EP1285159B1 - VERFAHREN ZUM BETREiBEN EINES DIESELMOTORS UND DIESELMOTOR - Google Patents

VERFAHREN ZUM BETREiBEN EINES DIESELMOTORS UND DIESELMOTOR Download PDF

Info

Publication number
EP1285159B1
EP1285159B1 EP01931666A EP01931666A EP1285159B1 EP 1285159 B1 EP1285159 B1 EP 1285159B1 EP 01931666 A EP01931666 A EP 01931666A EP 01931666 A EP01931666 A EP 01931666A EP 1285159 B1 EP1285159 B1 EP 1285159B1
Authority
EP
European Patent Office
Prior art keywords
engine
engine torque
setting
operating
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01931666A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1285159A1 (de
Inventor
Holger Adler
Nicholas Fekete
Michael Lenz
Thomas Liebscher
Ulrich Merten
Sven PFÖRTSCH
Norbert Ruzicka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1285159A1 publication Critical patent/EP1285159A1/de
Application granted granted Critical
Publication of EP1285159B1 publication Critical patent/EP1285159B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine

Definitions

  • the invention relates to a method for operating a diesel engine, in which between a lean operation with more than stoichiometric Combustion air ratio ⁇ > 1 and a rich operation with substoichiometric combustion air ratio ⁇ ⁇ 1 is switched.
  • NO x adsorber systems For exhaust gas purification of diesel engines adsorption devices for nitrogen oxides (NO x ) are used. Under certain conditions, NO x adsorber systems store, for example, free storage capacity, an active temperature window, the nitrogen oxides of internal combustion engines during lean combustion, ie, superstoichiometric combustion with ⁇ > 1 and residual oxygen in the exhaust gas. NO x adsorber systems also store the sulfur contained in the fuel and engine oil in the form of sulfates (SO x ). The sulfates undesirably occupy the storage sites for the nitrogen oxides due to the higher chemical binding forces.
  • SO x sulfates
  • the published patent application DE 196 36 790 A1 describes the setting a rich exhaust gas mixture of a diesel engine, wherein a performance loss should be prevented by the rich exhaust gas mixture only at low load, in shear phases or idle.
  • the published patent application DE 199 14 787 A1 describes an exhaust gas purification system for a diesel engine in which reducing agent is injected into the exhaust gas line for the regeneration of an NO x storage and an exhaust gas flow rate with an exhaust gas throttle valve is reduced. Since such a regeneration operation increases the pumping loss of the engine, reduces the engine output and thereby causes a torque shock, the amount of fuel injected into the combustion chamber and an opening degree of an exhaust gas recirculation valve are increased to ensure the same engine performance as before the reduction of the exhaust gas flow rate.
  • the invention is based on the technical problem of a method for operating a diesel engine and a diesel engine in which a switch between a lean operation and a rich operation of the diesel engine unnoticed by the driver and without sacrificing ride comfort.
  • determining one delivered at the detected driving state in lean operation Engine torque and setting a in the detected driving condition engine torque delivered in rich operation to that for lean operation Determined engine torque is a comparison between rich operation and lean operation allows.
  • the engine torque influencing parameters can be set in rich operation the same engine torque as a corresponding one Driving condition can be achieved in lean operation, leaving a driver the set mode is not noticed.
  • the driving condition can be determined by the speed and the accelerator pedal position be. Such a method also allows manufacturing tolerances between different engines and wear by comparing lean and rich operation.
  • the Change from a fuel-guided mixture formation process on an air-mass-guided mixture formation process can also change the load in wide ranges in rich operation be achieved.
  • a control in rich operation via the setting the air mass instead of adjusting the amount of fuel as in lean operation is advantageous because at one Diesel engine in rich operation hardly any load changes by a Variation of fuel mass can be achieved.
  • the change between fuel-guided mixture formation process and air-mass-guided Mixture formation process can be continuous or discontinuously.
  • the setting of the parameters influencing the engine torque involves adjusting an assigned air mass. This can via a throttle device in the intake, e.g. an electric one or pneumatically actuated valve or throttle, be effected.
  • a device for determining the air mass e.g. a hot film air mass flowmeter may be provided be.
  • Exhaust gas recirculation rate Another parameter influencing the engine torque is a Exhaust gas recirculation rate, which via an electrically or pneumatically actuated Exhaust gas recirculation valve can be adjusted.
