235A1 (en) * 1982-11-23 1984-05-24 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR DAMPING VIBRATION VIBRATIONS IN AN INTERNAL COMBUSTION ENGINE IN A MOTOR VEHICLE
US4575800A (en) * 1983-04-08 1986-03-11 Optimizer Control Corporation System for optimizing the timing of diesel or spark ignition engines
DE3403395A1 (en) * 1984-02-01 1985-08-08 Robert Bosch Gmbh, 7000 Stuttgart FUEL-AIR MIXING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
US4664083A (en) * 1986-04-14 1987-05-12 General Motors Corporation Adaptive knock control with variable knock tuning
US4651698A (en) * 1986-04-14 1987-03-24 General Motors Corporation Adaptive knock control with pulse duration discrimination control
KR920002456B1 (en) * 1988-01-26 1992-03-24 미쓰비시전기 주식회사 Fuel control system
KR920010913B1 (en) * 1988-04-19 1992-12-24 미쓰비시전기 주식회사 Vortex flowmeter
DE3841684C1 (en) * 1988-12-10 1990-04-26 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Method for optimising the control of the fuel-air ratio in an internal combustion engine
DE3939114A1 (en) * 1989-11-25 1991-05-29 Bosch Gmbh Robert DEVICE FOR DETECTING A PERIODICALLY VARYING SIZE OF AN INTERNAL COMBUSTION ENGINE
US5692052A (en) * 1991-06-17 1997-11-25 Nippondenso Co., Ltd. Engine noise control apparatus
JP3248358B2 (en) * 1994-08-19 2002-01-21 株式会社明電舎 Engine control method and device
DE19527218B4 (en) * 1994-12-23 2004-03-18 Robert Bosch Gmbh Method and device for regulating the smooth running of an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202949A1 (en) 2015-02-18 2016-08-18 Robert Bosch Gmbh Method and device for controlling a multi-cylinder reciprocating engine

Also Published As

Publication number Publication date
US20020120387A1 (en) 2002-08-29
DE10038339A1 (en) 2002-02-14
US6665607B2 (en) 2003-12-16
EP1178202A2 (en) 2002-02-06
EP1178202A3 (en) 2004-06-30
JP2002097991A (en) 2002-04-05
DE50109789D1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
DE19527218B4 (en) Method and device for regulating the smooth running of an internal combustion engine
EP0929794B1 (en) Method and device for correcting margins of error of an indicating wheel
DE19945618A1 (en) Control method for fuel injection system in internal combustion engine by storing drive period at which change in signal occurs as minimum drive period
DE102005039757A1 (en) Diesel-internal combustion engine operating method, involves determining drift of impact sound sensors from temporal change of value compared to another value, where values depend on pressure distribution in one of combustion chambers
DE102008043165A1 (en) Method for calibrating amount of partial fuel injection into fuel injection system of internal combustion engine of motor vehicle, involves determining correction value for fuel injection by stimulating pattern and by changing vibration
EP1215388B1 (en) Method and system for controlling an internal combustion engine
DE4215581B4 (en) System for controlling a solenoid-controlled fuel metering device
EP1178202B1 (en) Method and apparatus for controlling an internal combustion engine
EP0768455B1 (en) Method and apparatus for controlling an internal combustion engine
DE102005027650B4 (en) Method and device for operating an internal combustion engine
DE4013943C2 (en)
DE3932763C1 (en)
EP0286644A1 (en) Process for electronic determination of the quantity of fuel of an internal combustion engine.
EP0818619B1 (en) Method and apparatus for monitoring the state of a variable valve control
AT3930U1 (en) METHOD FOR ANALYZING THE DRIVING BEHAVIOR OF MOTOR VEHICLES
DE102007013253A1 (en) Method and device for operating a drive unit
DE102006044771A1 (en) Injected fuel actual amount variation determining method for road vehicle, involves injecting actual injected fuel amount and determining variation from comparison between reference amounts, which are formed by two of injection samples
DE102006015968B3 (en) Adaptation method and adaptation device of an injection system of an internal combustion engine
DE102005036727A1 (en) Method for operating an internal combustion engine
DE19547644A1 (en) Control method for fuel injection measurement in IC engine
DE102008021495B4 (en) Method for balancing an injection system of an internal combustion engine
WO2011038994A1 (en) Method and device for misfire recognition in a multi-cylinder internal combustion engine
DE102005011836B4 (en) Method and device for controlling an internal combustion engine
DE10206030A1 (en) Adapting combustion engine injection parameter to variable or dynamic processes involves determining dynamic correction value from desired injection quantity and engine speed
DE4040636C2 (en) Method and device for recording measured values of a variable size in an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20041230

17Q First examination report despatched

Effective date: 20050202

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50109789

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060918

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130604

Year of fee payment: 13

Ref country code: IT

Payment date: 20130524

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140523

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150723

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109789

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201