EP1282598A1 - Verfahren zur herstellung von sulfonyl-benzoylguanidinium-salzen - Google Patents

Verfahren zur herstellung von sulfonyl-benzoylguanidinium-salzen

Info

Publication number
EP1282598A1
EP1282598A1 EP01947223A EP01947223A EP1282598A1 EP 1282598 A1 EP1282598 A1 EP 1282598A1 EP 01947223 A EP01947223 A EP 01947223A EP 01947223 A EP01947223 A EP 01947223A EP 1282598 A1 EP1282598 A1 EP 1282598A1
Authority
EP
European Patent Office
Prior art keywords
formula
compounds
acid
alkyl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01947223A
Other languages
English (en)
French (fr)
Other versions
EP1282598B1 (de
Inventor
Ekkehard Bartmann
Michael Kirschbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP1282598A1 publication Critical patent/EP1282598A1/de
Application granted granted Critical
Publication of EP1282598B1 publication Critical patent/EP1282598B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/04Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides

Definitions

  • the invention relates to a process for the preparation of acid addition salts of the compounds of the formula I,
  • R 1 , R 2 and R 3 independently of one another are alkyl having 1 to 12 carbon atoms, characterized in that in a step A the compounds of the formula II
  • R 1 and R 2 have the meaning given above and XF, CI, Br, alkyl or aryl sulfonate or perfluoroalkyl sulfonate, by conventional methods in the esters of formula III
  • R 1 , R 2 and X have the meaning given above and R denotes alkyl having 1 to 10 carbon atoms, and converts them in step B in the presence of alkyl sulfinate to the compounds of the formula IV
  • Sulfonyl-benzoylguanidines are known and are described, for example, in EP 0 758 644 A1. These substances are inhibitors of the cellular Na + / H + antiprotector, ie active substances which inhibit the Na + / H + exchange mechanism of the cells (Düsing et al., Med. Klin. 1992, 87, 367- 384) and thus represent good antiarrhythmic agents, which are particularly suitable for the treatment of arrhythmias that occur as a result of a lack of oxygen.
  • these compounds can also be used as therapeutic agents in diseases caused by cell proliferation, such as arteriosclerosis, diabetes and late diabetic complications, tumor diseases, fibrotic diseases, in particular of the lungs, liver and kidneys, and organ hypertrophies and hyperplasias.
  • the compounds are suitable for diagnostic use
  • Detection of diseases caused by increased activity of the Na + / H + antiporter e.g. B. in erythrocytes, platelets or leukocytes.
  • the compounds can therefore be used as active pharmaceutical ingredients in human and veterinary medicine. They can also be used as intermediates for the production of further active pharmaceutical ingredients.
  • the compounds of the formula I can be prepared, for example, according to EP 0 758 644.
  • the syntheses known hitherto are based on the introduction of alkylsulfone groups into the ring of a corresponding aromatic carboxylic acid and comprise a large number of individual steps with unsatisfactory yields in some cases.
  • the known processes for industrial production have disadvantageous reaction conditions.
  • the introduction of alkyl sulfone groups into the ring of an aromatic carboxylic acid by nucleophilic substitution of suitable leaving groups with alkyl sulfanes and subsequent oxidation is problematic because of the extreme and long-lasting odor nuisance caused by alkyl sulfanes, even if these are only released in traces.
  • the object of the present invention was therefore to provide an improved production process for the compounds of the formula I and their acid addition salts which avoids the problematic reaction steps mentioned above and also gives better yields.
  • R 1 , R 2 , R 3 and R 4 are independently preferably methyl, ethyl, n-propyl, n-butyl or n-pentyl. Methyl or ethyl, in particular methyl, are particularly preferred.
  • X is preferably F, CF 3 S0 2 - or CI, especially CI.
  • the process according to the invention is particularly suitable for the preparation of acid addition salts of compounds of the formula I, wherein R 1 , R 2 and R 3 simultaneously represent a methyl group (compounds of the formula IA).
  • a very particularly preferred acid addition salt is the hydrochloride.
  • step A the starting compounds of the formula II in question being used by the customary esterification methods known from the literature,
  • Another possible esterification reaction is the conversion of the acid into an acid halide and the subsequent reaction with an appropriate alcohol to the ester.
  • reaction of the carboxylic acid salts with alkylating agents is conveniently carried out in such a way that the respective carboxylic acid salt dissolved in an inert solvent, which is preferably in situ by adding a base such as e.g. Alkali carbonate, bicarbonate, hydroxide
  • a base such as e.g. Alkali carbonate, bicarbonate, hydroxide
  • alcoholate especially an alcoholate such as potassium tert butanolate or a hydroxide such as sodium hydroxide, is preferably added, a dialkyl sulfate is added and the reactants are reacted at room temperature or elevated temperature and normal pressure.
  • Dimethyl sulfate and diethyl sulfate are particularly preferred as the alkylating agent.
  • the carboxylic acid of the formula II or its salt to be esterified is preferably used in a molar ratio to the alkylating agent of 1 to 1 to 1 to 8, in particular 1 to 2 to 1 to 4.
  • the esterification by reacting the corresponding acids with an orthoester such as e.g. Trialkyl orthoacetate, tetraalkyl orthocarbonate or orthosilicate achieved. Trimethyl or triethyl orthoacetate, tetramethyl or tetraethyl orthocarbonate or orthosilicate are preferred as orthoesters. In particular, tetramethyl orthoacetate is preferred.