  • An exhaust gas recirculation cooler may also be provided.
  • the engine torque is also due to the adjustment of an intake manifold pressure influenced, for example, by a throttle device in the intake, an exhaust gas recirculation and a charging device, like a turbocharger, is set.
  • the engine torque influencing parameters are exhaust back pressure, Injection start and injection quantity. variations of the injection process consist of a pre-, Main and post injection, for example, so that nacheingespritzter Fuel ceases to participate in combustion can.
  • a comfortable driving is also achieved by that in the presence of unfavorable boundary conditions, switching between Lean operation and fat operation is delayed in time.
  • a neutral transition is favored by the fact that before the Change from the fuel-guided mixture formation process on the air mass-guided mixture formation process a setting is carried out by an air path parameters. So For example, a throttle and an exhaust gas recirculation valve already before switching to the air mass-driven Mixture formation process in the then required position driven.
  • a diesel engine according to the invention has a speed sensor and / or an engine torque sensor. So, especially with a high resolution speed sensor, is the starting point for an accurate determination of engine torque fluctuations available.
  • a throttle device with a first actuator in the intake and / or an exhaust gas recirculation device with an exhaust gas recirculation valve with a second actuator the assigned Air mass, the intake manifold pressure and / or the exhaust gas recirculation rate to be influenced.
  • Motor torque fluctuations and the for keeping the engine torque constant settings necessary the engine torque influencing parameters are in one Engine control unit determines which also the actuators controlled by appropriate signals, between lean operation and Grease mode switches, engine torque fluctuations determined and the engine torque regulates.
  • the exhaust gas recirculation valve can be upstream or downstream of the throttle device in the intake path be arranged.
  • the diesel engine has one with the intake path connected charging device, for example a turbocharger, with a third actuator coming from the engine control unit is controllable.
  • the third actuator may be in an exhaust gas turbocharger a boost pressure in the intake, an exhaust back pressure, a perfused cross-section and a flowing exhaust gas volume be set.
  • An accurate adjustment of the allocated air mass is through a device for changing an intake cross section of a each cylinder with a fourth actuator coming from the engine control unit is taxable, favors.
  • Such Device can, for example, as a single throttle in the intake every cylinder be realized.
  • the diesel engine 10 shown schematically in FIG. 1 has a speed sensor 12 and an engine torque sensor 14. Of the Torque sensor 12 and the engine torque sensor 14 are provided with a Motor control unit 16 connected. Based on the signals from the The speed sensor 12 and the engine torque sensor 14 determine the engine control unit 16 possible engine torque fluctuations.
  • the engine control unit 16 controls an injection system 18, a throttle valve 22 via a first actuator 20, an exhaust gas recirculation valve 26 via a second actuator 24, the exhaust gas turbine 30 of an exhaust gas turbocharger 31 via a third actuator 28 and individual throttles 34 in the intake path of each cylinder via a fourth actuator 32.
  • the exhaust gas recirculation valve 26 opens and closes an exhaust gas recirculation passage 36, which starts from an exhaust manifold 38, passes through an exhaust gas recirculation cooler 40 and opens into the intake path 42 of the diesel engine 10. The entry of fresh air into the intake passage 42 of the diesel engine 10 is indicated by an arrow 44.
  • the incoming at 44 fresh air passes through a compressor turbine of the exhaust gas turbocharger 31, passes through the throttle valve 22 and the exhaust gas recirculation valve 26 and passes past the individual throttle valves 34 in the intake tract of each cylinder in the combustion chambers of the cylinder.
  • From the combustion chamber discharged exhaust gas passes into the exhaust manifold 38 into the exhaust gas turbine 30 passes a NOx adsorbent 46 and exits the diesel engine 10 at the position indicated with an arrow 48 point.
  • the diesel engine 10 can be switched between a lean operation with a superstoichiometric combustion air ratio ⁇ > 1 and a rich operation with a substoichiometric combustion air ratio ⁇ ⁇ 1.
  • the engine control unit 16 increases the amount of fuel injected by the injection system 18 and simultaneously reduces the supplied air mass via the actuator 20 and the throttle valve 22.
  • a temporary rich operation of the diesel engine 10 is required for regeneration of the NO x adsorber 46.
