EP1283793A1 - Verfahren und vorrichtung zur koordination mehrerer fahrsystemeinrichtungen eines fahrzeugs - Google Patents

Verfahren und vorrichtung zur koordination mehrerer fahrsystemeinrichtungen eines fahrzeugs

Info

Publication number
EP1283793A1
EP1283793A1 EP01933952A EP01933952A EP1283793A1 EP 1283793 A1 EP1283793 A1 EP 1283793A1 EP 01933952 A EP01933952 A EP 01933952A EP 01933952 A EP01933952 A EP 01933952A EP 1283793 A1 EP1283793 A1 EP 1283793A1
Authority
EP
European Patent Office
Prior art keywords
control
result signal
vehicle
driving system
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01933952A
Other languages
English (en)
French (fr)
Inventor
Martin Moser
Reinhold Schneckenburger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1283793A1 publication Critical patent/EP1283793A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17558Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for collision avoidance or collision mitigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/85System Prioritisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/24Curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/08Coordination of integrated systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/009Priority selection
    • B60W2050/0091Priority selection of control inputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion

Definitions

  • the invention relates to a method and a device for coordinating several driving system devices of a vehicle.
  • Such a driving system device is, for example, a distance control device for controlling the distance relative to a vehicle in front (known by the applicant under the term "Distronic"), a speed control device (cruise control), a collision avoidance device, e.g. by detection of oncoming vehicles when overtaking, a tire pressure monitoring system, a corner warning device for timely warning of corners when the vehicle's longitudinal speed is too high, which in a further expansion stage can also cause braking and / or steering intervention to prevent a corner from being passed at an impermissibly high speed or any other driving system device that can be made available to the driver as an assistance device.
  • a distance control device for controlling the distance relative to a vehicle in front
  • a speed control device e.g. by detection of oncoming vehicles when overtaking
  • a tire pressure monitoring system e.g. by detection of oncoming vehicles when overtaking
  • a tire pressure monitoring system e.g. by detection of oncoming vehicles when overtaking
  • a tire pressure monitoring system e.g. by detection
  • driving system devices can only carry out a warning function in order to inform the driver of a certain driving condition, for example if the tire pressure is not in an allowed range.
  • the driving system devices automatically influence the driving state, for example by a steering or braking intervention, without manual intervention by the driver.
  • a distance control device can be provided in some of the applicant's vehicles, which automatically brakes the vehicle if the distance to the vehicle in front is too short.
  • the present invention has for its object to provide a method and an apparatus for performing the method in order to enable the integration of several driving system devices in a vehicle while ensuring a safe driving condition.
  • the driving system devices provided in the vehicle generate output signals depending on the driving state variables determined in each case.
  • the output signals represent request signals for influencing the driving state or the driving state control or the driving state control. They are fed to a coordination device. Depending on the output signals present at the same time, this generates a control result signal and / or a parameter result signal.
  • the control result signal serves as a setpoint specification for influencing the current driving state or the current vehicle movement.
  • the relevant actuator devices of the vehicle are actuated in order to achieve the desired vehicle movement or the desired driving state.
  • control parameters for driving state control or driving state regulation for example threshold values or parameters characterizing the vehicle, can be changed so that a control or regulation of the driving state adaptable to the current driving state can be achieved.
  • Uncoordinated access of the driving system devices to the actuator devices or the blocking of an access request from a driving system device only because of the presence of an earlier access request to the same parameters or the same actuator devices is excluded in the method according to the invention and in the device according to the invention.
  • the driving system devices can also be coordinated with regard to the feedback conveyed to the driver for information about the driving state.
  • This is the subject of the patent application filed on the same day by the applicant with the title "Method and device for reporting the driving state of a vehicle to the driver" (internal Az: P033161 / DE / 1), to which reference is made here in full.
  • the control result signal expediently corresponds to the target driving state of the vehicle, the control result signal describing the target vehicle movement in three-dimensional space.
  • the control result signal thus defines the entire desired spatial vehicle movement.
  • control result signal corresponds to the change in the target driving state for the vehicle
  • control result signal describing the change in the target vehicle movement in three-dimensional space.
  • the control result signal describing the change in the target vehicle movement in three-dimensional space.
  • only the desired change in movement of the vehicle is specified as the setpoint.
  • the change in movement is defined for all directions of movement in three-dimensional space.
  • the control result signal can be used to control the relevant actuator devices directly to these actuator devices. be transmitted to influence vehicle movement. It is possible to superimpose a separate driving dynamics control, which can be carried out in a known manner by a driving state control or control device (for example ESP control device) that is common today.
  • a driving state control or control device for example ESP control device
  • control result signal is transmitted to a driving state control or control device, in particular a driving dynamics control device, which produces actuating signals for the actuator devices to influence the vehicle movement.
  • a driving state control or control device in particular a driving dynamics control device, which produces actuating signals for the actuator devices to influence the vehicle movement.
  • the driving state control or evaluation unit evaluates the control result signal as to whether the actuator device has a sufficiently stable overall driving state when the control result signal is activated and, depending on the evaluation result, only generates actuating signals for the actuator devices which ensure an overall stable driving behavior.
  • the driving state regulating or control device is therefore used before the actuation of the actuator devices to check whether the intended actuation according to the control result signal could result in an unstable driving state, with the actuating signals then correspondingly correcting the actuating devices.
  • the parameter result signal is transmitted to a driving state control or control device, in particular a vehicle dynamics controller, for influencing the control or regulation parameters of the driving state control or control device.
  • the parameter result signal does not directly influence the actuation of the actuator devices and thus the vehicle movement, but rather serves to change the control behavior of the driving state control device by varying the control or control parameters, such as trigger threshold values or other driving behavior Vehicle characterizing parameters.
  • An adaptive regulation or control can thus be implemented.
  • control result signal or the parameter result signal take into account the importance of the present output signals for driving safety, with a weighting or prioritization taking place in accordance with the evaluation of the importance of the output signals with regard to the current driving state of the vehicle.
  • additional sensor signals which contain information about the current driving state of the vehicle and / or input signals which correspond to the manual specifications of the driver can be taken into account when determining the control result signal and / or the parameter result signal.
  • the prioritization or weighting of the output signals can then take into account the additional information of the sensor signals or the input signals, the information from the additional input signals or sensor signals serving as evaluation criteria for the weighting and / or prioritization of the output signals when determining the two result signals.
  • the sensor signals can contain, for example, current data about the yaw rate and / or the vehicle acceleration and / or the vehicle speed and / or the wheel speeds and / or the steering wheel torque and / or the steering wheel angle.
  • the vehicle acceleration or the vehicle speed can be a three-dimensional vector variable in order to be able to indicate the speed or the acceleration in all directions of movement of the vehicle, for example using a Cartesian coordinate system that is usually used in vehicles.
  • the driving system devices can be divided into several groups with different group priorities, the output signals of the driving system devices of a group with higher group priority being weighted more strongly than the output signals of the driving system devices when determining the control result signal and / or the parameter result signal a group with lower group priority. It is possible, for example, to assign the driving system devices requesting an automatic safety intervention to a group with high group priority and the driving system devices serving only to warn the driver to a group with low group priority.
  • the output signals of the driving system devices are expediently in the form of control signals for requesting actuation devices or parameter signals for requesting an influence on the control and / or control parameters of the driving state control or driving state control, the control result signal depending on the control signals and the parameter result signal depending on the parameter signals is determined.
  • One possibility for determining the control result signal or the parameter result signal consists in forming the sum of the control or parameter signals of the driving system devices, each weighted with a weight factor, the sum of the individual weight factors being in particular one and the weight factors being values in the range from zero to one can accept. If a pure priority evaluation of the present output signals is to take place, it is possible to set a weighting factor equal to one and all other weighting factors equal to zero when evaluating the two result signals.
  • the weighting factors of the output signals can be assigned as a function of one of the driving system devices in question Driving system priority can be specified. Different driving system priorities can either be assigned in relation to the driving system devices of the same group of driving system devices or in relation to all existing driving system devices.
  • the output signals of the driving system devices from a single group are taken into account.
  • the group priorities of the groups of driving system devices whose driving system devices have produced output signals at the time of the calculation can be compared.
  • the output signals of the driving system devices from the group of driving system devices with the comparatively highest group priority are then used to determine the two result signals.
  • the coordination device is embodied integrated in a central unit together with the driving system devices and / or the driving condition regulating or control device.
  • the entire device requires little space and is also better protected against interference due to the short electrical connections between the components, e.g. against external electromagnetic fields.
  • the coordination device is connected to a sensor arrangement and / or an operating arrangement, so that the sensor signals generated by the sensor arrangement and containing information about the current driving state of the vehicle and / or the manual settings of the driver correspond to input signals of the operating arrangement for consideration can be transmitted to the coordination device when determining the control result signal and / or the parameter result signal.
  • the coordination device receives additional information or data from the sensor Order about the current driving state of the vehicle, regardless of the output signals of the driving system devices. This can further improve the guarantee of the stability of the driving state, since more information is available to the coordination device than to the individual driving system devices.
  • one or more of the sensors of the sensor arrangement can also be used as a sensor for one or more of the driving system devices.
  • the method and the device according to the invention are explained in more detail below with reference to the attached drawing.
  • the single figure shows a block diagram of an embodiment of the device according to the invention.
  • a block diagram of the device 5 according to the invention is shown, which is used to coordinate a plurality of driving system devices ⁇ in a vehicle (not shown), in particular a motor vehicle or passenger car.
  • the number of available driving system devices 6 is basically arbitrary and depends on the equipment of the vehicle.
  • the driving system devices 6 are subdivided into safety, comfort and warning system devices and could also be referred to as driver assistance devices. They are available to support the driver in certain driving conditions or driving situations of the vehicle.
  • the safety system device provided in the exemplary embodiment is formed by a brake-steering assistance device 7 (so-called “advanced brake assistance”) which automatically brakes or brakes depending on detected obstacles on the road. Steering interventions can be carried out to avoid a collision with the obstacle.
  • a curve safety device (“Intelligent Predictive System ”) into consideration, which detects curves via GPS in advance and, if necessary, adjusts the speed of the vehicle to the curve radius in good time before the curve, in order to prevent unstable driving conditions of the vehicle when cornering.
  • the comfort system device provided as an example is implemented as a distance control device 8 (known by the applicant under “Distronic") which, depending on the distance to a vehicle in front, carries out braking interventions in order to maintain a predetermined safety distance.
  • a driving system device 6, called “Staumatic”, is also possible as a comfort system device, which enables the vehicle to drive autonomously in a traffic jam, with automatic steering and braking.
  • the warning system device provided according to the figure is a tire pressure warning device 9, which warns the driver acoustically and / or optically and / or haptically of excessively low or too high air pressure in one of the tires of the vehicle.
  • a danger point warning device could also be provided, which warns the driver of bends, confusing intersections or the like if the longitudinal vehicle speed is not adapted to the relevant danger point.
  • the danger point can e.g. can be recognized in advance using GPS.
  • comfort and warning system devices are also known, which can be provided as driving system device 6 in any number and in any combination in the vehicle, deviating from the exemplary embodiment shown.
  • the driving system devices 6 each have one or more sensors 10, which are only shown schematically in the figure.
  • the brake-steering assistance device 7 has, for example, at least one radar sensor 11 for detecting conditions around the vehicle.
  • the distance control device 8 has a radar sensor 12a for determining the distance to the vehicle in front and a longitudinal vehicle speed sensor 12b.
  • the tire pressure warning device 10 includes a plurality of tire pressure sensors 13 for measuring the tire pressure in each of the tires of the vehicle.
  • the driving system devices 6 furthermore each have a driving system control device 14 or 15 or 16, which is connected to a coordination device 18 via an electrical first conductor arrangement 19.
  • Each driving system control unit 14, 15, 16 can be separately connected to the coordination device 18 or the first conductor arrangement 19 can be designed as a bus system, via which the driving system devices 6 and the coordination device 18 can communicate.
  • a driving state control or control device 22 is electrically connected to the coordination device 18, which is formed, for example, by a driving dynamics control device 23.
  • the vehicle dynamics control device 23 is, for example, the ESP control device already present in the applicant's vehicles.
  • the coordination device 18 can be integrated with the driving state control device 22 and / or the driving system control devices 14, 15, 16 of the driving system devices 6 in a central unit 24. According to the figure, in the preferred exemplary embodiment, the coordination device 18, the driving state control or control device 22 designed as a driving dynamics control device 23 and the driving system control devices 14, 15, 16 are combined as one component in the central unit 24, which is shown schematically by a broken line.
  • the vehicle can have a plurality of actuator devices 26 for influencing the vehicle movement in the longitudinal direction (x direction), in the transverse direction (y direction) and in the vertical direction (z direction) of the vehicle.
  • a plurality of actuator devices 26 for influencing the vehicle movement in the longitudinal direction (x direction), in the transverse direction (y direction) and in the vertical direction (z direction) of the vehicle.