  • the esterification reaction is advantageously carried out at elevated temperatures, preferably at 30-180 ° C., in particular at 80-120 ° C., in an inert solvent.
  • the carboxylic acid of the formula II to be esterified is preferably used in a molar ratio to the orthoester of 1 to 1 to 1 to 5, in particular 1 to 1.5 to 1 to 3.
  • the inert solvent for step A are preferably amides, such as Dimethylformamide, dimethylacetamide, tetramethylurea, cyclic ureas such as e.g. N, N-dimethylimidazolidinone or
  • Hexamethylphosphoric triamide or 1-methyl-2-pyrrolidone (N-methylpyrrolidone, NMP) in question.
  • NMP 1-methyl-2-pyrrolidone
  • esterification is carried out using an orthoester, ethers such as e.g. Diethyl ether, tetrahydrofuran or dioxane, hydrocarbons such as e.g. Toluene, benzene, hexane or heptane preferred.
  • NMP is particularly preferred.
  • reaction time is
  • step B the compounds of the formula III are preferably in polar aprotic solvents at temperatures which are preferably in
  • alkyl sulfinate 80-90 ° C are reacted with alkyl sulfinate, preferably with alkali alkyl sulfinate.
  • Sodium or potassium alkyl sulfinate in particular sodium methyl sulfinate or potassium methyl sulfinate, is preferably used as the alkali alkyl sulfinate.
  • the compounds of the formula III are preferably used in a molar ratio to the alkali alkyl sulfinate of 1 to 1 to 1 to 4, in particular 1 to 1.5 to 1 to 3.
  • Preferred polar aprotic solvents for step B are dimethyl sulfoxide, sulfolane (tetrahydrothiophene-1,1-dioxide), dimethylformamide, dimethylacetamide, tetramethylurea, cyclic ureas, such as e.g. N, N-Dimethylimidazolidinon or Hexamethylphosphorklaretriamid or N-Methylpyrrolidon (NMP) in question. NMP is particularly preferred.
  • the duration of the reaction in step B depends on the reaction conditions chosen. As a rule, the reaction time is 0.5 hours to 2 days, preferably 1 to 25 hours.
  • step B can be carried out after step A without working up the reaction mixture.
  • step B can be carried out after step A without working up the reaction mixture.
  • step C the compounds of the formula IV are preferably reacted with guanidine in an organic solvent at temperatures from -20 to + 60 ° C., preferably at -10 to + 30 °, under normal pressure.
  • organic solvent for this step, ethers such as tetrahydrofuran or dioxane or alcohols such as methanol, ethanol, n-propanol or i-propanol are preferably used. Mixtures of the solvents mentioned can also be used.
  • the guanidine is in one of these solvents from its acid addition salt such as e.g. the guanidinium chloride by adding a base such as e.g. Alkali metal hydroxide or alcoholate, in particular sodium methoxide released and then reacted without with the compounds of formula IV.
  • the compounds of the formula IV are preferably used in a molar ratio to the guanidine of 1 to 1 to 1 to 6, in particular 1 to 2 to 1 to 4.
  • the duration of the implementation in step C depends on the chosen one
  • reaction time is 0.5 hours to 20 hours, preferably 1 to 5 hours.
  • step D the acid addition salt is formed by treating the compounds of the formula I with an appropriate acid.
  • Preferred acids are those which form physiologically acceptable and tolerable salts with the compounds of the formula I.
  • Inorganic acids may preferably be used for this, e.g. Sulfuric acid, nitric acid, hydrohalic acids, such as
  • Hydrochloric acid or hydrobromic acid phosphoric acids such as orthophosphoric acid, sulfamic acid, furthermore organic acids, in particular aliphatic, alicyclic, araliphatic, aromatic or heterocyclic mono- or polybasic carboxylic, sulfonic or sulfuric acids, for example formic acid, acetic acid, propionic acid, Pivalic acid, diethyl acetic acid, malonic acid, succinic acid, pimelic acid, fumaric acid, maleic acid, lactic acid, tartaric acid, malic acid, benzoic acid, salicylic acid, 2- or 3-phenylpropionic acid, citric acid, gluconic acid, ascorbic acid, nicotinic acid, isonicotanesulfonic acid, methane or ethane Hydroxyethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid,
  • Naphtaline mono- and disulfonic acids lauryl sulfuric acid.
  • hydrochloric acid is preferred.
  • the treatment with an acid is preferably carried out by dissolving the compounds of the formula I in a solvent and adding an equimolar amount of the gaseous or liquid acid or a solution of the acid in a suitable solvent.
  • step D can be followed by step C without prior work-up of the
  • Reaction mixture i.e. without isolation of the compound of the formula I, the appropriate acid being added directly to the reaction mixture obtained by step C to form the acid addition salt.
  • the acid addition salt of the compounds of the formula I precipitates out of the solution in crystalline form.
  • the amount of solvent for the individual steps A, B, C and D is not critical, preferably 10 g to 500 g of solvent can be added per g of the compounds of the formula I, II, III or IV to be reacted.
  • the compounds of the formulas I, II, III and IV can be obtained by customary workup steps, such as adding water to the reaction mixture and extraction after removal of the solvent. It may be advantageous to connect a distillation or crystallization to further purify the product. Even without further embodiments, it is assumed that a person skilled in the art can use the above description in the broadest scope. The preferred embodiments are therefore only to be understood as a descriptive disclosure, and in no way as a limitation in any way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Säureadditions-Salzen der Verbindungen der Formel (I), worin R<1>, R<2> und R<3> Alkyl mit 1 bis 12 C-Atomen bedeuten.