  • the engine controller 16 determines from the signals of the rotational speed sensor 12 and / or the signals of the engine torque sensor 14 engine torque fluctuations that occur during the switching. If the engine control unit 16 detects fluctuations in the engine torque that occur, it keeps the engine torque constant during the changeover by transmitting signals to the first, second, third and fourth actuators 20, 24, 28, 32 and to the injection system for adjusting parameters influencing the engine torque 18 issues.
  • Such parameters are an allocated air mass which can be adjusted by adjustment the throttle valve 22, the individual throttle valves 34, the Exhaust gas recirculation valve 26 and the exhaust gas turbocharger 31 changed can be.
  • a measurement of the assigned air mass takes place for example, via a hot-film air mass flow meter, not shown in the intake 42.
  • the engine torque is also affected by the intake manifold pressure in the intake path 42, that of the engine control unit 16 by adjusting the exhaust gas recirculation valve 26, the throttle 22, the throttle valves 34 and the exhaust gas turbocharger 31 is changed.
  • the engine torque is influenced by the exhaust gas recirculation rate, that of the engine control unit 16 by adjustment the exhaust gas recirculation valve 26, the throttle valve 22 and the Exhaust gas turbocharger 31 can be changed.
  • the diesel engine 10 is controlled by the engine control unit 16 with a fuel-guided mixture formation process operated. In this case, a control of the engine torque takes place by adjusting the allocated amount of fuel.
  • the engine control unit 16 sets the engine control unit 16 to an air mass guided Mixture formation method um. In this case, the regulation of the Engine torque via an adjustment of the allocated air mass.
  • rich operation of the diesel engine 10 only such allows Heilmassenumblees mixture formation method, the regulation of Engine torque over the entire operating range of the diesel engine 10, because in the fat operation, a load change of the diesel engine barely can be achieved by a variation of the fuel mass.
  • the engine control unit 16 can also be used in transient operating states and / or high engine load between lean operation and switch over to rich operation without switching by switching Torque shock would be felt.
  • the transition from the fuel mass-guided to the air mass-guided mixture formation process and back is done by continuously tracking all or individual actuators 20, 24, 28, 32nd
  • FIG. 2 schematically illustrates the sequence of the method according to the invention for operating the diesel engine 10.
  • the engine control unit 16 checks switching criteria for switching between lean operation and rich operation and vice versa. These concern, for example, the existing storage capacity of the NO x adsorber 46 and the present exhaust gas temperature, both of which are determined by suitable sensors and transmitted to the engine control unit 16. If the switching criteria are not met, the diesel engine 10, as shown in step 52, further operated by the engine control unit 16 in lean operation.
  • the engine torque control in lean operation is indicated by steps 54, 56 ... 58 in which individual parameters influencing the engine torque, such as intake manifold pressure in the intake path 42 and the amount of fuel injected by the fuel injection system 18, are set according to the fuel-guided mixture formation method used in lean operation become.
  • step 50 the engine control unit 16 switches to rich operation in step 52 of the diesel engine 10 um and changes to an air mass Mixture formation method via.
  • the regulation of engine torque during the switching, i. until reaching one stoichiometric air ratio ⁇ ⁇ 1, and in Fat operation by adjusting the engine torque influencing Parameters such as the assigned air mass and the exhaust gas recirculation rate, according to the method used in rich operation air-mass-guided mixture formation process, is characterized by the Steps 60, 62 ... 64 indicated.
  • the engine control unit switches 16 in step 52 again on lean operation of the diesel engine 10 um. Even with this switching back is the engine torque kept constant, so that the switching operation not noticed by the driver.
  • the control of the engine torque in steps 54, 56, 58 and 60, 62, 64 is done in an adaptive manner.
  • the parameters By adaptation the parameters to be set to values from an expected one Range preset so that small changes to the scheme suffice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
EP01931666A 2000-05-31 2001-04-28 VERFAHREN ZUM BETREiBEN EINES DIESELMOTORS UND DIESELMOTOR Expired - Lifetime EP1285159B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10026806 2000-05-31
DE10026806A DE10026806C1 (de) 2000-05-31 2000-05-31 Verfahren zum Betreiben eines Dieselmotors und Dieselmotor
PCT/EP2001/004798 WO2001092706A1 (de) 2000-05-31 2001-04-28 Verfahren zum betrieben eines dieselmotors und dieselmotor