  • the braking device 27, steering device 28 and motor control device 29 are connected to the driving dynamics control device 23 for communication by means of an electrical second conductor arrangement 30.
  • the actuator devices 26 can also have an active spring-damper device, a transmission control device or the like. Combinations of any controllable actuator devices 26 in any number come into consideration.
  • a sensor arrangement 34 is provided, which, according to the example, is connected to the coordination device 18 and the driving dynamics control device 23 via an electrical third conductor arrangement 35.
  • the sensor arrangement 34 comprises sensors for determining the yaw angular velocity, the longitudinal vehicle speed, the longitudinal vehicle acceleration, the lateral vehicle acceleration, the wheel speeds, and the steering wheel torque.
  • any driving state information that the coordination device 18 and / or the driving dynamics control device 23 can be determined by means of the sensor arrangement 34.
  • the vehicle acceleration in the z direction (direction of the vertical axis of the vehicle), the steering wheel angle, the vehicle transverse speed or the vehicle speed in the z direction can also be determined in the sensor arrangement 34 and transmitted to the coordination device 18 and the driving dynamics control device 23 as information about the current driving state of the vehicle become.
  • the sensors of the sensor arrangement 34 can at least partly also serve as sensors 10 for the driving system devices 6 or vice versa, if redundancy should not be desired for safety reasons.
  • the vehicle longitudinal Speed sensor 12b of the distance control device 8 also serve as a sensor of the sensor arrangement 34.
  • an operating arrangement 36 which serves for the manual specification of driving parameters.
  • the driver can use e.g. influence the steering behavior (degree of directness of the steering, steering ratio), the pedal characteristics, the engine control, etc. in order to be able to choose a sporty, comfortable or other vehicle design variant.
  • the driver can be given a choice between different modes such as "Sport”, “Comfort”, “Standard”, etc. to adjust the overall tuning of the vehicle.
  • the operating arrangement 36 is electrically connected to the coordination device 18 and transmits input signals to the coordination device 18.
  • an optical conductor arrangement e.g. can be provided by means of fiber optic cables.
  • Another arbitrary transmission arrangement between the devices connected by the provided conductor arrangements is also possible in principle.
  • the driving system devices 6 generate output signals as a function of the driving state variables determined by the sensors 10 of the respective driving system device 6.
  • the driving state variables determined by the various driving system devices 6 depend on the specific function of the respective driving system device 6, with each driving system device 6 being assigned only a partial safety aspect of the overall driving state of the vehicle for monitoring, control or regulation.
  • the distance control device 8 can determine the distance to the vehicle in front and the relative speed of the two vehicles.
  • the tire pressure warning device determines the air pressure in all tires of the vehicle and the brake-steering assistance device 7 determines the position of obstacles and the relative speed of the vehicle relative to the detected obstacles.
  • the driving system device 6 determines a driving state variable that is not in a correspondingly permissible range, then the driving system device 6 in question generates an output signal in order to convert this driving state variable back into a permissible value range or to take this driving state variable into account during control interventions by the driving state control, so that a stable driving condition can be guaranteed.
  • These output signals are in the form of a control signal and / or a parameter signal.
  • Both the parameter signal and the control signal contain an access request to one or more parameters or to one or more actuator devices 26 and also contain the values that are to be assigned to the parameters or the values for loading the relevant actuator devices 26.
  • the output signals present as control signals contain information on influencing the vehicle movement by means of an intervention by one or more actuator devices 26.
  • a driving system device 6 can request the application of the braking device 27 by means of a corresponding control signal in order to reduce the longitudinal vehicle speed, or the application of the steering device can be requested by a control signal in order to set a specific steering angle.
  • the control signals of the driving system devices 6 can be assigned to each available actuator device 26 of the vehicle and request a specific application or a specific intervention of the actuator devices 26.
  • the output signals present as a parameter signal represent, for example, a change request for the control parameters of the vehicle dynamics control device 23 in order to adapt the control of the vehicle dynamics state to the current driving or vehicle conditions.
  • a parameter signal can be generated that if a driving state variable determined by one of the driving system devices 6 is not within a predeterminable permissible value range.
  • a change request for changing the control parameters of the driving dynamics control device 23 in the form of a corresponding parameter signal of the tire pressure warning device can be present, for example, if a too low or too high tire pressure in one of the tires or a very different tire pressure in two tires has been determined. This affects the driving behavior of the vehicle, so that the tire pressure warning device requests an adaptation of the parameters of the driving dynamics control device 23 for the control intervention. Any other parameter signals of other driving system devices 6 are also possible and depend on the individual case.
  • the output signals are transmitted to the coordination device 18 by means of the first conductor arrangement 19.
  • the coordination device 18 serves to evaluate the output signals caused by the driving system devices 6 and to generate a control result signal or a parameter result signal.
  • control result signal and the parameter result signal are transmitted from the coordination device 18 to the vehicle dynamics control device 23, the vehicle dynamics control device 23 causing actuating signals for the actuator devices 26 as a function of the control result signal.
  • the control result signal can either correspond to the target driving state and define the desired vehicle movement in three-dimensional space, or it can correspond to the target driving state change and thus define the desired vehicle movement change in three-dimensional space.
  • the driving dynamics control is taken into account in such a way that the actuating signals for the actuator devices 26 already contain the loads required by the driving dynamics control device 23.
  • the control signals are thus formed from the control result signal and correction signals determined by the driving dynamics control device 23 when evaluating the control result signal as a function of the driving state of the vehicle.
  • the control signals can either correspond to the control result signal if there is a stable dynamic driving state and therefore no correction of the control result signal by the driving dynamics control device 23 is necessary (correction signals of the driving dynamics control device 23 are zero). Otherwise, in the case of an unstable driving state determined by the driving dynamics control device 23, the actuating signals are generated from the superimposition of the control result signal with the determined correction signals.
  • the driving dynamics control device 23 serves here, so to speak, as a superordinate to the individual driving system devices 6.
  • the driving dynamics control device 23 assesses the driving state of the vehicle as a whole, whereas the driving system devices 6 only evaluate certain driving state variables that serve as a measure of a specific partial aspect, such as the safety distance from the vehicle in front or the correct tire pressure, of the overall driving state of the vehicle.
  • the monitoring function of the vehicle dynamics control device 23 can at least partially already be implemented in the coordination device 18, since this is also connected to the sensor arrangement 34 according to the figure and can evaluate the sensor signals. Sufficient information about the driving state of the vehicle is therefore available to the coordination device 18.
  • the coordination device 18 also produces the parameter result signal if at least one parameter signal is also present as the output signal of one of the driving system devices 6.
  • the parameter result signal changes the control parameters of the driving dynamics control device 23.
  • variable control parameters of the driving dynamics control device 23 is provided for adaptation to the current driving state of the vehicle, e.g. reduced tire pressure.
  • all variable control parameters of the vehicle dynamics control device 23 can be changed by means of the parameter result signal.
  • the variable control parameters are those parameters which have a noticeable influence on the driving state and which can change during operation of the vehicle, such as the tire pressure or the spring-damper characteristic of a spring-damper device (not shown in more detail).
  • the fourth conductor arrangement can also be designed as a bus or in the form of several individual connections, as an electrical or optical transmission link.
  • the control result signal is determined as a function of the control signals of the driving system devices 6 present at the time of calculation and the parameter result signal is determined as a function of the parameter signals of the driving system devices 6 present at the time of calculation in the coordination device 18.
  • control result corresponds to nal or the parameter result signal of this control or parameter signal.
  • a weighting and / or prioritization of the output signals present at the same time is only necessary if these output signals come from different driving system devices 6.
  • the control signals are weighted, for example.
  • the distance control device 8 can request a braking operation with only a small braking force in order to correct the vehicle distance from the vehicle in front, while the brake-steering assistance device 7 requests a braking operation with the maximum possible braking force on the basis of a detected obstacle on the road.
  • the coordination device 18 uss evaluate the different control signals and form a control result signal for the corresponding application of the braking device 27.
  • weighting and / or prioritization of the output signals may be necessary if there are control signals from different driving system devices 6 that request the actuation of different actuator devices 26. This is the case if a simultaneous application of different actuator devices 26 with the application values according to the control signals would lead to an unstable driving state of the vehicle. It is possible, for example, that the brake-steering assistance device 7 requests a large steering angle in order to avoid an obstacle, while the distance control device 8 requests a braking operation with maximum braking force due to another vehicle appearing in front of the vehicle. In this case too, the control signals must be prioritized and / or weighted in order to maintain the stable driving state. Although a single control signal from a single driving system device 6 can request the application of different actuator devices 26, the corresponding application values are already coordinated with one another, so that a further evaluation can be omitted.
  • a collision of parameter signals can be analogous to the collisions of the control signals described above, e.g. then occur when the parameter signals of different driving system devices 6 request a correction of the same control parameters of the driving dynamics control device 23 or if the change requests relate to different control parameters, but this could result in an unstable driving state because the control parameters would no longer be coordinated with one another after the required change.
  • Such collisions are avoided by prioritizing or weighting the parameter signals, as is also the case for the control signals.
  • control result signal is determined in the coordination device 18 by forming the sum of the weighted control signals of the driving system devices 6 according to the formula:
  • Si are the control signals of the driving system devices 6.
  • n the number of available driving system devices 6
  • the output signals of the driving system devices 6 of a group of driving system devices with a high group priority are weighted more strongly than the output signals which come from the driving system devices 6 of a group of driving system devices with a low group priority.
  • the number of groups of driving system devices formed is in principle arbitrary.
  • the driving system devices 6 could be divided into three groups: a safety system device group to which all safety-relevant driving system devices 6 are assigned, a comfort system device group to which the driving system devices 6 that only concern the comfort of the driver and a warning system device group to which the driving system devices 6 are assigned, which do not request actuation of actuator devices 26 influencing the vehicle movement, but rather warn the driver of a current impermissible driving state and, if necessary, request the control parameters to be adapted to this driving state with the aid of parameter signals.
  • the security system facilities can the highest group priority and the warning devices the lowest group priority.
  • the driving system devices 6 can also be divided into different groups, or a different priority assignment is possible.
  • the group priority of the groups of driving system devices whose driving system devices have generated at least one non-zero control signal is compared and only the control signals that are assigned to the driving system devices 6 of the group with the comparatively highest group priority are taken into account when determining the control result signal.
  • the determination of the parameter result signal as a function of the parameter signals of the driving system devices 6 can take place in a corresponding application of the determination of the control result signal.
  • 6 driving system priorities can be assigned to the driving system devices.
  • the driving system priorities also serve to weight the output signals of the driving system devices 6 differently depending on the driving system priority when determining the control result signal and the parameter result signal.
  • the driving system devices 6 can be assigned different driving system priorities to a common group of driving system devices his. If the driving system devices 6 are not subdivided into different groups, a driving system priority can be assigned to each individual driving system device 6. The output signals of the driving system devices 6 with the same driving system priority equally weighted when calculating the parameter result signal or the control result signal.
  • the coordination device 18 takes further information into account for determining the two result signals.
  • the coordination device 18 receives this information in the form of sensor signals from the sensor arrangement 34 and in the form of input signals from the operating arrangement 36.
  • the information from the input and the sensor signals can serve as additional evaluation criteria when determining the weight factors.
  • they can also be included directly in the calculation of the control result signal and / or the parameter result signal by means of the coordination device 18 and can therefore be treated by the coordination device 18 as an output signal of the driving system devices 6.
  • the coordination of the vehicle currently selected by the driver and the resulting setting values of the vehicle devices can be determined in the coordination device 18.
  • the "steering gear ratio" which is variably adjustable in an electronic steering device, or the damping factor of a spring-damper device (not shown in more detail) that is currently set can be determined. Since these setting values influence the driving behavior of the vehicle, they must be known when assessing the driving condition (stability or instability). To maintain or regain a stable driving state, certain output signals can therefore be weighted more or less, taking into account the setting values of the vehicle devices that are manually influenced by the driver using the operating arrangement.
  • the sensor signals of the sensor arrangement 34 contain information about the overall driving state of the vehicle. For its stability In order to maintain or achieve the quality, the output signals are weighted in accordance with the example when determining the control result signal or the parameter result signal as a function of the sensor signals of the sensor arrangement 34. Which of the output signals is weighted stronger and which is weighted less depends on the individual case, i.e. on the specific driving state.
  • the coordination device 18 can also serve as a superordinate guard to the driving system devices 6 in order to coordinate the individual access requests of the driving system devices 6 with regard to a stable overall driving state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)

Abstract

Es handelt sich bei der Erfindung um ein Verfahren und eine Vorrichtung zur Koordination mehrerer Fahrsystemeinrichtungen eines Fahrzeugs mittels einer Koordinationseinrichtung. Die Fahrsystemeinrichtungen erzeugen in Abhängigkeit vom aktuellen Fahrzustand des Fahrzeugs Ausgangssignale. In der Koordinationseinrichtung werden aus den Ausgangssignalen ein Steuerergebnissignal erzeugt, das als Sollwertvorgabe zur unmittelbaren Beeinflussung des Fahrzustandes mittels der Aktuatoreinrichtungen des Fahrzeugs dient und/oder ein Parameterergebnissignal erzeugt, das zur Beeinflussung der Regel- und/oder Steuerparameter einer Fahrzustandsregelung bzw. Fahrzustandssteuerung dient.