Description

Verfahren zur Herstellung von Sulfonyl-benzoylguanidinium-Salzen
Die Erfindung betrifft ein Verfahren zur Herstellung von Säureadditions- Salzen der Verbindungen der Formel I,
worin R1, R2 und R3 unabhängig voneinander Alkyl mit 1 bis 12 C-Atomen bedeuten, dadurch gekennzeichnet, daß man in einem Schritt A die Verbindungen der Formel II
worin R1 und R2 die oben angegebene Bedeutung aufweisen und X F, CI, Br, Alkyl-oder Arylsulfonat oder Perfluoralkylsulfonat bedeuten, nach üblichen Methoden in die Ester der Formel III
worin R1, R2 und X die oben angegebene Bedeutung aufweisen und R Alkyi mit 1 bis 10 C-Atomen bedeutet, überführt und diese in einem Schritt B in Gegenwart von Alkylsulfinat zu den Verbindungen der Formel IV
worin R1, R2, R3 und R4 die oben angegebene Bedeutung aufweisen, umsetzt, die so erhaltenen Verbindungen der Formel IV in einem Schritt C durch Umsetzung mit Guanidin in die entsprechenden Verbindungen der Formel I überführt und diese in einem Schritt D zur Bildung des Säureadditions-Salzes mit einer geeigneten Säure behandelt.
Sulfonyl-benzoylguanidine sind bekannt und beispielsweise beschrieben in EP 0 758 644 A1. Bei diesen Substanzen handelt es sich um Inhibitoren des zellulären Na+/H+-Antiproters, d.h. um Wirkstoffe, die den Na+/H+- Austauschmechanismus der Zellen hemmen (Düsing et al., Med. Klin. 1992, 87, 367-384) und die somit gute Antiarrythmika darstellen, die sich insbesondere zur Behandlung von Arrythmien eignen, die als Folge von Sauerstoffmangel auftreten.
Diese Substanzen zeigen eine gute kardioprotektive Wirkung und eignen sich daher besonders zur Behandlung des akuten Myokardinfarkts, der Infarkt-Prophylaxe, Post-Infarktbehandlung, chronischer Herzinsuffizienz und zur Behandlung von Angina pectoris. Ferner wirken sie allen pathologischen hypoxischen und ischämischen Schädigungen entgegen, so daß die dadurch primär oder sekundär verursachten Krankheiten behandelt werden können. Diese Wirkstoffe sind ebenfalls für präventive Anwendungen gut geeignet.
Aufgrund der protektiven Wirkung dieser Substanzen bei pathologischen hypoxischen oder ischämischen Situationen resultieren daraus weitere Anwendungsmöglichkeiten bei chrirurgischen Eingriffen zum Schutz zeitweilig minderversorgter Organe, bei Organtransplantationen zum Schutz der entnommenen Organe, bei angioplastischen Gefäß- oder Herzeingriffen, bei Ischämien des Nervensystems, bei der Therapie von Schockzuständen und zur Verhinderung der essentiellen Hypertonie. Ferner können diese Verbindungen auch als Therapeutika bei durch Zellproiiferation bedingten Erkrankungen wie Arteriosklerose, Diabetes und diabetischen Spätkomplikationen, Tumorerkrankungen, fibrotischen Erkrankungen, insbesondere von Lunge, Leber und Nieren sowie Organhypertrophien und -hyperplasien, eingesetzt werden. Darüber hinaus eignen sich die Verbindungen zu diagnostischen Anwendung zur
Erkennung von Krankheiten, die von einer gesteigerten Aktivität des Na+/H+-Antiporters z. B. in Erythrozyten, Thrombozyten oder Leukozyten begleitet werden.
Die Verbindungen können daher Arzneimittelwirkstoffe in der Human- und Veterinärmedizin verwendet werden. Ferner können sie als Zwischenprodukte zur Herstellung weiterer Arzneimittelwirkstoffe Verwendung finden.
Die Verbindungen der Formel I sind beispielsweise herstellbar nach EP 0 758 644. Die bisher bekannten Synthesen beruhen auf der Einführung von Alkylsulfon-Gruppen in den Ring einer entsprechenden aromatischen Carbonsäure und umfassen eine Vielzahl von Einzelschritten mit zum Teil unbefriedigenden Ausbeuten. Weiterhin weisen die bekannten Verfahren für die industrielle Herstellung nachteilige Reaktionsbedingungen auf. So ist beispielsweise die Einführung von Alkylsulfon-Gruppen in den Ring einer aromatischen Carbonsäure durch nucleophile Substitution von geeigneten Abgangsgruppen mit Alkylsulfanen und anschließender Oxidation wegen der extremen und lang nachwirkenden Geruchsbelästigung durch Alkylsulfane problematisch, selbst wenn diese nur in Spuren frei werden.
Bei einer direkten Einführung der Alkylsulfonyl-Gruppe in den Ring einer aromatischen Carbonsäure durch nucleophile Substitution von geeigneten Abgangsgruppen mittels Alkylsulfinat werden auch bei Verwendung hochpolarer Solventien Temperaturen von mindestens 120°C benötigt, um ausreichende Umsetzungsraten zu erzielen. Es wurde festgestellt, daß in diesem Temperaturbereich eine zwar langsame, bei weiter erhöhten Temperaturen aber stark zunehmende Zersetzungsreaktion von hoher Exothermie eintritt. Auf Grund der großen Wärmeentwicklung dieser Zersetzung besteht die Gefahr, daß bei Großansätzen die Temperaturführung der Reaktion außer Kontrolle geraten. Damit scheidet eine Anwendung dieser Reaktion auf industrielle Maßstäbe aus Sicherheitsgründen aus.
Aufgabe der vorliegenden Erfindung war es daher, ein verbessertes Herstellungsverfahren für die Verbindungen der Formel I und deren Säureadditions-Salze bereitzustellen, das die obengenannten problematischen Reaktionsschritte umgeht und zudem bessere Ausbeuten liefert.