Publications (2)

Publication Number Publication Date
EP1285159A1 EP1285159A1 (de) 2003-02-26
EP1285159B1 true EP1285159B1 (de) 2005-03-30

Family

ID=7644109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01931666A Expired - Lifetime EP1285159B1 (de) 2000-05-31 2001-04-28 VERFAHREN ZUM BETREiBEN EINES DIESELMOTORS UND DIESELMOTOR

Country Status (5)

Country Link
US (1) US6857421B2 (ja)
EP (1) EP1285159B1 (ja)
JP (1) JP2003535261A (ja)
DE (1) DE10026806C1 (ja)
WO (1) WO2001092706A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991619B2 (ja) * 2000-12-26 2007-10-17 日産自動車株式会社 内燃機関の空燃比制御装置
DE10238573B4 (de) * 2002-08-22 2004-08-05 Siemens Ag Verfahren zur Adaption von Regelparametern eines Ladedruckreglers bei einer Brennkraftmaschine mit einem Abgasturbolader
DE10315814A1 (de) * 2003-04-07 2004-10-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6931837B2 (en) * 2003-11-06 2005-08-23 International Engine Intellectual Property Company, Llc Control strategy for lean-to-rich transitions in an internal combustion engine
US7191591B2 (en) * 2003-11-06 2007-03-20 International Engine Intellectual Property Company, Llc Attenuation of engine harshness during lean-to rich transitions
US6990951B1 (en) * 2004-07-12 2006-01-31 International Engine Intellectual Property Company, Llc Torque control strategy for a diesel engine during lean-rich modulation using independent fuel injection maps
US7685813B2 (en) * 2005-06-09 2010-03-30 Eaton Corporation LNT regeneration strategy over normal truck driving cycle
WO2008122866A2 (en) * 2007-04-06 2008-10-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control device
JP4265675B2 (ja) * 2007-04-06 2009-05-20 トヨタ自動車株式会社 内燃機関の制御装置
FR2929652B1 (fr) * 2008-04-04 2012-07-20 Renault Sas Systeme et procede de controle de l'air frais et des gaz brules introduits dans un moteur a combustion interne lors des transitions entre la purge d'un piege a oxydes d'azote et la regeneration d'un filtre a particules
DE102008059698A1 (de) * 2008-11-29 2010-06-02 Daimler Ag Verfahren zum Betreiben eines Dieselmotors mit einer einen Stickoxid-Speicherkatalysator aufweisenden Abgasreinigungsanlage
US8437943B2 (en) * 2010-01-28 2013-05-07 Deere & Company NOx control during load increases
DE102010012744B4 (de) 2010-03-25 2021-06-10 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine mit Betriebsartenübergang
GB2502835A (en) * 2012-06-06 2013-12-11 Gm Global Tech Operations Inc Method of controlling torque generation during rich combustion modes in an internal combustion engine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018298A1 (fr) * 1993-12-28 1995-07-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Dispositif et procede de commande d'un moteur a melange pauvre
JPH0749046A (ja) * 1994-04-28 1995-02-21 Mazda Motor Corp エンジンの空燃比制御装置
JP3079933B2 (ja) 1995-02-14 2000-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19543219C1 (de) * 1995-11-20 1996-12-05 Daimler Benz Ag Verfahren zum Betreiben eines Dieselmotors
DE19635040C1 (de) * 1996-08-29 1998-01-15 Litton Precision Prod Int Funktionsdrehmelder zur Erzeugung von Signalen mit reduzierten Oberwellenanteilen
DE19636040A1 (de) 1996-09-05 1998-03-12 Volkswagen Ag Abgasreinigungsverfahren für eine Brennkraftmaschine
DE19636790A1 (de) * 1996-09-11 1998-03-12 Volkswagen Ag NOx-Abgasreinigungsverfahren
JPH10141048A (ja) 1996-11-15 1998-05-26 Hino Motors Ltd ディーゼル機関の排ガス中のNOxの浄化方法及び装置
EP0843085B1 (en) * 1996-11-18 2003-10-29 Toyota Jidosha Kabushiki Kaisha Air intake controller of an engine performing stratified charge combustion
JP3494832B2 (ja) * 1996-12-18 2004-02-09 トヨタ自動車株式会社 内燃機関の燃焼制御装置
JPH10252523A (ja) 1997-03-15 1998-09-22 Toyota Central Res & Dev Lab Inc 内燃機関の排気浄化装置
DE19716275C1 (de) * 1997-04-18 1998-09-24 Volkswagen Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
KR100317157B1 (ko) * 1997-07-04 2002-02-19 하나와 요시카즈 내연기관용제어시스템
DE19750226C1 (de) 1997-11-13 1998-10-29 Daimler Benz Ag Motorregelsystem für einen Dieselmotor
DE19753718C1 (de) * 1997-12-04 1999-07-08 Daimler Chrysler Ag Verfahren zum Betreiben eines Dieselmotors
JP3815006B2 (ja) * 1997-12-09 2006-08-30 日産自動車株式会社 内燃機関の制御装置
DE19813378A1 (de) * 1998-03-26 1999-10-07 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
JP3805098B2 (ja) * 1998-03-26 2006-08-02 株式会社日立製作所 エンジンの排気ガス浄化制御装置
JP3277881B2 (ja) * 1998-04-06 2002-04-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19824915C1 (de) * 1998-06-04 1999-02-18 Daimler Benz Ag Verfahren zum Wechseln der Betriebsart einer direkt-einspritzenden Otto-Brennkraftmaschine
US5947079A (en) * 1998-06-08 1999-09-07 Ford Global Technologies, Inc. Mode control system for direct injection spark ignition engines
JP3417299B2 (ja) * 1998-06-19 2003-06-16 トヨタ自動車株式会社 内燃機関の機関制御量設定方法及び制御装置
JP2000027710A (ja) * 1998-07-08 2000-01-25 Yanmar Diesel Engine Co Ltd 内燃機関の空気過剰率制御装置
US6209526B1 (en) * 1999-10-18 2001-04-03 Ford Global Technologies, Inc. Direct injection engine system
US7293407B2 (en) * 2000-06-21 2007-11-13 Daimlerchrysler Ag Method for operating a diesel engine