Description

Verfahren und Vorrichtung zur Koordination mehrerer Fahrsystemeinrichtungen eines Fahrzeugs
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Koordination mehrerer Fahrsystemeinrichtungen eines Fahrzeugs.
Bei einer solchen Fahrsystemeinrichtung handelt es sich beispielsweise um eine Abstandsregeleinrichtung zur Regelung des Abstands relativ zu einem vorausfahrenden Fahrzeug (bei der Anmelderin unter dem Begriff "Distronic" bekannt) , um eine Geschwindigkeitsregeleinrichtung (Tempomat) , um eine Kollisions- vermeidungseinrichtung z.B. mittels Erkennung entgegenkommender Fahrzeuge beim Überholen, um ein Reifendruckkontrollsystem, um eine Kurvenwarneinrichtung zur rechtzeitigen Warnung vor Kurven bei zu hoher Fahrzeuglängsgeschwindigkeit, die in einer weiteren Ausbaustufe auch Brems- und/oder Lenkeingriffe verursachen kann, um ein Durchfahren einer Kurve mit unzulässig hoher Geschwindigkeit zu verhindern oder um eine beliebige andere Fahrsystemeinrichtung, die dem Fahrer als Assistenzeinrichtung zur Verfügung gestellt werden kann.
Derartige Fahrsystemeinrichtungen können zum einen lediglich eine Warnfunktion ausführen, um den Fahrer auf einen bestimmten Fahrzustand hinzuweisen, z.B. wenn der Reifendruck nicht in einem erlaubten Bereich liegt. Darüberhinaus besteht jedoch auch die Möglichkeit, dass die Fahrsystemeinrichtungen ohne einen manuellen Eingriff des Fahrers selbsttätig den Fahrzustand z.B. durch einen Lenk- oder Bremseingriff beeinflussen. Zum Beispiel kann in einigen Fahrzeugen der Anmelderin bereits eine Abstandsregeleinrichtung vorgesehen sein, das das Fahrzeug bei zu geringem Abstand zum Vorausfahrenden automatisch abbremst. Sol- len nun mehrere Fahrsystemeinrichtungen in ein Fahrzeug integriert werden muss sichergestellt sein, dass Zugriffe auf die Aktuatoreinrichtungen des Fahrzeugs - z.B. die Bremseinrichtung oder Lenkeinrichtung - die durch verschiedene Fahrsystemeinrichtungen ausgelöst werden, einerseits ein sicheres Fahren gewährleisten und andererseits die Aufrechterhaltung der korrekten Funktionen der verschiedenen Fahrsystemeinrichtungen ermöglichen.
Ausgehend hiervon liegt der vorliegenden Erfindung die Aufgabe zugrunde ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens zu schaffen, um eine Integration mehrerer Fahrsystemeinrichtungen in ein Fahrzeug unter Gewährleistung eines sicheren Fahrzustandes zu ermöglichen.
Diese Aufgabe wird gemäß der Merkmale der Ansprüche 1 und 16 gelöst .
Die im Fahrzeug vorgesehenen Fahrsystemeinrichtungen erzeugen Ausgangssignale in Abhängigkeit von jeweils ermittelten Fahrzu- standsgrößen. Die Ausgangssignale stellen Anforderungssignale zur Beeinflussung des Fahrzustandes bzw. der Fahrzustandsrege- lung oder der Fahrzustandssteuerung dar. Sie werden einer Koordinationseinrichtung zugeführt. Diese erzeugt in Abhängigkeit von den gleichzeitig vorliegenden Ausgangssignalen ein Steuerergebnissignal und/oder ein Parameterergebnissignal. Das Steuerergebnissignal dient als Sollwertvorgabe zur Beeinflussung des aktuellen Fahrzustandes Bzw. der aktuellen Fahrzeugbewegung. In Abhängigkeit vom Steuerergebnissignal werden die betreffenden Aktuatoreinrichtungen des Fahrzeugs betätigt, um die gewünschte Fahrzeugbewegung bzw. den gewünschten Fahrzustand zu erreichen. In Abhängigkeit vom Parameterergebnissignal können die Steuer- bzw. Regelparameter zur Fahrzustandssteuerung bzw. Fahrzustandsregelung, beispielsweise Schwellwerte o- der das Fahrzeug kennzeichnende Parameter, verändert werden, so dass eine an den aktuellen Fahrzustand adaptierbare Steuerung bzw. Regelung des Fahrzustandes erreichbar ist. Der gleichzei- tige, unkoordinierte Zugriff der Fahrsystemeinrichtungen auf die Aktuatoreinrichtungen oder das Blockieren einer Zugriffsanforderung einer Fahrsystemeinrichtung lediglich wegen des Vor- liegens einer zeitlich früheren Zugriffsanforderung auf dieselben Parameter oder dieselben Aktuatoreinrichtungen ist beim erfindungsgemäßen Verfahren und bei der erfindungsgemäßen Vorrichtung ausgeschlossen.
Die Fahrsystemeinrichtungen können gleichzeitig auch hinsichtlich der an den Fahrer zur Information über den Fahrzustand vermittelten Rückmeldung koordiniert werden. Dies ist Gegenstand der am gleichen Tag von der Anmelderin hinterlegten Patentanmeldung mit dem Titel "Verfahren und Vorrichtung zur Rückmeldung des Fahrzustandes eines Fahrzeugs an den Fahrer" (internes Az : P033161/DE/1) , auf die hier vollinhaltlich Bezug genommen wird.
Vorteilhafte Ausgestaltungen des Verfahrens und der Vorrichtung gemäß der Erfindung gehen aus den jeweiligen abhängigen Ansprüchen hervor.
Zweckmäßigerweise entspricht das Steuerergebnissignal dem Soll- Fahrzustand des Fahrzeugs, wobei das Steuerergebnissignal die Soll-Fahrzeugbewegung im dreidimensionalen Raum beschreibt. Das Steuerergebnissignal definiert somit die gesamte gewünschte räumliche Fahrzeugbewegung.
Alternativ hierzu besteht auch die Möglichkeit, dass das Steuerergebnissignal der Soll-Fahrzustandsänderung für das Fahrzeug entspricht, wobei das Steuerergebnissignal die Soll-Fahrzeugbewegungsänderung im dreidimensionalen Raum beschreibt. Hierbei wird nur die gewünschte Bewegungsänderung des Fahrzeugs als Sollwert vorgegeben. Die Bewegungsänderung ist für alle Bewegungsrichtungen im dreidimensionalen Raum definiert.
Das Steuerergebnissignal kann zur Ansteuerung der betreffenden Aktuatoreinrichtungen unmittelbar an diese Aktuatoreinrichtun- gen übermittelt werden, um die Fahrzeugbewegung zu beeinflussen. Es ist dabei möglich eine separate Fahrdynamikregelung zu überlagern, die in bekannter Weise von einem heutzutage üblichen Fahrzustands-Regel- oder Steuergerät (z.B. ESP-Regelgerät) ausgeführt werden kann.
Bei einer anderen Ausführungsvariante wird das Steuerergebnissignal an ein Fahrzustands-Regel- oder Steuergerät, insbesondere Fahrdynamikregelgerät, übermittelt, das zur Beeinflussung der Fahrzeugbewegung Stellsignale für die Aktuatoreinrichtungen hervorruft. Somit ist lediglich eine mittelbare Übermittlung des Steuerergebnissignals an die Aktuatoreinrichtungen vorgesehen. Das Fahrzustands-Regel- oder Steuergerät bewertet das Steuerergebnissignal darauf, ob bei einer dem Steuerergebnissignal entsprechenden Ansteuerung der Aktuatoreinrichtung ein ausreichend stabiler Gesamtfahrzustand gegeben ist und erzeugt in Abhängigkeit vom Bewertungsergebnis nur Stellsignale für die Aktuatoreinrichtungen, die ein insgesamt stabiles Fahrverhalten gewährleisten. Das Fahrzustands-Regel- oder Steuergerät dient mithin dazu bereits vor der Ansteuerung der Aktuatoreinrichtungen zu prüfen, ob sich durch die vorgesehene Ansteuerung gemäß dem Steuerergebnissignal ein instabiler Fahrzustand einstellen könnte, wobei dann eine entsprechend korrigierte Ansteuerung der Aktuatoreinrichtungen durch die Stellsignale erfolgt.
Es ist auch vorteilhaft, wenn das Parameterergebnissignal an ein Fahrzustands-Regel- oder Steuergerät, insbesondere Fahrdynamikregler, zur Beeinflussung der Steuer- bzw. Regelparameter des Fahrzustands-Regel- oder Steuergeräts übermittelt wird. Das Parameterergebnissignal beeinflusst nicht direkt die Ansteuerung der Aktuatoreinrichtungen und somit der Fahrzeugbewegung, sondern dient dazu das Regel- bzw. Steuerverhalten des Fahrzustands-Regel- oder Steuergeräts zu verändern durch Variation der Regel- bzw. Steuerparameter wie etwa Auslöseschwellwerte o- der sonstiger das Fahrverhalteh des Fahrzeugs charakterisierende Parameter. Somit ist eine adaptive Regelung bzw. Steuerung realisierbar. Bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals kann eine Priorisierung und/oder Gewichtung mehrerer vorliegender Ausgangssignale dann erfolgen, wenn diese Ausgangssignale von unterschiedlichen Fahrsystemeinrichtungen stammen. Durch diese Maßnahme ist es möglich mehrere gleichzeitig vorliegende Zugriffsanforderungen mehrerer Fahrsystemeinrichtungen auf dieselben Aktuatoreinrichtungen oder dieselben Parameter zu koordinieren. Das Steuerergebnissignal bzw. das Parameterergebnissignal berücksichtigen dabei die Wichtigkeit der vorliegenden Ausgangssignale für die Fahrsicherheit, wobei eine Gewichtung bzw. Priorisierung entsprechend der Bewertung der Wichtigkeit der Ausgangssignale im Hinblick auf den momentanen Fahrzustand des Fahrzeugs erfolgt.
Um einen sicheren Fahrzustand des Fahrzeugs zu ermöglichen, können bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals zusätzliche Sensorsignale, die Informationen über den aktuellen Fahrzustand des Fahrzeugs enthalten und/oder Eingangssignale, die manuellen Vorgaben des Fahrers entsprechen, berücksichtigt werden. Die Priorisierung bzw. Gewichtung der Ausgangssignale kann dann unter Berücksichtigung der zusätzlichen Informationen der Sensorsignale bzw. der Eingangssignale erfolgen, wobei die Informationen aus den zusätzlichen Eingangssignalen bzw. Sensorsignalen als Bewertungskriterien für die Gewichtung und/oder Priorisierung der Ausgangssignale beim Bestimmen der beiden Ergebnissignale dienen. Die Sensorsignale können beispielsweise aktuelle Daten ü- ber die Gierwinkelgeschwindigkeit und/oder die Fahrzeugbeschleunigung und/oder die Fahrzeuggeschwindigkeit und/oder die Raddrehzahlen und/oder das Lenkradmoment und/oder den Lenkradwinkel enthalten. Es versteht sich, dass die Fahrzeugbeschleunigung bzw. die Fahrzeuggeschwindigkeit eine dreidimensionale Vektorgröße sein kann, um die Geschwindigkeit bzw. die Beschleunigung in alle Bewegungsrichtungen des Fahrzeugs angeben zu können, z.B. anhand eines bei Fahrzeugen üblicherweise verwendeten, fahrzeugfesten kartesischen Koordinatensystems. Zur Ermittlung der Gewichtung der verschiedenen Ausgangssignale können die Fahrsystemeinrichtungen in mehrere Gruppen mit unterschiedlich hohen Gruppenprioritäten unterteilt sein, wobei die Ausgangssignale der Fahrsystemeinrichtungen einer Gruppe mit höherer Gruppenpriorität bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals stärker ge- wichtet werden als die Ausgangssignale der Fahrsystemeinrichtungen einer Gruppe mit niedrigerer Gruppenpriorität. Dabei ist es z.B. möglich die einen automatischen Sicherheitseingriff anfordernden Fahrsystemeinrichtungen einer Gruppe mit hoher Gruppenpriorität und die lediglich zur Warnung des Fahrers dienenden Fahrsystemeinrichtungen einer Gruppe mit niedriger Gruppenpriorität zuzuordnen.