Diese Aufgabe wurde gelöst durch das erfindungsgemäße Verfahren mit den Merkmalen des Anspruchs 1. Es wurde überraschend gefunden, daß der Austausch des Abgangsgruppe X bei den Estern der Formel III deutlich schneller bzw. bei tieferer Temperatur abläuft als bei der entsprechenden freien Säure, die bei den Verfahren nach dem Stand der Technik eingesetzt wird, so daß eine erhebliche Ausbeuteverbesserung eintritt. Durch das erfindungsgemäße Verfahren sind daher auch preiswerte Ausgangsverbindungen mit Chlor-Substituenten am aromatischen Ring als Abgangsgruppen mit sehr guten Ergebnissen verwendbar. Ferner wurde gefunden, daß es nach dem erfindungsgemäßen Verfahren möglich ist, die Schritte A und B sowie die Schritte C und D ohne Aufarbeitung der Reaktionsmischungen nacheinander durchzuführen, so daß Ausbeuteverluste und kostenaufwendige Arbeitsschritte vermieden werden können.
In den Verbindungen der Formeln I, II, III und IV weisen die Reste folgende bevorzugte Bedeutungen auf:
R1, R2, R3 und R4 bedeuten unabhängig vorzugsweise Methyl, Ethyl, n- Propyl, n-Butyl oder n-Pentyl. Besonders bevorzugt sind Methyl oder Ethyl, insbesondere Methyl. X bedeutet vorzugsweise F, CF3S02- oder CI, insbesondere CI.
Das erfindungsgemäße Verfahren eignet sich insbesondere zur Herstellung von Säureadditions-Salzen von Verbindungen der Formel I, worin R1, R2 und R3 gleichzeitig eine Methyl-Gruppe bedeuten (Verbindungen der Formel IA). Ein ganz besonders bevorzugtes Säureadditions-Salz ist das Hydrochlorid.
Das Verfahren ist daher insbesondere zur Herstellung der Verbindung der Formel V geeignet:
Die Reaktionsdurchführung des erfindungsgemäßen Verfahrens ist einfach, wobei im Schritt A die betreffenden Ausgangsverbindungen der Formel II durch die üblichen literaturbekannten Veresterungsmethoden,
. j- wie etwa einer säurekatalysierten Veresterung mit einem entsprechenden Alkohol, wie Methanol oder Ethanol in Gegenwart von überschüssigem Alkohol als Lösungsmittel oder eines geeigneten Cosolvens, der Umsetzung der Carbonsäuresalze von Verbindungen der Formel II mit einem geeigneten Alkylierungsmittel wie z.B. Dialkylsulfat oder der
?n Umsetzung der freien Säuren mit Orthoestern in die entsprechenden Ester überführt werden.
Eine weitere mögliche Veresterungsreaktion ist die Umwandlung der Säure in ein Säurehalogenid und die anschließende Umsetzung mit einem entsprechenden Alkohol zum Ester.
25
Bevorzugt wird die Veresterung durch Umsetzung der Carbonsäuresalze von Verbindungen der Formel II mit Alkylierungsmitteln wie z.B. Dialkylsulfat oder durch Umsetzung der Verbindungen der Formel II mit einem Orthoester erreicht.
30
Die Reaktion der Carbonsäuresalze mit Alkylierungsmitteln erfolgt zweckmäßig in der Weise, daß zum jeweiligen, in einem inerten Lösungsmittel gelösten Carbonsäuresalz, das vorzugsweise in situ durch Zugabe einer Base wie z.B. Alkalicarbonat, -hydrogencarbonat, -hydroxid
35 oder -alkoholat, insbesondere eines Alkoholats wie z.B. Kalium-tert- butanolat oder eines Hydroxids wie z.B. Natriumhydroxid, hergestellt wird, vorzugsweise ein Dialkylsulfat zugefügt wird und man die Reaktionspartner bei Raumtemperatur oder erhöhter Temperatur und normalem Druck umsetzt. Dimethylsulfat und Diethylsulfat sind als Alkylierungsmittel besonders bevorzugt.
Vorzugsweise wird die zu veresternde Carbonsäure der Formel II oder deren Salz in einem molaren Verhältnis zum Alkylierungsmittel von 1 zu 1 bis 1 zu 8, insbesondere von 1 zu 2 bis 1 zu 4 eingesetzt.
Besonders bevorzugt wird die Veresterung durch Umsetzung der entsprechenden Säuren mit einem Orthoester wie z.B. Trialkylorthoacetat, Tetraalkylorthocarbonat oder -orthosilicat erzielt. Als Orthoester sind Trimethyl- oder Triethylorthoacetat, Tetramethyl- oder Tetraethylorthocarbonat oder -orthosilicat bevorzugt. Insbesondere ist Tetramethylorthoacetat bevorzugt. Die Veresterungsreaktion wird zweckmäßigerweise bei erhöhten Temperaturen, bevorzugt bei 30-180°C, insbesondere bei 80-120°C in einem inerten Solvens umgesetzt.
Vorzugsweise wird die zu veresternde Carbonsäure der Formel II in einem molaren Verhältnis zum Orthoester von 1 zu 1 bis 1 zu 5, insbesondere von 1 zu 1 ,5 bis 1 zu 3 eingesetzt.
Als inertes Solvens für den Schritt A kommen vorzugsweise Amide, wie z.B. Dimethylformamid, Dimethylacetamid, Tetramethylharnstoff, cyclische Harnstoffe, wie z.B. N,N-Dimethylimidazolidinon oder
Hexamethylphosphorsäuretriamid oder 1 -Methyl-2-pyrrolidon (N- Methylpyrrolidon, NMP) in Frage. Sofern die Veresterung mittels Orthoester erfolgt sind weiterhin Ether, wie z.B. Diethylether, Tetrahydrofuran oder Dioxan, Kohlenwasserstoffe, wie z.B. Toluol, Benzol, Hexan oder Heptan bevorzugt. NMP ist besonders bevorzugt.
Mischungen der genannten Lösungsmittel können ebenfalls Verwendung finden. Die Dauer der Umsetzung im Schritt A hängt von den gewählten