Also Published As

Publication number Publication date
EP1285159A1 (de) 2003-02-26
US6857421B2 (en) 2005-02-22
WO2001092706A1 (de) 2001-12-06
DE10026806C1 (de) 2001-09-20
JP2003535261A (ja) 2003-11-25
US20030150425A1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
DE69927539T2 (de) Steuerungssystem für eine Brennkraftmaschine
DE19532159C2 (de) Motorregelvorrichtung
DE10157104B4 (de) Verfahren und Vorrichtung zur Steuerung von Betriebsübergängen bei Brennkraftmaschinen
EP1254306B1 (de) Verfahren und vorrichtung zur gleichzeitigen einstellung eines ansaugluftstroms für eine brennkraftmaschine und eines sekundärluftstroms in die abgasanlage derselben brennkraftmaschine
EP1285159B1 (de) VERFAHREN ZUM BETREiBEN EINES DIESELMOTORS UND DIESELMOTOR
EP1292764B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19754614C2 (de) Vorrichtung zur Steuerung eines Unterdrucks in einer Brennkraftmaschine
EP1132600B1 (de) Adaptionsverfahren zur Steuerung der Einspritzung
EP1167733B2 (de) Verfahren zum Betrieb eines Verbrennungsmotors mit Abgasturbolader
DE19631986A1 (de) Steuereinrichtung für eine direkteinspritzende Benzinbrennkraftmaschine
DE102005001047A1 (de) Verfahren zum Betrieb eines Hybridfahrzeugs sowie Hybridfahrzeug
DE19951096C2 (de) Motorregelsystem für einen mittels Abgasturbolader aufgeladenen Dieselmotor
WO1998025015A2 (de) Verfahren zum steuern einer direkteinspritzenden brennkraftmaschine
DE10137851B4 (de) Kraftstoffeinspritzregelsystem für einen direkt einspritzenden Motor
DE19780910C2 (de) Regeleinheit für eine Verbrennungskraftmaschine mit Zylindereinspritzung
DE19522692C2 (de) Steuervorrichtung und -verfahren für eine Verbrennungskraftmaschine
EP1111208B1 (de) Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine eines Kraftfahrzeuges während einer Regeneration eines in einem Abgaskanal angeordneten Speicherkatalysators
DE10064665A1 (de) Verfahren zum Steuern einer Brennkraftmaschine
DE10029504C2 (de) Verfahren zum Betrieb eines Dieselmotors
DE19522659C2 (de) Kraftstoffzufuhrsystem und Kraftstoffzufuhrverfahren für eine Verbrennungskraftmaschine
DE10033946B4 (de) Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung
DE19700104B4 (de) Steuervorrichtung für Mehrzylinder-Direkteinpritzmotor
DE69712365T2 (de) Modesteurung für eine brennkraftmaschine mit magermischverbrennung
DE10305878B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuer- und/oder Regelgerät für eine Brennkraftmaschine, Computerprogramm und elektrisches Speichermedium einer Brennkraftmaschine
WO2004016929A1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUZICKA, NORBERT

Inventor name: PFOERTSCH, SVEN

Inventor name: MERTEN, ULRICH

Inventor name: LIEBSCHER, THOMAS

Inventor name: LENZ, MICHAEL

Inventor name: FEKETE, NICHOLAS

Inventor name: ADLER, HOLGER

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): FR GB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050412

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050418

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502