Die Ausgangssignale der Fahrsystemeinrichtungen liegen zweckmäßigerweise in Form von Steuersignalen zur Anforderung einer Beaufschlagung von Aktuatoreinrichtungen oder Parametersignalen zur Anforderung einer Beeinflussung der Regel- und/oder Steuerparameter der Fahrzustandsregelung bzw. Fahrzustandssteuerung vor, wobei das Steuerergebnissignal in Abhängigkeit von den Steuersignalen und das Parameterergebnissignal in Abhängigkeit von den Parametersignalen bestimmt wird.
Eine Möglichkeit zur Bestimmung des Steuerergebnissignals bzw. des Parameterergebnissignals besteht in der Bildung der Summe der mit jeweils einem Gewichtsfaktor gewichteten Steuer- bzw. Parametersignale der Fahrsystemeinrichtungen, wobei insbesondere die Summe der einzelnen Gewichtsfaktoren gleich Eins ist und die Gewichtsfaktoren Werte im Bereich von Null bis Eins annehmen können. Soll eine reine Prioritätsbewertung der vorliegenden Ausgangssignale erfolgen ist es möglich, bei der Bewertung der beiden Ergebnissignale jeweils einen Gewichtsfaktor gleich Eins und alle anderen Gewichtsfaktoren gleich Null zu setzen.
Die Gewichtsfaktoren der Ausgangssignale können in Abhängigkeit von einer der betreffenden Fahrsystemeinrichtung zugeordneten Fahrsystempriorität vorgegeben werden. Unterschiedliche Fahrsystemprioritäten können entweder im Bezug auf die Fahrsystemeinrichtungen derselben Gruppe von Fahrsystemeinrichtungen oder im Bezug auf alle vorhandenen Fahrsystemeinrichtungen vergeben werden.
Bei einer einfach zu realisierenden Variante zur Bestimmung des Steuerergebnissignals bzw. des Parameterergebnissignals werden lediglich die Ausgangssignale der Fahrsystemeinrichtungen von einer einzigen Gruppe berücksichtigt. Hierbei können insbesondere die Gruppenprioritäten der Gruppen von Fahrsystemeinrichtungen verglichen werden, deren Fahrsystemeinrichtungen zum Berechnungszeitpunkt Ausgangssignale hervorgerufen haben. Die Ausgangssignale der Fahrsystemeinrichtungen aus der Gruppe von Fahrsystemeinrichtungen mit der vergleichsweise höchsten Gruppenpriorität dienen dann zur Bestimmung der beiden Ergebnissignale .
Bei einer zweckmäßigen Ausführung der erfindungsgemäßen Vorrichtung ist die Koordinationseinrichtung zusammen mit den Fahrsystemeinrichtungen und/oder dem Fahrzustands-Regel- oder Steuergerät in einer Zentraleinheit integriert ausgeführt. Die gesamte Vorrichtung benötigt hierbei wenig Raum und ist des weiteren aufgrund der kurzen elektrischen Verbindungen zwischen den Komponenten besser gegen Störungen geschützt, wie z.B. gegen äußere elektromagnetische Felder.
Weiterhin ist es vorteilhaft, wenn die Koordinationseinrichtung mit einer Sensoranordnung und/oder einer Bedienanordnung verbunden ist, so dass die von der Sensoranordnung erzeugten, Informationen über den aktuellen Fahrzustand des Fahrzeugs enthaltenden Sensorsignale und/oder die manuellen Einstellungen des Fahrers entsprechenden Eingangsisignale der Bedienanordnung zur Berücksichtigung bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals an die Koordinationseinrichtung übertragbar sind. Die Koordinationseinrichtung erhält dabei zusätzliche Informationen bzw. Daten der Sensoran- Ordnung über den aktuellen Fahrzustand des Fahrzeugs, unabhängig von den Ausgangssignalen der Fahrsystemeinrichtungen. Damit kann die Gewährleistung der Stabilität des Fahrzustandes weiter verbessert werden, da der Koordinationseinrichtung mehr Informationen zur Verfügung stehen als den einzelnen Fahrsystemeinrichtungen.
Zu Vermeidung zusätzlicher bzw. redundanter Sensoren besteht hierbei die Möglichkeit, dass einer oder mehrere der Sensoren der Sensoranordnung auch als Sensor für eine oder mehrere der Fahrsystemeinrichtungen Verwendung findet.
Im Folgenden wird das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung anhand der beigefügten Zeichnung näher erläutert. Die einzige Figur zeigt ein Blockschaltbild einer Ausführungsform der erfindungsgemäßen Vorrichtung.
In der Figur ist ein Blockschaltbild der erfindungsgemäßen Vorrichtung 5 dargestellt, die zur Koordination mehrerer Fahrsystemeinrichtungen β in einem nicht näher dargestellten Fahrzeug - insbesondere Kraftfahrzeug bzw. PKW - dient. Die Anzahl der vorhandenen Fahrsystemeinrichtungen 6 ist grundsätzlich beliebig und hängt von der Ausstattung des Fahrzeugs ab.
Die Fahrsystemeinrichtungen 6 sind beispielsgemäß in Si- cherheits-, Komfort- und Warnsystemeinrichtungen unterteilt und könnten auch als Fahrerassistenzeinrichtungen bezeichnet werden. Sie sind zur Unterstützung des Fahrers in bestimmten Fahrzuständen oder Fahrsituationen des Fahrzeugs vorhanden.
Die beim Ausführungsbeispiel vorgesehene Sicherheitssystemeinrichtung ist von einer Brems-Lenk-Assistenzeinrichtung 7 (sogenannter "Advanced Brake Assisst") gebildet, die in Abhängigkeit von erkannten Hindernissen auf der Fahrbahn automatisch Bremsbzw. Lenkeingriffe ausführen kann, um eine Kollision mit dem Hindernis zu vermeiden. Als Sicherheitssystemeinrichtung kommt des weiteren eine Kurvensicherheitseinrichtung ("Intelligent Predictive System") in Betracht, die Kurven über GPS im voraus erkennt und gegebenenfalls die Geschwindigkeit des Fahrzeugs mittels eines Bremseingriffs rechtzeitig vor der Kurve an den Kurvenradius anpasst, um instabile Fahrzustände des Fahrzeugs beim Durchfahren einer Kurve zu verhindern.
Die beispielsgemäß vorhandene Komfortsystemeinrichtung ist als Abstandsregeleinrichtung 8 realisiert (bei der Anmelderin unter "Distronic" bekannt) , die abhängig vom Abstand zu einem vorausfahrenden Fahrzeug Bremseingriffe vornimmt, um einen vorgegebenen Sicherheitsabstand einzuhalten. Als Komfortsystemeinrich- tung kommt auch eine als "Staumatic" bezeichnete Fahrsystemeinrichtung 6 in Frage, die das autonome Fahren des Fahrzeugs im Stau ermöglicht, wobei automatisch gelenkt und gebremst wird.
Bei der gemäß der Figur vorgesehenen Warnsystemeinrichtung handelt es sich um eine Reifendruckwarneinrichtung 9, die den Fahrer akustisch und/oder optisch und/oder haptisch vor einem zu niedrigen oder zu hohen Luftdruck in einem der Reifen des Fahrzeugs warnt. Anstelle oder zusätzlich zur Reifendruckwarneinrichtung 9 könnte auch eine Gefahrenstellenwarneinrichtung vorgesehen sein, die den Fahrer vor Kurven, unübersichtlichen Kreuzungen oder ähnlichem warnt, wenn die Fahrzeuglängsgeschwindigkeit der betreffenden Gefahrenstelle nicht angepasst ist. Die Gefahrenstelle kann z.B. mittels GPS im voraus erkannt werden.
Es sind überdies weitere Sicherheits-, Komfort- und Warnsystemeinrichtungen bekannt, die als Fahrsystemeinrichtung 6 abweichend vom dargestellten Ausführungsbeispiel in beliebiger Anzahl und in beliebiger Kombination im Fahrzeug vorgesehen sein können.
Die Fahrsystemeinrichtungen 6 weisen jeweils einen oder mehrere Sensoren 10 auf, die in der Figur lediglich schematisch dargestellt sind. Die Brems-Lenk-Assistenzeinrichtung 7 verfügt z.B. über mindestens einen Radarsensor 11 zum Detektieren von Hin- dernissen in der Umgebung des Fahrzeugs. Die Abstandsregeleinrichtung 8 weist einen Radarsensor 12a zur Bestimmung des Ab- standes zum vorausfahrenden Fahrzeug und einen Fahrzeuglängsge- schwindigkeitssensor 12b auf. Die Reifendruckwarneinrichtung 10 enthält mehrere Reifendrucksensoren 13 zum Messen des Reifendrucks in jedem der Reifen des Fahrzeugs.
Die Fahrsystemeinrichtungen 6 weisen des weiteren jeweils ein Fahrsystemsteuergerät 14 bzw. 15 bzw. 16 auf, die mit einer Koordinationseinrichtung 18 über eine elektrische erste Leiteranordnung 19 verbunden ist. Dabei kann jedes Fahrsystemsteuergerät 14, 15, 16 separat mit der Koordinationseinrichtung 18 in Verbindung stehen oder die erste Leiteranordnung 19 kann als Bussystem ausgebildet sein, über das die Fahrsystemeinrichtungen 6 und die Koordinationseinrichtung 18 kommunizieren können.
Mit der Koordinationseinrichtung 18 ist ein Fahrzustands-Regel- oder Steuergerät 22 elektrisch verbunden, das beispielsgemäß von einem Fahrdynamikregelgerät 23 gebildet ist. Als Fahrdyna- mikregelgerät 23 kommt beispielsweise das heutzutage in den Fahrzeugen der Anmelderin bereits vorhandene ESP-Regelgerät in Betracht.
Die Koordinationseinrichtung 18 kann mit dem Fahrzustands- Regel- oder Steuergerät 22 und/oder den Fahrsystemsteuergeräten 14, 15, 16 der Fahrsystemeinrichtungen 6 in einer Zentraleinheit 24 integriert sein. Gemäß der Figur sind beim bevorzugten Ausführungsbeispiel die Koordinationseinrichtung 18, das als Fahrdynamikregelgerät 23 ausgebildete Fahrzustands-Regel- oder Steuergerät 22 und die Fahrsystemsteuergeräte 14, 15, 16 als ein Bauteil in der Zentraleinheit 24 zusammengefasst, was schematisch durch eine gestrichelte Linie dargestellt ist.
Das Fahrzeug kann über mehrere Aktuatoreinrichtungen 26 zur Beeinflussung der Fahrzeugbewegung in Längsrichtung (x-Richtung) , in Querrichtung (y-Richtung) und in Hochrichtung (z-Richtung) des Fahrzeugs verfügen. Beim Ausführungsbeispiel bilden gemäß der Figur die Bremseinrichtung 27, die Lenkeinrichtung 28 und eine Motorsteuereinrichtung 29 die ansteuerbaren Aktuatoreinrichtungen 26. Bremseinrichtung 27, Lenkeinrichtung 28 und Motorsteuereinrichtung 29 sind mit dem Fahrdynamikregelgerät 23 zur Kommunikation mittels einer elektrischen zweiten Leiteranordnung 30 verbunden.
Es versteht sich, dass die Aktuatoreinrichtungen 26 auch eine aktive Feder-Dämpfer-Einrichtung, eine Getriebesteuereinrichtung oder dergleichen aufweisen können. Dabei kommen Kombinationen von beliebigen ansteuerbaren Aktuatoreinrichtungen 26 in beliebiger Anzahl in Betracht.
Zur Ermittlung von aktuellen Fahrzustandsinformationen ist eine Sensoranordnung 34 vorgesehen, die beispielsgemäß mit der Koordinationseinrichtung 18 und dem Fahrdynamikregelgerät 23 über eine elektrische dritte Leiteranordnung 35 verbunden ist. Die Sensoranordnung 34 umfasst Sensoren zur Bestimmung der Gierwinkelgeschwindigkeit, der Fahrzeuglängsgeschwindigkeit, der Fahrzeuglängsbeschleunigung, der Fahrzeugquerbeschleunigung, der Raddrehzahlen, und des Lenkradmomentes.
Grundsätzlich können mittels der Sensoranordnung 34 beliebige Fahrzustandsinformationen bestimmt werden, die die Koordinationseinrichtung 18 und/oder das Fahrdynamikregelgerät 23 benötigen. Z.B. kann auch die FahrZeugbeschleunigung in z-Richtung (Richtung der Hochachse des Fahrzeugs) , der Lenkradwinkel, die Fahrzeugquergeschwindigkeit oder die Fahrzeuggeschwindigkeit in z-Richtung in der Sensoranordnung 34 ermittelt und der Koordinationseinrichtung 18 und dem Fahrdynamikregelgerät 23 als Informationen über den momentanen Fahrzustand des Fahrzeugs übermittelt werden.