Reaktionsbedingungen ab. In der Regel beträgt die Reaktionsdauer
0.5 Stunden bis 2 Tage, vorzugsweise 1 bis 15 Stunden.
Im Schritt B werden die Verbindungen der Formel III vorzugsweise in polar-aprotischen Lösungsmitteln bei Temperaturen, die bevorzugt im
Bereich von 30-150°C , vorzugsweise von 50-110°C insbesondere bei
80-90°C liegen mit Alkylsulfinat, vorzugsweise mit Alkalialkylsulfinat, umgesetzt.
Als Alkalialkylsulfinat wird vorzugsweise Natrium- oder Kaliumalkylsulfinat verwendet, insbesondere Natriummethylsulfinat oder Kaliummethylsulfinat.
Vorzugsweise werden die Verbindungen der Formel III in einem molaren Verhältnis zum Alkalialkylsulfinat von 1 zu 1 bis 1 zu 4, insbesondere von 1 zu 1 ,5 bis 1 zu 3 eingesetzt.
Als polar-aprotisches Solvens für den Schritt B kommen vorzugsweise Dimethylsulfoxid, Sulfolan (Tetrahydrothiophen-1 ,1-dioxid), Dimethylformamid, Dimethylacetamid, Tetramethylharnstoff, cyclische Harnstoffe, wie z.B. N,N-Dimethylimidazolidinon oder Hexamethylphosphorsäuretriamid oder N-Methylpyrrolidon (NMP) in Frage. NMP ist besonders bevorzugt.
Mischungen der genannten Lösungsmittel können ebenfalls Verwendung finden.
Die Dauer der Umsetzung im Schritt B hängt von den gewählten Reaktionsbedingungen ab. In der Regel beträgt die Reaktionsdauer 0.5 Stunden bis 2 Tage, vorzugsweise 1 bis 25 Stunden.
In einer besonders bevorzugten Ausführungsform der Erfindung kann der Schritt B ohne Aufarbeitung des Reaktionsgemisches im Anschluß an den Schritt A durchgeführt werden. Hierzu wird die Veresterung der
Verbindungen der Formel II durch Umsetzung mit Alkylierungsmitteln oder vorzugsweise durch Umsetzung mit Orthoestern in einem polaren aprotischen Lösungsmittel, das auch für Schritt B verwendet werden kann, vorzugsweise NMP, wie oben beschrieben ausgeführt. Anschließend versetzt man die erhaltene Reaktionsmischung mit Akylsulfinat und läßt in der zuvor für Schritt B beschriebenen Art und Weise weiter reagieren.
Im Schritt C werden die Verbindungen der Formel IV vorzugsweise in einem organischen Lösungsmittel bei Temperaturen von -20 bis +60°C, vorzugsweise bei -10 bis +30°, bei normalem Druck mit Guanidin umgesetzt. Als organisches Lösungsmittel für diesen Schritt werden bevorzugt Ether wie Tetrahydrofuran oder Dioxan oder Alkohole wie Methanol, Ethanol, n-Propanol oder i-Propanol verwendet. Mischungen der genannten Lösungsmittel können ebenfalls Verwendung finden. In einer bevorzugten Ausführungsform der Erfindung wird das Guanidin in einem dieser Lösungsmittel aus seinem Säureadditions-Salz wie z.B. dem Guanidiniumchlorid durch Zugabe einer Base wie z.B. Alkalihydroxid oder - alkoholat, insbesondere Natriummethanolat freigesetzt und anschließend ohne mit den Verbindungen der Formel IV umgesetzt.
Vorzugsweise werden die Verbindungen der Formel IV in einem molaren Verhältnis zum Guanidin von 1 zu 1 bis 1 zu 6, insbesondere von 1 zu 2 bis 1 zu 4 eingesetzt.
Die Dauer der Umsetzung im Schritt C hängt von den gewählten
Reaktionsbedingungen ab. In der Regel beträgt die Reaktionsdauer 0.5 Stunden bis 20 Stunden, vorzugsweise 1 bis 5 Stunden.
Im Schritt D wird durch Behandlung der Verbindungen der Formel I mit einer entsprechenden Säure das Säureadditions-Salz gebildet. Als Säuren kommen bevorzugt solche in Betracht, die mit den Verbindungen der Formel I physiologisch unbedenkliche und verträgliche Salze bilden.
Bevorzugt können hierfür anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren, wie
Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Benzoesäure, Salicylsäure, 2- oder 3-Phenylpropionsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2- Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure,
Naphtalinmono- und disulfonsäuren, Laurylschwefelsäure. Insbesondere ist Chlorwasserstoffsäure bevorzugt.
Die Behandlung mit einer Säure erfolgt vorzugsweise in der Weise, daß die Verbindungen der Formel I in einem Lösungsmittel gelöst und mit einer equimolaren Menge der gasförmigen oder flüssigen Säure oder einer Lösung der Säure in einem geeigneten Lösungsmittel versetzt werden.
In einer bevorzugten Ausführungsform der Erfindung kann Schritt D im Anschuß an den Schritt C ohne vorherige Aufarbeitung des
Reaktionsgemisches, d.h. ohne Isolation der Verbindung der Formel I, erfolgen, wobei zu Bildung des Säureadditions-Salzes die entsprechende Säure direkt zu dem durch Schritt C erhaltenen Reaktionsgemisch gegeben wird. Hierbei fällt das Säureadditions-Salz der Verbindungen der Formel I aus der Lösung kristallin aus.
Die Mengen der Lösungsmittel für die einzelnen Schritte A, B, C und D ist nicht kritisch, vorzugsweise können 10 g bis 500 g Lösungsmittel je g der umzusetzenden Verbindungen der Formel I, II, III oder IV zugesetzt werden.
Die Verbindungen der Formeln I, II, III und IV können durch übliche Aufarbeitungsschritte, wie z.B. Wasserzugabe zum Reaktionsgemisch und Extraktion nach Entfernung des Lösungsmittels erhalten werden. Es kann vorteilhaft sein, zur weiteren Reinigung des Produktes eine Destillation oder Kristallisation anzuschließen. Auch ohne weitere Ausführungsformen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Sofern nicht anderes angegeben ist, bedeuten Prozentangaben Gewichtsprozent. Alle Temperaturen sind in Grad Celsius angegeben.
Folgende Abkürzungen werden verwendet:
THF Tetrtahydrofuran
KOtBu Kalium-tert.-butylat
RT Raumtemperatur
MTBE Methyl-tert.-butylether h Stunde(n) d Tag(e)
Beispiel 1
Eine Lösung von 29.5 g 4-Chlor-5-methansulfonyl-2-methylbenzoesäure und 18.39 g Trimethyiorthoacetat in 100 ml Dioxan wurde bis zur vollständigen Umsetzung der Säure unter Rückfluß erhitzt. Nach Zugabe von 150 ml Toluol wurden die Lösungsmittel soweit entfernt, daß die Mischung noch rührfähig blieb. Anschließend gab man 150 ml 1-Methyl-2- pyrrolidon (NMP) sowie 15.8 g Natriummethansulfinat hinzu und rührte die Mischung für 5 h bei 80°C. Nach Zugabe von weiteren 5.3 g Natriummethansulfinat wurde für 25 h gerührt. Durch übliche Aufarbeitung wurde 4, 5-Bismethansulfonyl-2-methylbenzoesäuremethylester erhalten. Beispiel 2
Eine Lösung von 100.0 g 4-Chlor-5-methansulfonyl-2-methylbenzoesäure und 68.1 g Trimethylorthoacetat in 322 ml NMP wurde bis zur vollständigen Umsetzung der Säure unter Rückfluß erhitzt. Nach Abdestillieren des überschüssigen Orthoesters wurden 96.5 g
Natriummethansulfinat zugegeben, und die Mischung wurde 18 h bei 90°C gerührt. Durch übliche Aufarbeitung wurde 4,5-Bismethansulfonyl-2- methylbenzoesäuremethylester erhalten.
Beispiel 3
Zu 50.4 g einer 30 %igen Natriummethylat-Lösung in Methanol wurden 87.4 ml THF unter Rühren zugegeben. Anschließend wurden 28.95 g Guanidiniumchlorid eingetragen. Die Suspension wurde für 2 h bei 16 - 24°C gerührt und auf 10°C abgekühlt, bevor 30.8 g 4,5-Bismethansulfonyl- 2-methylbenzoesäuremethylester in die Mischung eingetragen wurden. Nachdem für 1 h bei 10°C gerührt worden war, versetzte man die Mischung mit einer entsprechenden Menge einer Salzsäure-Lösung. Durch übliche Aufarbeitung wurde N-(4,5-Bis-methansulfonyl-2- methylbenzoyl)-guanidiniumchlorid erhalten.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Säureadditions-Salzen der Verbindungen der Formel I,
worin R1, R2 und R3 unabhängig voneinander Alkyl mit 1 bis 12 C- Atomen bedeuten, dadurch gekennzeichnet, daß man in einem Schritt A die Verbindungen der Formel II
worin R1 und R2 die oben angegebene Bedeutung aufweisen und X F, CI, Br, Alkyl-oder Arylsulfonat oder Perfluoralkylsulfonat bedeuten, nach üblichen Methoden in die Ester der Formel III
worin R1, R2 und X die oben angegebene Bedeutung aufweisen und R4 Alkyl mit 1 bis 10 C-Atomen bedeutet, überführt und diese in einem Schritt B in Gegenwart von Alkylsulfinat zu den Verbindungen der Formel IV
worin R1, R2, R3 und R4 die oben angegebene Bedeutung aufweisen, umsetzt, die so erhaltenen Verbindungen der Formel IV in einem Schritt C durch Umsetzung mit Guanidin in die entsprechenden Verbindungen der Formel I überführt und diese in einem Schritt D zur Bildung des Säureadditions-Salzes mit einer geeigneten Säure behandelt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß Schritt B, die Umsetzung der Verbindungen der Formel III zu den Verbindungen der Formel IV, ohne Aufarbeitung des Reaktionsgemisches im Anschluß an den Schritt A, die Veresterung der Verbindungen der Formel II, durchgeführt wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Schritt D, die Behandlung der Verbindungen der Formel I mit einer geeigneten Säure zur Bildung des Säureadditions-Salzes, im Anschuß an den Schritt C, der Umsetzung der Verbindungen der Formel IV zu den Verbindungen der Formel I ohne vorherige Aufarbeitung des Reaktionsgemisches erfolgt.
Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, daß X in Formel II die Bedeutung CI aufweist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Schritt A die Veresterung durch Umsetzung der entsprechenden Säuren der Formel II mit einem Orthoester erzielt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für die Schritte A und B 1-Methyl-2-pyrrolidon als Lösungsmittel verwendet wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Schritt B bei einer Temperatur von 50-110°C durchgeführt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Säure im Schritt D Chlorwasserstoff-Säure verwendet wird.
9. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung von Säureadditions-Salzen der Verbindung der Formel IA:
10. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung der Verbindung der Formel V:
EP01947223A 2000-05-12 2001-04-17 Verfahren zur herstellung von sulfonyl-benzoylguanidinium-salzen Expired - Lifetime EP1282598B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10023405 2000-05-12
DE10023405A DE10023405A1 (de) 2000-05-12 2000-05-12 Verfahren zur Herstellung von Sulfonyl-benzoylguanidinum-Salzen
PCT/EP2001/004294 WO2001085679A1 (de) 2000-05-12 2001-04-17 Verfahren zur herstellung von sulfonyl-benzoylguanidinium-salzen