Die Sensoren der Sensoranordnung 34 können zumindest teilweise auch als Sensoren 10 für die Fahrsystemeinrichtungen 6 dienen bzw. umgekehrt, falls eine Redundanz aus Sicherheitserwägungen nicht gewünscht sein sollte. Z.B. kann der Fahrzeuglängsge- schwindigkeitssensor 12b der Abstandsregeleinrichtung 8 gleichzeitig auch als Sensor der Sensoranordnung 34 dienen.
Gemäß der Figur ist außerdem eine Bedienanordnung 36 vorhanden, die zur manuellen Vorgabe von Fahrparametern dient. Als Fahrparameter kann der Fahrer z.B. das Lenkverhalten (Maß an Direktheit der Lenkung, Lenkübersetzung) , die Pedalcharakteristiken, die Motorsteuerung, etc. beeinflussen, um eine sportliche, komfortable oder sonstige Fahrzeugauslegungsvariante wählen zu können. Dem Fahrer kann dabei zur Einstellung der Gesamtabstimmung des Fahrzeugs die Auswahl zwischen verschiedenen Modi wie "Sport", "Komfort", "Standard", etc. gegeben werden. Die Bedienanordnung 36 ist mit der Koordinationseinrichtung 18 elektrisch verbunden und übermittelt Eingangssignale an die Koordinationseinrichtung 18.
Es sei an dieser Stelle darauf hingewiesen, dass anstelle der elektrischen Leiteranordnungen 19, 30, 35 in Abwandlung zum bevorzugten Ausführungsbeispiel auch eine optische Leiteranordnung, z.B. mittels Glasfaserleiter, vorgesehen sein kann. Auch eine andere beliebige Übermittlungsanordnung zwischen den durch die vorgesehenen Leiteranordnungen verbundenen Einrichtungen ist .grundsätzlich möglich.
Die Fahrsystemeinrichtungen 6 erzeugen Ausgangssignale in Abhängigkeit der von den Sensoren 10 der jeweiligen Fahrsystemeinrichtung 6 ermittelten Fahrzustandsgrößen. Die von den verschiedenen Fahrsystemeinrichtungen 6 ermittelten Fahrzustandsgrößen hängen von der konkreten Funktion der jeweiligen Fahrsystemeinrichtung 6 ab, wobei jeder Fahrsystemeinrichtung 6 lediglich ein Teilsicherheitsaspekt des Gesamtfahrzustands des Fahrzeugs zur Überwachung, Steuerung oder Regelung zugeordnet ist. Beispielsweise kann die Abstandsregeleinrichtung 8 den Abstand zum vorausfahrenden Fahrzeug und die Relativgeschwindigkeit der beiden Fahrzeuge bestimmen. Die Reifendruckwarneinrichtung ermittelt den Luftdruck in allen Reifen des Fahrzeugs und die Brems-Lenk-Assistenzeinrichtung 7 bestimmt die Position von Hindernissen und die Relativgeschwindigkeit des Fahrzeugs relativ zu den detektierten Hindernissen. Wenn eine der Fahrsystemeinrichtungen 6 eine Fahrzustandsgröße ermittelt, die nicht in einem entsprechend zulässigen Bereich liegt, so erzeugt die betreffende Fahrsystemeinrichtung 6 ein Ausgangssignal, um diese Fahrzustandsgröße wieder in einen zulässigen Wertebereich zu überführen bzw. diese Fahrzustandsgröße bei Regeleingriffen der Fahrzustandsregelung zu berücksichtigen, so dass ein stabiler Fahrzustand gewährleistet werden kann.
Diese Ausgangssignale liegen in Form eines Steuersignals und/oder eines Parametersignals vor. Sowohl das Parametersignal als auch das Steuersignal beinhalten eine Zugriffsanforderung auf eine oder mehrere Parameter bzw. auf eine oder mehrere Aktuatoreinrichtungen 26 und beinhalten auch die Werte, die den Parametern zugeordnet werden sollen bzw. die Werte zur Beaufschlagung der betreffenden Aktuatoreinrichtungen 26.
Die als Steuersignale vorliegenden Ausgangssignale enthalten Informationen zur Beeinflussung der Fahrzeugbewegung mittels eines Einriffs einer oder mehrerer Aktuatoreinrichtungen 26.. Z.B. kann eine Fahrsystemeinrichtung 6 mittels eines entsprechenden Steuersignals die Beaufschlagung der Bremseinrichtung 27 anfordern, um die Fahrzeuglängsgeschwindigkeit zu verringern oder es kann durch ein Steuersignal die Beaufschlagung der Lenkeinrichtung angefordert werden, um einen bestimmten Lenkwinkel einzustellen. Grundsätzlich können die Steuersignale des Fahrsystemeinrichtungen 6 jeder zur Verfügung stehenden Aktua- toreinrichtung 26 des Fahrzeugs zugeordnet sein und eine bestimmte Beaufschlagung bzw. einen bestimmten Eingriff der Aktuatoreinrichtungen 26 anfordern.
Die als Parametersignal vorliegenden Ausgangssignale stellen beispielsgemäß eine Änderungsanforderung der Regelparameter des Fahrdynamikregelgeräts 23 dar, um die Regelung des Fahrdynamik- zustandes an die aktuell vorliegenden Fahr- oder Fahrzeugbedingungen anzupassen. Ein Parametersignal kann hervorgerufen wer- den, wenn eine von einer der Fahrsystemeinrichtungen 6 ermittelte Fahrzustandsgröße nicht innerhalb eines vorgebbaren zulässigen Wertebereichs liegt. Beim Ausführungsbeispiel kann ein Änderungswunsch zur Änderung der Regelparameter des Fahrdyna- mikregelgeräts 23 in Form von einem entsprechenden Parametersignal der Reifendruckwarneinrichtung z.B. dann vorliegen, wenn ein zu geringer oder zu hoher Reifendruck in einem der Reifen oder ein stark unterschiedlicher Reifendruck in zwei Reifen festgestellt wurde. Hierdurch wird das Fahrverhalten des Fahrzeugs beeinträchtigt, so dass die Reifendruckwarneinrichtung eine Anpassung der Parameter des Fahrdynamikregelgeräts 23 für den Regeleingriff anfordert. Beliebige weitere Parametersignale anderer Fahrsystemeinrichtungen 6 sind ebenfalls möglich und hängen vom Einzelfall ab.
Die Ausgangssignale werden mittels der ersten Leiteranordnung 19 an die Koordinationseinrichtung 18 übermittelt. Die Koordinationseinrichtung 18 dient dazu, die von den Fahrsystemeinrichtungen 6 hervorgerufenen Ausgangssignale zu bewerten und ein Steuerergebnissignal bzw. ein Parameterergebnissignal zu erzeugen.
Das Steuerergebnissignal und das Parameterergebnissignal werden gemäß der bevorzugten Ausführungsform von der Koordinationseinrichtung 18 an das Fahrdynamikregelgerät 23 übermittelt, wobei das Fahrdynamikregelgerät 23 in Abhängigkeit vom Steuerergebnissignal Stellsignale für die Aktuatoreinrichtungen 26 hervorruft. Das Steuerergebnissignal kann entweder dem Soll-Fahrzustand entsprechen und die gewünschte Fahrzeugbewegung im dreidimensionalen Raum definieren oder es kann der Soll-Fahrzustandsänderung entsprechen und somit die gewünschte Fahrzeugbewegungsänderung im dreidimensionalen Raum definieren.
Allerdings wird bei der Beaufschlagung der Aktuatoreinrichtungen 26 durch die vom Fahrdynamikregelgerät 23 in Abhängigkeit vom Soll-Fahrzustand oder von der Soll-Fahrzustandsänderung - die jeweils durch das Steuerergebnissignal vorgegeben sind - die Fahrdynamikregelung derart berücksichtigt, dass die Stellsignale für die Aktuatoreinrichtungen 26 bereits die vom Fahrdynamikregelgerät 23 geforderten Beaufschlagungen beinhalten. Mithin sind die Stellsignale aus dem Steuerergebnissignal und vom Fahrdynamikregelgerät 23 bei der Bewertung des Steuerergebnissignals in Abhängigkeit vom Fahrzustand des Fahrzeugs ermittelten Korrektursignalen gebildet.
Es sind daher zwei grundsätzlich Fälle zu unterscheiden. Die Stellsignale können entweder dem Steuerergebnissignal entsprechen, falls ein stabiler fahrdynamischer Zustand vorliegt und daher keine Korrektur des Steuerergebnissignals durch das Fahrdynamikregelgerät 23 notwendig ist (Korrektursignale des Fahrdynamikregelgerät 23 sind gleich Null) . Andernfalls, bei einem vom Fahrdynamikregelgerät 23 festgestellten instabilen Fahrzustand, werden die Stellsignale aus der Überlagerung des Steuerergebnissignals mit den ermittelten Korrektursignalen gtebil- det .
Das Fahrdynamikregelgerät 23 dient hierbei sozusagen als den einzelnen Fahrsystemeinrichtungen 6 übergeordneter Wächter. Das Fahrdynamikregelgerät 23 beurteilt dabei den Fahrzustand des Fahrzeugs im Gesamten, wohingegen die Fahrsystemeinrichtungen 6 nur bestimmte Fahrzustandsgrößen bewerten, die als Maß für einen konkreten Teilsaspekt, wie Sicherheitsabstand zum vorausfahrenden Fahrzeug oder ordnungsgemäßer Reifendruck, des Gesamtfahrzustands des Fahrzeugs dienen.
Die Überwachungsfunktion des Fahrdynamikregelgeräts 23 kann zumindest teilweise auch bereits in der Koordinationseinrichtung 18 implementiert sein, da diese nach der Figur auch mit der Sensoranordnung 34 verbunden ist und die Sensorsignale auswerten kann. Der Koordinationseinrichtung 18 stehen daher ausreichende Informationen über den Fahrzustand des Fahrzeugs zur Verfügung. Neben dem Steuerergebnissignal ruft die Koordinationseinrichtung 18 auch das Parameterergebnissignal hervor, wenn als Ausgangssignal einer der Fahrsystemeinrichtungen 6 auch wenigstens ein Parametersignal vorliegt. Das Parameterergebnissignal bewirkt eine Veränderung der Regelparameter des Fahrdynamikregel- geräts 23.
Diese Veränderung der Regelparameter des Fahrdynamikregelgeräts 23 ist zur Anpassung an den aktuellen Fahrzustand des Fahrzeugs vorgesehen, z.B. an einen verminderten Reifendruck. Grundsätzlich können alle variablen Regelparameter des Fahrdynamikregelgerät 23 mittels dem Parameterergebnissignal verändert werden. Als variable Regelparameter sind diejenigen Parameter vorgesehen, die einen spürbaren Einfluss auf den Fahrzustand haben und die sich während des Betriebs des Fahrzeugs verändern können, wie beispielsweise der Reifendruck oder die Feder-Dämpfer- Charakteristik einer nicht näher dargestellten Feder-Dämpfer- Einrichtung.
Es besteht alternativ zu der oben beschriebenen Ausführung auch die Möglichkeit, das Steuerergebnissignal direkt von der Koordinationseinrichtung 18 mit Hilfe einer in der Figur strichpunktiert dargestellten elektrischen vierten Leiteranordnung 38 an die Aktuatoreinrichtungen 26 zu übermitteln. Die vierte Leiteranordnung kann wie die anderen Leiteranordnungen 19, 30 bzw. 35 auch als Bus oder in Form von mehreren Einzelverbindung, als elektrische oder optische Übertragungsstrecke ausgebildet sein.
Das Steuerergebnissignal wird abhängig von den zum Berechnungszeitpunkt vorliegenden Steuersignalen der Fahrsystemeinrichtungen 6 und das Parameterergebnissignal abhängig von den zum Berechnungszeitpunkt vorliegenden Parametersignalen der Fahrsystemeinrichtungen 6 in der Koordinationseinrichtung 18 ermittelt.
Liegt nur ein Steuersignal bzw. Parametersignal einer der Fahrsystemeinrichtungen 6 vor, so entspricht das Steuerergebnissig- nal bzw. das Parameterergebnissignal diesem Steuer- bzw. Parametersignal. Eine Gewichtung und/oder Priorisierung der gleichzeitig vorliegenden Ausgangssignale ist nur dann notwendig, wenn diese Ausgangssignale von unterschiedlichen Fahrsystemeinrichtungen 6 stammen.