Publications (2)

Publication Number Publication Date
EP1282598A1 true EP1282598A1 (de) 2003-02-12
EP1282598B1 EP1282598B1 (de) 2004-10-20

Family

ID=7641866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01947223A Expired - Lifetime EP1282598B1 (de) 2000-05-12 2001-04-17 Verfahren zur herstellung von sulfonyl-benzoylguanidinium-salzen

Country Status (24)

Country Link
US (1) US6706921B2 (de)
EP (1) EP1282598B1 (de)
JP (1) JP2003532704A (de)
KR (1) KR20030007599A (de)
CN (1) CN1193011C (de)
AR (1) AR028442A1 (de)
AT (1) ATE280151T1 (de)
AU (1) AU783369B2 (de)
BR (1) BR0110642A (de)
CA (1) CA2408640A1 (de)
CZ (1) CZ20023647A3 (de)
DE (2) DE10023405A1 (de)
DK (1) DK1282598T3 (de)
ES (1) ES2228897T3 (de)
HU (1) HUP0301936A2 (de)
MX (1) MXPA02011069A (de)
MY (1) MY133941A (de)
NO (1) NO20025385D0 (de)
PL (1) PL358690A1 (de)
PT (1) PT1282598E (de)
RU (1) RU2258699C2 (de)
SK (1) SK15812002A3 (de)
WO (1) WO2001085679A1 (de)
ZA (1) ZA200210050B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037815A1 (ja) * 2002-10-28 2004-05-06 Kaneka Corporation 光学活性n−(2,3−エポキシプロパンー1−イル)フタルイミドの製造法
EP2671576B1 (de) 2008-05-09 2020-04-08 Merck Patent GmbH Pharmazeutische Zusammensetzung zur Behandlung von Erkrankungen im Zusammenhang mit Insulinresistenz und ß-Zellen-Dysfunktion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248648A (ja) * 1985-08-28 1987-03-03 Fujisawa Pharmaceut Co Ltd ジアルコキシ酢酸エステル化合物の製造法
DE59305042D1 (de) * 1992-09-22 1997-02-20 Hoechst Ag Benzoylguanidine, Verfahren zu ihrer Herstellung, sowie ihre Verwendung als Antiarrhythmika
DE4437874A1 (de) * 1994-10-22 1996-04-25 Merck Patent Gmbh Alkyl-5-methylsulfonyl-benzoylguanidin-Derivate
DE19502644A1 (de) * 1995-01-28 1996-08-01 Merck Patent Gmbh 4-Amino-benzoylguanidin-Derivate
DE19529612A1 (de) * 1995-08-11 1997-02-13 Merck Patent Gmbh Sulfonyl- oder Sulfinyl-benzoylguanidin-Derivate
DE19621482A1 (de) * 1996-05-29 1997-12-04 Hoechst Ag Substituierte 1-Naphthoylguanidine, Verfahren zu ihrer Herstellung, ihre Verwendung als Medikament oder Diagnostikum sowie sie enthaltendes Medikament
DE19951418A1 (de) * 1999-10-26 2001-05-03 Merck Patent Gmbh Verfahren zur Herstellung von N-(4,5-Bismethansulfonyl-2-methyl-benzoyl) -guanidin, Hydrochlorid
JP2001247557A (ja) * 1999-12-27 2001-09-11 Sagami Chem Res Center 5−オキシ−7−オキサビシクロ[4.1.0]ヘプト−3−エン−3−カルボン酸エステルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0185679A1 *

Also Published As

Publication number Publication date
CA2408640A1 (en) 2002-11-08
CN1429207A (zh) 2003-07-09
JP2003532704A (ja) 2003-11-05
ES2228897T3 (es) 2005-04-16
NO20025385L (no) 2002-11-11
BR0110642A (pt) 2003-03-18
DE50104219D1 (de) 2004-11-25
US6706921B2 (en) 2004-03-16
US20030162999A1 (en) 2003-08-28
RU2258699C2 (ru) 2005-08-20
WO2001085679A1 (de) 2001-11-15
CZ20023647A3 (cs) 2003-02-12
ATE280151T1 (de) 2004-11-15
EP1282598B1 (de) 2004-10-20
PL358690A1 (en) 2004-08-09
AU783369B2 (en) 2005-10-20
CN1193011C (zh) 2005-03-16
HUP0301936A2 (hu) 2003-09-29
NO20025385D0 (no) 2002-11-11
MXPA02011069A (es) 2003-03-10
ZA200210050B (en) 2003-09-10
KR20030007599A (ko) 2003-01-23
PT1282598E (pt) 2005-03-31
SK15812002A3 (sk) 2003-03-04
AU6896901A (en) 2001-11-20
DK1282598T3 (da) 2005-02-07
AR028442A1 (es) 2003-05-07
MY133941A (en) 2007-11-30
DE10023405A1 (de) 2001-11-15

Similar Documents

Publication Publication Date Title
DE1185180B (de) Verfahren zur Herstellung von Benzolsulfonylharnstoffen
EP0039844A2 (de) Verfahren zur Herstellung von O-substituierten Derivaten des (+)-Cyanidan-3-ols
EP2200978A1 (de) Verfahren zur herstelung von sulfonsäurediamiden
DE2418592C2 (de) Verfahren zur Herstellung von Thiocarbaminsäureestern
EP0370391A2 (de) Verfahren zur Herstellung von 4,5-Dichlor-6-ethylpyrimidin
DE2414280C2 (de) Verfahren zur Herstellung von 1-Methyl-5-nitroimidazolen
EP1282598B1 (de) Verfahren zur herstellung von sulfonyl-benzoylguanidinium-salzen
DE1122541B (de) Verfahren zur Herstellung von Sulfamyl-anthranilsaeuren
EP0034751B1 (de) Verfahren zur Herstellung von 1-Amino-1,3,5-triazin-2,4(1H, 3H)-dionen
DE2109339A1 (de) Mono und dl substituierte Sulfamoyl benzoesauren
EP1224166A1 (de) Verfahren zur herstellung von n-(4,5-bis-methansulfonyl-2-methyl-benzoyl)-guanidin, hydrochlorid
DE2815340A1 (de) Substituierte alkylsulfonanilide
EP1685098B1 (de) Ortho-substituierte pentafluorsulfanyl-benzole, verfahren zu ihrer herstellung sowie ihre verwendung ais wertvolle synthese-zwischenstufen
DE837848C (de) Verfahren zur Herstellung von Benzoesaeureestern sekundaerer Alkyl-sek. Aminopropanole und -butanole
DE2060386A1 (de) Benzolsulfonsaeuren und Verfahren zu deren Herstellung
EP0135860B1 (de) 6-Sulfoxyphenolderivate, ihre Herstellung und ihre Verwendung als Cytoprotektiva; Verwendung von Salicylaldehydabkömmlingen als Cytoprotektiva
DE2718871C3 (de) N-(2-Furylmethyl)-5-sulfamoylorthanilsäuren und deren physiologisch verträgliche Salze und Verfahren zu ihrer Herstellung und ihre Verwendung bei der Bekämpfung von Oedemkrankheiten und Bluthochdruck
EP0088346B1 (de) 2-Aminomethyl-phenol-Derivate, Verfahren zu ihrer Herstellung, ihre Verwendung sowie pharmazeutische Präparate auf Basis dieser Verbindungen
DE850297C (de) Verfahren zur Herstellung von Amidinsalzen
DE913175C (de) Verfahren zur Herstellung von N-(3,3-Dialkoxy-2-ketopropyl)-N-(arylsulfonyl)-p-aminobenzoat-Verbindungen
AT366059B (de) Verfahren zur herstellung von neuen phosphoniumimidazolverbindungen und von deren saeureadditionssalzen
EP0150411A1 (de) Verfahren zur Herstellung substituierter Chinazolin-2.4(1H.3H)-dione
DE3111518A1 (de) Salze von carbamoylsulfonsaeurederivaten und verfahren zu ihrer herstellung
DE1187234B (de) Verfahren zur Herstellung von N-Benzolsulfonyl-isoharnstoffaethern
AT364836B (de) Verfahren zur herstellung von neuen o-substituierten derivaten des (+)-cyanidan-3-ols und deren salzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20020928

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARTMANN, EKKEHARD

Inventor name: KIRSCHBAUM, MICHAEL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT LV RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104219

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040404394

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050115

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20041020

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20050119

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2228897

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050721

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100325

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20100416

Year of fee payment: 10

Ref country code: FR

Payment date: 20100521

Year of fee payment: 10

Ref country code: ES

Payment date: 20100505

Year of fee payment: 10

Ref country code: PT

Payment date: 20100331

Year of fee payment: 10

Ref country code: DK

Payment date: 20100412

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100402

Year of fee payment: 10

Ref country code: IT

Payment date: 20100423

Year of fee payment: 10

Ref country code: DE

Payment date: 20100430

Year of fee payment: 10

Ref country code: AT

Payment date: 20100413

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100423

Year of fee payment: 10

Ref country code: CH

Payment date: 20100414

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100409

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100317

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20111017

BERE Be: lapsed

Owner name: *MERCK PATENT G.M.B.H.

Effective date: 20110430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111101

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110417

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 280151

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110417

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20040404394

Country of ref document: GR

Effective date: 20111102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111017

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104219

Country of ref document: DE

Effective date: 20111101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110417

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110417

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110418