Liegt gleichzeitig die Zugriffsanforderung mehrerer Fahrsystemeinrichtungen 6 auf dieselbe Aktuatoreinrichtung 26 mit unterschiedlichen Beaufschlagungswerten vor (mehrere kollidierende Steuersignale) , erfolgt beispielsgemäß eine Gewichtung der Steuersignale. Beispielsweise kann die Abstandsregeleinrichtung 8 zur Korrektur des Fahrzeugabstands zum Vorausfahrenden einen Bremsvorgang mit lediglich geringer Bremskraft anfordern während die Brems-Lenk-Assistenzeinrichtung 7 aufgrund eines erkannten Hindernisses auf der Fahrbahn einen Bremsvorgang mit der maximal möglichen Bremskraft anfordert. Die Koordinationseinrichtung 18 uss die unterschiedlichen Steuersignale bewerten und ein Steuerergebnissignal bilden, zur entsprechenden Beaufschlagung der Bremseinrichtung 27.
Des weiteren kann eine Gewichtung und/oder Priorisierung der Ausgangssignale notwendig sein, wenn Steuersignale unterschiedlicher Fahrsystemeinrichtungen 6 vorliegen, die die Beaufschlagung unterschiedlicher Aktuatoreinrichtungen 26 anfordern. Dies ist dann der Fall, wenn eine gleichzeitige Beaufschlagung unterschiedlicher Aktuatoreinrichtungen 26 mit den Beaufschlagungswerten gemäß der Steuersignale zu einem instabilen Fahrzustand des Fahrzeugs führen würde. Es ist beispielsweise möglich, dass die Brems-Lenk-Assistenzeinrichtung 7 einen großen Lenkwinkel anfordert, um einem Hindernis auszuweichen, während die Abstandsregeleinrichtung 8 wegen eines vor dem Fahrzeug auftauchenden anderen Fahrzeugs einen Bremsvorgang mit maximaler Bremskraft anfordert. Auch in diesem Fall muss eine Priorisierung und/oder Gewichtung der Steuersignale erfolgen, um den stabilen Fahrzustand zu erhalten. Zwar kann auch ein einziges Steuersignal einer einzigen Fahrsystemeinrichtung 6 die Beaufschlagung unterschiedlicher Aktuatoreinrichtungen 26 anfordern, jedoch sind die entsprechenden Beaufschlagungswerte bereits aufeinander abgestimmt, so dass hierbei eine weitere Bewertung entfallen kann.
Eine Kollision von Parametersignalen kann analog zu den oben beschriebenen Kollisionen der Steuersignale z.B. dann auftreten, wenn die Parametersignale unterschiedlicher Fahrsystemeinrichtungen 6 eine Korrektur derselben Regelparameter des Fahr- dynamikregelgeräts 23 anfordern oder wenn die Änderungsanforderungen zwar unterschiedliche Regelparameter betreffen, dadurch jedoch ein instabiler Fahrzustand entstehen könnte, weil die Regelparameter nach der geforderten Änderung nicht mehr aufeinander abgestimmt wären. Derartige Kollisionen werden durch die Priorisierung bzw. Gewichtung der Parametersignale vermieden, wie dies auch für die Steuersignale gilt.
Beispielsgemäß erfolgt die Bestimmung des Steuerergebnissignals in der Koordinationseinrichtung 18 durch die Bildung der Summe der gewichteten Steuersignale der Fahrsystemeinrichtungen 6 gemäß der Formel:
n
SERG = Σk/ Sι ' WObei ι=l
SERG das Steuerergebnissignal, n die Anzahl der vorhandenen FahrSystemeinrichtungen 6, n ki die Gewichtsfaktoren mit kl e [θ;l] und k, = 1 und
Si die Steuersignale der Fahrsystemeinrichtungen 6 sind.
Liegt von einer Fahrsystemeinrichtung 6 kein Steuersignal vor so ist der entsprechende Wert von
Analog zur Berechnung des Steuerergebnissignals wird auch das Parameterergebnissignal bestimmt: FERG = ∑k P' ' obei
(=1
PERG das Parameterergebnissignal, n die Anzahl der vorhandenen Fahrsystemeinrichtungen 6, n ki die Gewichtsfaktoren mit kt s [θ;l] und kl = 1 und ι=l
Po. die Parametersignale der Fahrsystemeinrichtungen 6 sind.
Liegt von einer Fahrsystemeinrichtung 6 kein Parametersignal vor so ist der entsprechende Wert von Px=0.
Zur Priorisierung der Ausgangssignale bei der Ermittlung eines Steuer- bzw. Ergebnissignals besteht die Möglichkeit die Fahrsystemeinrichtungen 6 in Gruppen zu unterteilen, wobei den verschiedenen Gruppen von Fahrsystemeinrichtungen 6 unterschiedlich hohe Gruppenprioritaten zugeordnet werden. Die Ausgangssignale der Fahrsystemeinrichtungen 6 einer Gruppe von Fahrsystemeinrichtungen mit hoher Gruppenprioritat werden bei der Bestimmung der beiden Ergebnissignale starker gewichtet als die Ausgangssignale, die von Fahrsystemeinrichtungen 6 einer Gruppe von Fahrsystemeinrichtungen mit einer niedrigen Gruppenprioritat stammen.
Die Anzahl der gebildeten Gruppen von Fahrsystemeinrichtungen ist prinzipiell beliebig. Beispielsweise konnten die Fahrsystemeinrichtungen 6 in drei Gruppen unterteilt werden: eine Sicherheitssystemeinrichtungsgruppe, der alle sicherheitsrelevanten Fahrsystemeinrichtungen 6 zugeordnet sind, eine Komfortsys- temeinrichtungsgruppe, der die lediglich den Komfort des Fahrers betreffenden Fahrsystemeinrichtungen 6 zugeordnet sind und eine Warnsystemeinrichtungsgruppe, der die Fahrsystemeinrichtungen 6 zugeordnet sind, die keine Beaufschlagung von die Fahrzeugbewegung beeinflussenden Aktuatoreinrichtungen 26 anfordern, sondern die den Fahrer vor einem aktuellen unzulässigen Fahrzustand warnen und gegebenenfalls mit Hilfe von Parametersignalen eine Anpassung der Regelparameter an diesen Fahrzustand anfordern. Den Sicherheitssystemeinrichtungen kann dabei die höchste Gruppenpriorität und den Warneinrichtungen die niedrigste Gruppenpriorität zugeordnet werden. In Abwandlung hierzu kann auch eine andere Einteilung der Fahrsystemeinrichtungen 6 in unterschiedliche Gruppen erfolgen bzw. ist eine andere Prioritätszuordnung möglich.
Sowohl bei der Bestimmung des Steuerergebnissignals als auch beim Berechnen des Parameterergebnissignals besteht die Möglichkeit nur die Ausgangssignale der Fahrsystemeinrichtungen 6 zu berücksichtigen, die einer gemeinsamen Gruppe von Fahrsystemeinrichtungen angehören. Bei einer bevorzugten Ausgestaltung des Verfahrens wird die Gruppenpriorität der Gruppen von Fahrsystemeinrichtungen, deren Fahrsystemeinrichtungen zumindest ein Steuersignal ungleich Null erzeugt haben, verglichen und bei der Bestimmung des Steuerergebnissignals lediglich die Steuersignale berücksichtigt die den Fahrsystemeinrichtungen 6 der Gruppe mit der vergleichsweise höchsten Gruppenpriorität zugeordnet sind. Die Bestimmung des Parameterergebnissignals in Abhängigkeit der Parametersignale der Fahrsystemeinrichtungen 6 kann in entsprechender Anwendung der Ermittlung des Steuerergebnissignals erfolgen.
In Kombination oder alternativ zu den Gruppenprioritäten können den Fahrsystemeinrichtungen 6 Fahrsystemprioritäten zugeordnet sein. Wie schon im Zusammenhang mit den Gruppenprioritäten erläutert dienen die Fahrsystemprioritäten auch dazu, bei der Bestimmung des Steuerergebnissignals und des Parameterergebnissignals die Ausgangssignale der Fahrsystemeinrichtungen 6 abhängig von der Fahrsystempriorität unterschiedlich zu gewich- ten. Dabei können den Fahrsystemeinrichtungen 6 einer gemeinsamen Gruppe von Fahrsystemeinrichtungen unterschiedliche Fahrsystemprioritäten zugewiesen sein. Ist keine Unterteilung der Fahrsystemeinrichtungen 6 in verschiedene Gruppen vorgenommen, so kann jeder einzelnen Fahrsystemeinrichtung 6 eine Fahrsystempriorität zugeordnet sein. Die Ausgangssignale der Fahrsystemeinrichtungen 6 mit derselben Fahrsystempriorität werden beim Berechnen des Parameterergebnissignals bzw. des Steuerergebnissignals gleichermaßen gewichtet.
Zusätzlich ist beispielsgemäß vorgesehen, dass die Koordinationseinrichtung 18 zur Bestimmung der beiden Ergebnissignale weitere Informationen berücksichtigt. Diese Informationen erhält die Koordinationseinrichtung 18 im vorliegenden Fall in Form von Sensorsignalen der Sensoranordung 34 und in Form von Eingangssignalen der Bedienanordnung 36. Die Informationen aus den Eingangs- und den Sensorsignalen können als zusätzliche Bewertungskriterien beim Bestimmen der Gewichtsfaktoren dienen. Sie können aber auch direkt in die Berechnung des Steuerergebnissignals und/oder des Parameterergebnissignals mittels der Koordinationseinrichtung 18 einbezogen werden und daher von der Koordinationseinrichtung 18 wie ein Ausgangssignal der Fahrsystemeinrichtungen 6 behandelt werden.
Aus den Eingangssignalen der Bedienanordnung 34 kann in der Koordinationseinrichtung 18 die aktuell vom Fahrer gewählte Abstimmung des Fahrzeugs und die daraus resultierenden Einstellwerte der Fahrzeugeinrichtungen wie Lenkeinrichtung 28, Bremseinrichtung 27, Motorsteuereinrichtung 29, usw. ermittelt werden. Z.B. kann daraus konkret das bei einer elektronischen Lenkeinrichtung variabel einstellbare "Lenkübersetzungsverhältnis" oder das Dämpfungsmaß einer nicht näher dargestellten Feder-Dämpfer-Einrichtung bestimmt werden, das aktuell eingestellt ist. Da diese Einstellwerte das Fahrverhalten des Fahrzeugs beeinflussen, müssen sie bei der Beurteilung des Fahrzustandes (Stabilität oder Instabilität) bekannt sein. Zur Erhaltung oder Wiedererlangung eines stabilen Fahrzustandes können daher unter Berücksichtigung der manuell vom Fahrer mittels der Bedienanordnung beeinflussten Einstellwerte der Fahrzeugeinrichtungen bestimmte Ausgangssignale stärker oder schwächer gewichtet werden.
Die Sensorsignale der Sensoranordnung 34 enthalten Informationen über den Gesamtfahrzustand des Fahrzeugs. Um dessen Stabi- lität zu erhalten oder zu erreichen werden beispielsgemäß die Ausgangssignale bei der Bestimmung des Steuerergebnissignals bzw. des Parameterergebnissignals in Abhängigkeit von den Sensorsignalen der Sensoranordnung 34 gewichtet. Welches der Ausgangssignale stärker und welches weniger stark gewichtet wird hängt vom Einzelfall, also vom konkret vorliegenden Fahrzustand ab. Die Koordinationseinrichtung 18 kann wie das Fahrdynamikregelgerät 23 auch als den Fahrsystemeinrichtungen 6 übergeordneter Wächter dienen, um die einzelnen Zugriffsanforderungen der Fahrsystemeinrichtungen 6 im Hinblick auf einen stabilen Gesamtfahrzustand zu koordinieren.
Hat die Koordinationseinrichtung 18 beispielsweise mittels der Sensorsignale der Sensoranordnung 34 eine zu hohe Gierwinkelgeschwindigkeit festgestellt und fordert die Brems-Lemk-Assis- tenzeinrichtung die Beaufschlagung der Lenkeinrichtung 28 mit einem Lenkwinkel, der das bereits festgestellte, unzulässige Gierverhalten noch verstärken würde, so wird das betreffende Steuersignal der Brems-Lenk-Assistenzeinrichtung beim Berechnen des Steuerergebnissignals nicht oder lediglich mit einem kleinen Gewichtsfaktor berücksichtigt. (Gewichtsfaktor ki=0) . Es versteht sich, dass beliebige andere Fallbeispiele denkbar sind.

Claims

Patentansprüche
Verfahren zur Koordination mehrerer Fahrsystemeinrichtungen
(6) eines Fahrzeugs, wobei aus in Abhängigkeit von aktuellen Fahrzustandsgrößen des Fahrzeugs hervorgerufenen Ausgangssignalen der Fahrsystemeinrichtungen (6), ein Steuerergebnissignal erzeugt wird, das als Sollwertvorgabe zur Beeinflussung des Fahrzustandes mittels mindestens einer Aktuatoreinrichtung (26) des Fahrzeugs dient und/oder ein Parameterergebnissignal zur Beeinflussung der Regel- und/oder Steuerparameter einer Fahrzustandsregelung bzw. Fahrzustandssteuerung erzeugt wird.
Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das Steuerergebnissignal dem Soll-Fahrzustand des Fahrzeugs entspricht, wobei das Steuerergebnissignal die Soll-Fahrzeugbewegung im dreidimensionalen Raum beschreibt.
Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das Steuerergebnissignal der Soll-Fahrzustandsänderung für das Fahrzeug entspricht, wobei das Steuerergebnissignal die Soll-Fahrzeugbewegungsänderung im dreidimensionalen Raum beschreibt.
Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass das Steuerergebnissignal unmittelbar an die Aktuatoreinrichtungen (26) zur Beeinflussung der Fahrzeugbewegung übermittelt wird.
Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass das Steuerergebnissignal an ein Fahrzustands-Regel- o- der Steuergerät (22), insbesondere Fahrdynamikregler (23), übermittelt wird, das zur Beeinflussung der Fahrzeugbewegung Stellsignale für die Aktuatoreinrichtungen (26) hervorruft .
Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, dass das Parameterergebnissignal an ein Fahrzustands-Regel- oder Steuergerät (22), insbesondere Fahrdynamikregler (23), zur Beeinflussung dessen Steuer- bzw. Regelparameter übermittelt wird.
Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals eine Priorisierung und/oder Gewichtung mehrerer vorliegender Ausgangssignale dann erfolgt, wenn diese Ausgangssignale von unterschiedlichen Fahrsystemeinrichtungen (6) stammen und insbesondere denselben Aktuatoreinrichtungen (26) zugeordnet sind.
Verfahren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals Sensorsignale, die Informationen über den aktuellen Fahrzustand des Fahrzeugs enthalten, und/oder Eingangssignale, die manuellen Einstellungen des Fahrers entsprechen, berücksichtigt werden.
Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass die Sensorsignale Informationen über die Gierwinkelge- schwindigkeit und/oder die Fahrzeugbeschleunigung und/oder die Fahrzeuggeschwindigkeit und/oder die Raddrehzahlen und/oder das Lenkradmoment und/oder den Lenkradwinkel enthalten.
Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, dass die Fahrsystemeinrichtungen (6) in mehrere Gruppen mit unterschiedlich hohen Gruppenprioritäten eingeteilt sind, wobei die Ausgangssignale der Fahrsystemeinrichtungen (6) einer Gruppe mit höherer Gruppenpriorität bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals stärker gewichtet werden als die Ausgangssignale der Fahrsystemeinrichtungen (6) einer Gruppe mit niedrigerer Gruppenpriorität.
Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t, dass die Ausgangssignale der Fahrsystemeinrichtungen (6) in Form von Steuersignalen oder Parametersignalen vorliegen, wobei das Steuerergebnissignal in Abhängigkeit von den Steuersignalen und das Parameterergebnissignal in Abhängigkeit von den Parametersignalen bestimmt wird.
Verfahren nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t, dass das Steuerergebnissignal und/oder das Parameterergebnissignal aus der Summe der betreffenden, mit jeweils einem Gewichtsfaktor gewichteten Ausgangssignale der Fahrsystemeinrichtungen (6) gebildet wird, wobei insbesondere die Summe der einzelnen Gewichtsfaktoren gleich Eins ist und die Gewichtsfaktoren Werte im Bereich von Null bis Eins annehmen können.
Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, dass die Gewichtsfaktoren der Ausgangssignale in Abhängig- keit von einer der betreffenden Fahrsystemeinrichtung (6) zugeordneten Fahrsystempriorität vorgebbar sind.
Verfahren nach einem der Ansprüche 11 bis 13 in Verbindung mit Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals lediglich die Ausgangssignale der Fahrsystemeinrichtungen (6) einer einzigen Gruppe von Fahrsystemeinrichtungen berücksichtigt werden. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 14, mit einer zur Erzeugung des Steuerergebnissignals und des Parameterergebnissignals in Abhängigkeit von den Ausgangssignalen vorgesehenen Koordinationseinrichtung (18), die zur Beeinflussung des Fahrzustandes mit den Aktuatoreinrichtungen (26) des Fahrzeugs mittelbar oder unmittelbar verbunden ist.
Vorrichtung nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t, dass die Koordinationseinrichtung (18) zur Übermittlung des Steuerergebnissignals an die Aktuatoreinrichtungen (26) unmittelbar mit diesen verbunden sind. Vorrichtung nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t, dass die Koordinationseinrichtung (18) zur Übermittlung des Steuerergebnissignals und/oder des Parametersteuersignals mit einem Fahrzustands-Regel- oder Steuergerät (22) , insbesondere Fahrdynamikregelgerät (23) , verbunden ist, das zur Steuerung und/oder Regelung der Fahrzeugbewegung in Abhängigkeit vom Steuerergebnissignal mit den Aktuatoreinrichtungen verbunden ist. Vorrichtung nach Anspruch 17, d a d u r c h g e k e n n z e i c h n e t, dass das Fahrzustands-Regel- oder Steuergerät (22) und die Koordinationseinrichtung (18) in einer Zentraleinheit (24) integriert sind. Vorrichtung nach einem der Ansprüche 15 bis 18, d a d u r c h g e k e n n z e i c h n e t, dass die Fahrsystemeinrichtungen (6) Fahrsystemsteuergeräte (14, 15, 16) aufweisen, die mit der Koordinationseinrichtung (18) in einer Zentraleinheit (24) integriert sind. Vorrichtung nach Anspruch 19 in Verbindung mit Anspruch 17 oder 18, d a d u r c h g e k e n n z e i c h n e t, dass die Fahrsystemsteuergeräte (14, 15, 16), das Fahrzustands-Regel- oder Steuergerät (22) und die Koordinationseinrichtung (18) in der Zentraleinheit (24) integriert sind. Vorrichtung nach einem der Ansprüche 15 bis 20, d a d u r c h g e k e n n z e i c h n e t, dass die Koordinationseinrichtung (18) mit einer Sensoranordnung (34) und/oder einer Bedienanordnung (36) verbunden ist, so dass die von der Sensoranordnung (34) erzeugten, Informationen über den aktuellen Fahrzustand des Fahrzeugs enthaltenden Sensorsignale und/oder die manuellen Einstellungen des Fahrers entsprechenden Eingangsisignale der Bedienanordnung (36) zur Berücksichtigung bei der Bestimmung des Steuerergebnissignals und/oder des Parameterergebnissignals an die Koordinationseinrichtung (18) übertragbar sind. Vorrichtung nach Anspruch 21, d a d u r c h g e k e n n z e i c h n e t, dass die Sensoranordnung (34) zumindest einen Sensor aufweist, dessen Sensorsignal gleichzeitig von einer der Fahrsystemeinrichtungen (6) genutzt wird.
EP01933952A 2000-05-23 2001-05-10 Verfahren und vorrichtung zur koordination mehrerer fahrsystemeinrichtungen eines fahrzeugs Withdrawn EP1283793A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10025493 2000-05-23
DE10025493A DE10025493B4 (de) 2000-05-23 2000-05-23 Verfahren und Vorrichtung zur Koordination mehrerer Fahrsystemeinrichtungen eines Fahrzeugs
PCT/EP2001/005341 WO2001089898A1 (de) 2000-05-23 2001-05-10 Verfahren und vorrichtung zur koordination mehrerer fahrsystemeinrichtungen eines fahrzeugs

Publications (1)

Publication Number Publication Date
EP1283793A1 true EP1283793A1 (de) 2003-02-19

Family

ID=7643240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01933952A Withdrawn EP1283793A1 (de) 2000-05-23 2001-05-10 Verfahren und vorrichtung zur koordination mehrerer fahrsystemeinrichtungen eines fahrzeugs

Country Status (5)

Country Link
US (1) US6873891B2 (de)
EP (1) EP1283793A1 (de)
JP (1) JP2003534196A (de)
DE (1) DE10025493B4 (de)
WO (1) WO2001089898A1 (de)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132440A1 (de) * 2001-07-04 2003-01-23 Bosch Gmbh Robert System und Verfahren zum Überwachen des Fahrverhaltens eines Fahrzeugs
DE10137292A1 (de) * 2001-08-01 2003-03-06 Continental Teves Ag & Co Ohg Fahrer-Assistenzsystem und Verfahren zu dessen Betrieb
EP1448404A1 (de) * 2001-11-29 2004-08-25 DaimlerChrysler AG Vorrichtung zur bewertung und/oder beeinflussung einer fahrzeugbewegungsgrosse und/oder des fahrzeugbewegungsverhaltens
JP3956693B2 (ja) * 2001-12-27 2007-08-08 トヨタ自動車株式会社 統合型車両運動制御装置
EP1355209A1 (de) 2002-04-18 2003-10-22 Ford Global Technologies, LLC Fahrzeugsteuerungssystem
DE10218446A1 (de) * 2002-04-25 2003-11-06 Opel Adam Ag Kraftfahrzeug mit einer Vorrichtung zur elektronischen Fahrdynamikregelung
ATE353071T1 (de) * 2002-05-01 2007-02-15 Kelsey Hayes Co Reifenkrafteigenschaften verwendende fahrzeugstabilitätssteuerungsverbesserung
US6856877B2 (en) * 2002-05-29 2005-02-15 Ford Global Technologies, Llc Integration of active assist and vehicle dynamics control and method
DE10226683A1 (de) * 2002-06-15 2003-12-24 Bosch Gmbh Robert Fahrstabilitätsmanagement durch einen Fahrzeugreglerverbund
EP1388474B1 (de) * 2002-08-05 2011-06-29 Ford Global Technologies, LLC System zur Bestimmung einer Regelgrösse zum Betrieb eines Wankregelungssystems
FR2843353B1 (fr) * 2002-08-08 2004-10-15 Renault Sa Systeme de controle pour des dispositifs de freinage a controle electronique pour vehicules
FR2844750B1 (fr) * 2002-09-25 2005-10-14 Peugeot Citroen Automobiles Sa Vehicule automobile equipe d'un dispositif de pilotage de la liaison au sol
DE10248401A1 (de) * 2002-10-17 2004-04-29 Zf Friedrichshafen Ag Verfahren zur vorausschauenden Fahrzeugsteuerung
DE10254583A1 (de) * 2002-11-22 2004-06-17 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Fahrzeug, insbesondere Nutzfahrzeug, mit einer Fahrgeschwindigkeitsregeleinrichtung
DE10313409A1 (de) * 2003-03-25 2004-11-18 Continental Teves Ag & Co. Ohg Verfahren zum Vermeiden von fehlerhaften Aktuatorzugriffen in einem multifunktionalen elektronischen Gesamtregelungssystem
DE10320828A1 (de) * 2003-05-08 2004-12-09 Robert Bosch Gmbh Optimierung einer Fahrdynamikregelung unter Verwendung von Reifeninformationen
KR101195011B1 (ko) * 2003-05-13 2012-10-31 콘티넨탈 테베스 아게 운트 코. 오하게 차량용 구동 역학 제어 시스템
DE10323846A1 (de) * 2003-05-23 2004-12-16 Continental Teves Ag & Co. Ohg Verfahren zur Lenkungsregelung
GB0314236D0 (en) * 2003-06-19 2003-07-23 Ford Global Tech Llc Improved method of vehicle control
DE10330255A1 (de) * 2003-07-04 2005-01-20 Robert Bosch Gmbh Fahrerassistenzverfahren und -vorrichtung für ein Kraftfahrzeug
DE10334587B4 (de) * 2003-07-28 2018-12-06 Volkswagen Ag Verfahren und Vorrichtung zur fahrerabhängigen Einstellung von Fahrzeugfunktionen
JP2005067426A (ja) * 2003-08-26 2005-03-17 Daihatsu Motor Co Ltd 衝突回避装置
JP4099823B2 (ja) * 2003-11-11 2008-06-11 オムロン株式会社 車両水没検知装置
DE10355794A1 (de) * 2003-11-28 2005-06-16 Robert Bosch Gmbh Koordination eines Fahrzeugstabilisierungssystems mit einem externen Fahrdynamikregelungssystem
DE102004009308A1 (de) * 2004-02-26 2005-09-22 Bayerische Motoren Werke Ag Fahrerassistenzsystem
JP2005263106A (ja) * 2004-03-19 2005-09-29 Aisin Aw Co Ltd 車両制御装置
DE102004016473A1 (de) 2004-03-31 2005-10-20 Bosch Gmbh Robert Ablaufsteuerung von Funktionen auf miteinander wechselwirkenden Geräten
DE102004020110A1 (de) * 2004-04-24 2005-11-10 Dr.Ing.H.C. F. Porsche Ag Verfahren zum Anpassen des Fahrverhaltens von Kraftfahrzeugen
JP4549738B2 (ja) * 2004-05-27 2010-09-22 株式会社日立製作所 車両の制御システム及び制御システム並びに制御方法
DE102004047856A1 (de) * 2004-10-01 2006-04-06 Daimlerchrysler Ag Steuervorrichtung
US7715965B2 (en) 2004-10-15 2010-05-11 Ford Global Technologies System and method for qualitatively determining vehicle loading conditions
US7668645B2 (en) 2004-10-15 2010-02-23 Ford Global Technologies System and method for dynamically determining vehicle loading and vertical loading distance for use in a vehicle dynamic control system
US7660654B2 (en) 2004-12-13 2010-02-09 Ford Global Technologies, Llc System for dynamically determining vehicle rear/trunk loading for use in a vehicle control system
DE102004060527A1 (de) * 2004-12-16 2006-06-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit
DE102004062496A1 (de) * 2004-12-24 2006-07-06 Daimlerchrysler Ag Verfahren zum Betreiben eines Kollisionsvermeidungs- oder Kollisionsfolgenminderungssystems eines Fahrzeugs sowie Kollisionsvermeidungs- oder Kollisionsfolgenminderungssystem
JP4385986B2 (ja) * 2005-04-15 2009-12-16 トヨタ自動車株式会社 車両統合制御装置
JP4215026B2 (ja) * 2005-05-18 2009-01-28 トヨタ自動車株式会社 車輌の走行制御装置
JP4862313B2 (ja) * 2005-07-29 2012-01-25 日産自動車株式会社 車両の走行制御装置
US7590481B2 (en) 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions
US8121758B2 (en) 2005-11-09 2012-02-21 Ford Global Technologies System for determining torque and tire forces using integrated sensing system
US7600826B2 (en) 2005-11-09 2009-10-13 Ford Global Technologies, Llc System for dynamically determining axle loadings of a moving vehicle using integrated sensing system and its application in vehicle dynamics controls
DE102005055809A1 (de) * 2005-11-15 2007-05-16 Valeo Schalter & Sensoren Gmbh Hybridsystem zur Fahrerassistenz für ein Kraftfahrzeug und Mastersteuerung hierfür
CN101500828A (zh) * 2006-05-09 2009-08-05 洛克希德马丁公司 机动牵引控制系统和方法
CA2651252A1 (en) * 2006-05-09 2008-05-08 Lockheed Martin Corporation Mobility traction control system and method
DE102006025904B4 (de) 2006-06-02 2024-01-25 Robert Bosch Gmbh Verfahren zur Einstellung von Fahrdynamikreglern
US8740317B2 (en) * 2006-08-11 2014-06-03 Robert Bosch Gmbh Closed-loop control for trailer sway mitigation
US7677095B1 (en) 2006-12-11 2010-03-16 Kelsey-Hayes Company Method for providing enhanced stability of a vehicle with a deflated tire
JP4702322B2 (ja) * 2006-12-14 2011-06-15 トヨタ自動車株式会社 内燃機関の制御装置
DE102007018777A1 (de) * 2007-04-20 2008-11-27 Autoliv Development Ab Steuervorrichtung für Fahrzeuge
US8964779B2 (en) * 2007-11-30 2015-02-24 Infineon Technologies Ag Device and method for electronic controlling
US8589049B2 (en) 2007-12-03 2013-11-19 Lockheed Martin Corporation GPS-based system and method for controlling vehicle characteristics based on terrain
US20090143937A1 (en) * 2007-12-04 2009-06-04 Lockheed Martin Corporation GPS-based traction control system using wirelessly received weather data
US8145402B2 (en) 2007-12-05 2012-03-27 Lockheed Martin Corporation GPS-based traction control system and method using data transmitted between vehicles
JP2008184157A (ja) * 2008-04-24 2008-08-14 Advics:Kk 自動ブレーキ装置
DE102008036772A1 (de) * 2008-08-07 2010-02-11 Volkswagen Ag Verfahren zum Betreiben eines Fahrzeugs, Assistenzvorrichtung für ein Fahrzeug, Koordinationsvorrichtung zum Ansteuern einer Querführungsvorrichtung eines Fahrzeugs und Assistenzsystem eines Fahrzeugs
WO2010043686A1 (de) * 2008-10-17 2010-04-22 Continental Teves Ag & Co. Ohg Fahrdynamikregelsystem für fahrzeuge
JP5345819B2 (ja) * 2008-10-22 2013-11-20 本田技研工業株式会社 車両挙動制御システム
DE102008062210A1 (de) * 2008-12-13 2010-06-17 Man Nutzfahrzeuge Ag Verfahren zum Steuern einer Beschleunigungseinrichtung für Kraftfahrzeuge
US8352120B2 (en) 2009-02-17 2013-01-08 Lockheed Martin Corporation System and method for stability control using GPS data
US8229639B2 (en) 2009-02-17 2012-07-24 Lockheed Martin Corporation System and method for stability control
US8244442B2 (en) 2009-02-17 2012-08-14 Lockheed Martin Corporation System and method for stability control of vehicle and trailer
US8838353B2 (en) * 2009-07-24 2014-09-16 Robert Bosch Gmbh Trailer sway mitigation using measured distance between a trailer and a tow vehicle
US8326504B2 (en) * 2009-07-30 2012-12-04 Robert Bosch Gmbh Holistic control for stabilizing vehicle-trailer swaying
DE102010038846A1 (de) 2009-08-05 2011-02-10 Advics Co., Ltd, Kariya-city Bewegungssteuervorrichtung für ein Fahrzeug
JP5324367B2 (ja) 2009-09-16 2013-10-23 株式会社デンソー 制御要求調停装置
DE102010063792B4 (de) * 2010-12-21 2024-05-23 Bayerische Motoren Werke Aktiengesellschaft Auswahl von Fahrerassistenzfunktionen
DE102011084619A1 (de) * 2011-10-17 2013-04-18 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben eines Fahrerassistenzsystems für ein Fahrzeug
DE102011086336A1 (de) 2011-11-15 2013-05-16 Robert Bosch Gmbh Vorrichtung und verfahren zum betreiben eines fahrzeugs
US9165469B2 (en) * 2012-07-09 2015-10-20 Elwha Llc Systems and methods for coordinating sensor operation for collision detection
US9000903B2 (en) 2012-07-09 2015-04-07 Elwha Llc Systems and methods for vehicle monitoring
US9558667B2 (en) * 2012-07-09 2017-01-31 Elwha Llc Systems and methods for cooperative collision detection
DE102013218721B4 (de) * 2012-10-16 2017-11-16 Ford Global Technologies, Llc Verfahren zur Reduktion von Lenkmomenten einer Lenkung eines Kraftfahrzeugs
CN105163989B (zh) * 2013-04-30 2018-05-08 日产自动车株式会社 车辆控制装置及车辆控制方法
US9269268B2 (en) 2013-07-31 2016-02-23 Elwha Llc Systems and methods for adaptive vehicle sensing systems
US9776632B2 (en) 2013-07-31 2017-10-03 Elwha Llc Systems and methods for adaptive vehicle sensing systems
US9230442B2 (en) 2013-07-31 2016-01-05 Elwha Llc Systems and methods for adaptive vehicle sensing systems
JP2016018295A (ja) 2014-07-07 2016-02-01 日立オートモティブシステムズ株式会社 情報処理システム
JP6408832B2 (ja) * 2014-08-27 2018-10-17 ルネサスエレクトロニクス株式会社 制御システム、中継装置、及び制御方法
DE102014013585B4 (de) 2014-09-13 2020-11-05 Audi Ag Verfahren zum Kontrollieren eines Verhaltens eines Fahrzeugs
US10300760B1 (en) 2015-03-18 2019-05-28 Apple Inc. Fully-actuated suspension system
CN107280647A (zh) * 2016-03-31 2017-10-24 宇龙计算机通信科技(深圳)有限公司 防止设备误操作方法、装置及系统
DE102016214795A1 (de) * 2016-08-09 2018-02-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Koordination von Fahrerassistenzfunktionen
US10814690B1 (en) 2017-04-18 2020-10-27 Apple Inc. Active suspension system with energy storage device
CN110997362B (zh) 2017-05-08 2023-07-28 苹果公司 主动悬架系统
US10899340B1 (en) 2017-06-21 2021-01-26 Apple Inc. Vehicle with automated subsystems
US11173766B1 (en) 2017-09-07 2021-11-16 Apple Inc. Suspension system with locking structure
US11065931B1 (en) 2017-09-15 2021-07-20 Apple Inc. Active suspension system
US11124035B1 (en) 2017-09-25 2021-09-21 Apple Inc. Multi-stage active suspension actuator
US10960723B1 (en) 2017-09-26 2021-03-30 Apple Inc. Wheel-mounted suspension actuators
JP6933179B2 (ja) * 2018-03-29 2021-09-08 トヨタ自動車株式会社 自動運転システム
DE112018007474T5 (de) 2018-04-13 2020-12-31 Mitsubishi Electric Corporation Übertragungssystem und übertragungsverfahren
JP7077880B2 (ja) * 2018-09-03 2022-05-31 トヨタ自動車株式会社 車両制御システム
US11285773B1 (en) 2018-09-12 2022-03-29 Apple Inc. Control system
US11634167B1 (en) 2018-09-14 2023-04-25 Apple Inc. Transmitting axial and rotational movement to a hub
US11345209B1 (en) 2019-06-03 2022-05-31 Apple Inc. Suspension systems
US11938922B1 (en) 2019-09-23 2024-03-26 Apple Inc. Motion control system
US11179991B1 (en) 2019-09-23 2021-11-23 Apple Inc. Suspension systems
DE102019133582A1 (de) * 2019-12-09 2021-06-10 Joyson Safety Systems Germany Gmbh Sensorvorrichtung für eine Lenkvorrichtung eines Kraftfahrzeugs
US11707961B1 (en) 2020-04-28 2023-07-25 Apple Inc. Actuator with reinforcing structure for torsion resistance
US11828339B1 (en) 2020-07-07 2023-11-28 Apple Inc. Vibration control system
WO2022260774A1 (en) 2021-06-07 2022-12-15 Apple Inc. Mass damper system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834808B2 (ja) * 1989-12-08 1998-12-14 三菱電機株式会社 自動車用制御装置
DE4201146C2 (de) * 1991-01-18 2003-01-30 Hitachi Ltd Vorrichtung zur Steuerung des Kraftfahrzeugverhaltens
JP2974440B2 (ja) * 1991-03-22 1999-11-10 株式会社日立製作所 自動車総合制御装置
DE4111023C2 (de) * 1991-04-05 2003-11-20 Bosch Gmbh Robert Elektronisches System für ein Fahrzeug
JP3139811B2 (ja) * 1992-02-28 2001-03-05 株式会社日立製作所 エンジン制御装置
US5941925A (en) * 1992-11-26 1999-08-24 Robert Bosch Gmbh Method and arrangement for controlling a motor vehicle
DE4305155C2 (de) * 1993-02-19 2002-05-23 Bosch Gmbh Robert Vorrichtung zur Regelung der Fahrdynamik
DE19600734C2 (de) * 1996-01-11 2003-03-06 Zahnradfabrik Friedrichshafen Verfahren zur Steuerung von Aggregaten und/oder Systemen eines Kraftfahrzeugs
DE19700353A1 (de) * 1997-01-08 1998-07-09 Diethard Kersandt Vorrichtung und Verfahren zur Diagnose, Steuerung, Übertragung und Speicherung sicherheitsrelevanter Systemzustandsgrößen eines Kraftfahrzeuges
DE19704841A1 (de) 1997-02-08 1998-08-13 Itt Mfg Enterprises Inc Verfahren und Vorrichtung zur Regelung der Längsdynamik eines Fahrzeugs
DE19753907A1 (de) * 1997-12-05 1999-06-10 Itt Mfg Enterprises Inc Verbundsystem zur Regelung des Fahrverhaltens eines Kraftfahrzeugs
US6272418B1 (en) * 1997-12-12 2001-08-07 Honda Giken Kogyo Kabushiki Kaisha Integrated control system of vehicle
DE19838337A1 (de) * 1998-08-24 2000-03-02 Bosch Gmbh Robert Steuerungssystem eines Fahrzeugs
JP3692820B2 (ja) * 1999-03-10 2005-09-07 株式会社デンソー 自動車用制御装置
US6622074B1 (en) * 2002-05-29 2003-09-16 Ford Global Technologies, Llc Vehicle motion control subsystem and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0189898A1 *

Also Published As

Publication number Publication date
US20030171865A1 (en) 2003-09-11
US6873891B2 (en) 2005-03-29
WO2001089898A1 (de) 2001-11-29
DE10025493B4 (de) 2008-05-29
DE10025493A1 (de) 2001-12-06
JP2003534196A (ja) 2003-11-18

Similar Documents

Publication Publication Date Title
DE10025493B4 (de) Verfahren und Vorrichtung zur Koordination mehrerer Fahrsystemeinrichtungen eines Fahrzeugs
WO2001089897A1 (de) Verfahren und vorrichtung zur rückmeldung des fahrzustands eines fahrzeugs an den fahrer
EP0996558B1 (de) Verfahren und vorrichtung zur stabilisierung eines fahrzeuges
DE102009000868B4 (de) Vorrichtung und Verfahren zum Steuern eines Lenksystems in einem Fahrzeug
DE102011085342B4 (de) Fahrzeugdynamiksteuervorrichtung und fahrzeugdynamiksteuersystem, das dieselbe verwendet
EP1037768B1 (de) System zur steuerung der bewegung eines fahrzeugs
DE102011085345A1 (de) Fahrzeugdynamiksteuerplattform zwischen Anwendung und gesteuertem Objekt
WO2003045726A1 (de) Vorrichtung zur bewertung und/oder beeinflussung einer fahrzeugbewegungsgrosse und/oder des fahrzeugbewegungsverhaltens
DE10296926T5 (de) Verbesserungen bei der Fahrzeugsteuerung
DE102008023100B4 (de) Steuervorrichtung und -verfahren für den Fahrzeugzwischenabstand
DE102011085405B4 (de) Fahrzeugbewegung-Steuervorrichtung
DE102011085349A1 (de) Fahrzeugdynamiksteuervorrichtung und Fahrzeugdynamiksteuersystem, das dieselbe verwendet
DE102005003244A1 (de) Vorrichtung zur Steuerung der Verzögerung eines Fahrzeugs
WO2019086518A1 (de) Fahrerassistenzsystem für ein zumindest teilweise automatisch fahrendes kraftfahrzeug, kraftfahrzeug und verfahren zum regeln einer fahrdynamik
EP2437958B1 (de) Verfahren zur antriebsschlupfregelung eines kraftfahrzeugs und antriebsschlupfregelsystem
EP1467888B1 (de) Verfahren und vorrichtung zur steuerung der fahrgeschwindigkeit eines fahrzeugs
EP0927119B1 (de) Verfahren und vorrichtung zur ermittlung einer die fahrzeuggeschwindigkeit beschreibenden grösse
DE102016201205A1 (de) Fahrerassistenzsystem für ein Kraftfahrzeug zur Regelung der Längsdynamik
DE102004009467A1 (de) Steuerungssystem für ein Fahrzeug
DE10143551A1 (de) Vorrichtung zur Ansteuerung von Fahrzeugaggregaten
WO2017025169A1 (de) Verfahren zum betrieb von fahrerassistenzsystemen in einem kraftfahrzeug und kraftfahrzeug
EP0925484A1 (de) Verfahren und vorrichtung zur überwachung von sensoren in einem fahrzeug
EP4069557A1 (de) Verfahren zum koordinieren von fahrzeugen eines fahrzeugverbundes während einer notbremsung sowie steuereinheit
DE102004056926B4 (de) Verfahren zur Verbesserung von Komfort und Sicherheit in Fahrzeugen
DE102005015241A1 (de) Verfahren und Steuereinrichtung zum Steuern eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021109

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061201