EP1252640A1 - Mikrorelais - Google Patents
MikrorelaisInfo
- Publication number
- EP1252640A1 EP1252640A1 EP01913558A EP01913558A EP1252640A1 EP 1252640 A1 EP1252640 A1 EP 1252640A1 EP 01913558 A EP01913558 A EP 01913558A EP 01913558 A EP01913558 A EP 01913558A EP 1252640 A1 EP1252640 A1 EP 1252640A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- switching part
- attached
- electrodes
- actuator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/12—Contacts characterised by the manner in which co-operating contacts engage
- H01H1/14—Contacts characterised by the manner in which co-operating contacts engage by abutting
- H01H1/20—Bridging contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
- H01H2059/0054—Rocking contacts or actuating members
Definitions
- the present invention relates to an electrostatically operating microrelay which can be used as a switch and which can be produced using the methods of micromechanics.
- electrostatic microswitches are ideally suited and clearly superior to other semiconductor switches in terms of damping and noise behavior.
- a major advantage of such switches is that, apart from capacitive charging currents, the switching contacts can be controlled without power.
- Electrostatic switches with a short switching time in the range below 100 ⁇ s can only be realized with conventional methods if very large switching voltages can be accepted.
- a compromise must be made between the switching speed and the required switching voltage, since the stiffness of the resilient suspension of the switching element means that high switching voltages are required for high switching speeds.
- Battery voltages of up to 3 V are typically available especially for use in cell phones; Switching voltages of up to 12 V can be achieved using voltage multipliers.
- Micromechanical switches are usually formed with micromechanically producible bars, at the end of which the switch contacts are seated and which are bent by means of electrostatic attraction by means of electrical potentials on suitably attached electrodes in order to close the contacts. With switching times of 20 ⁇ s, electrical voltages of 30 V and more are typically required. These components are therefore unsuitable for use in mobile telephones or other low-power applications.
- CD 3 > QF, F- rt CQ
- the object of the present invention is to provide a component which can be used as a switch and which achieves high switching speeds with a low switching voltage.
- the microrelay according to the invention has a switching part which is rotatably suspended on a substrate and can be moved into two alternative switching states in the manner of a rocker by electrostatic attraction by means of suitably attached electrodes.
- the switching function is brought about in that electrodes which are fastened to the substrate above the rocker are short-circuited by metallizations on the upper side of the switching part.
- Figure 1 shows an example of a micro relay in cross section.
- Figure 2 shows the embodiment of Figure 1 in supervision.
- FIG. 3 shows a further example of a microrelay in cross section.
- Figure 4 shows the embodiment of Figure 3 in supervision.
- FIG. 1 the remaining portions of an auxiliary layer or sacrificial layer 11, a structural layer 2 and an electrically insulating layer 20 as well as contact electrodes 31, 32, which are firmly attached with respect to the substrate, are shown in cross section on a substrate 1 or a layer or layer structure present thereon.
- the switching part 9 in this exemplary embodiment has a cutout in the middle in which the anchoring 4 is arranged. Between the switching part 9 and the anchoring 4 there are aligned along the intended axis of rotation and acting as torsion springs
- 3 3 PJ PJ pj s; P 3 PJ 3 'F ⁇ ⁇ ⁇ ! ⁇ ⁇ T PJ
- the doping is omitted, so that the polysilicon here is electrically insulated or at least has only a low electrical conductivity. However, the doping can also be present in the entire switching part 9. Adequate electrical insulation of the contact electrodes 71, 72 can, if necessary, be brought about by electrically insulating layers 21, 22 (for example a nitride such as Si 3 N 4 ) between the contact electrodes 71, 72 and the switching part 9. , The course of the cross section shown in FIG. 1 and the hidden contours of the actuator electrodes 51, 52 attached to the substrate are shown in dashed lines.
- FIG. 2 clearly shows the structuring of the contact electrodes 31, 32 attached to the substrate, each of which has two portions 31a, 31b and 32a, 32b which are arranged at a short distance from one another. These portions are each arranged and aligned in such a way that they are short-circuited by a contact electrode 71, 72 on the upper side thereof when the rocking switching part is in a suitable position.
- two switching functions can be carried out simultaneously, with which one switch is closed and a second switch is opened at the same time.
- the double arrow shown in FIG. 1 refers to the correspondence between the axes of rotation given by the respective struts 8 in FIG. 1 or (shown in dotted lines) in FIG. 2.
- the contact electrodes 31, 32 can be applied to an electrically insulating layer 20 and connected by means of conductor tracks or provided with electrical connections via conductors in the structural layer 2.
- F P. F- ⁇ - 3 tr PJ 3 ⁇ ⁇ F Hi 0 «tr 3 rt - - F- LQ PJ cQ ⁇ CQ 3 ⁇ tr cn F rt 3 PJ 0 F F- PJ tr 0 F Hi ⁇ > Pi rt ⁇ F ⁇ ⁇ ⁇
- the movable part is therefore preferably made of a low-density material, preferably of polysilicon.
- Metallic coatings e.g.
- the microrelay according to the invention with contacts closing at the top (ie away from the substrate) enables a significant reduction in the moving mass (moment of inertia) and thus an increase in the switching speed with an unchanged low switching voltage, since the heavier part of the contact electrodes forming the switch is stationary with respect to the Substrate remains.
- the properties of the switch and the exercise of the switching force are in the invention
Landscapes
- Micromachines (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10004393 | 2000-02-02 | ||
DE10004393A DE10004393C1 (de) | 2000-02-02 | 2000-02-02 | Mikrorelais |
PCT/DE2001/000389 WO2001057901A1 (de) | 2000-02-02 | 2001-02-01 | Mikrorelais |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1252640A1 true EP1252640A1 (de) | 2002-10-30 |
Family
ID=7629479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01913558A Withdrawn EP1252640A1 (de) | 2000-02-02 | 2001-02-01 | Mikrorelais |
Country Status (6)
Country | Link |
---|---|
US (1) | US6734770B2 (ja) |
EP (1) | EP1252640A1 (ja) |
JP (1) | JP2003522379A (ja) |
KR (1) | KR20020075904A (ja) |
DE (1) | DE10004393C1 (ja) |
WO (1) | WO2001057901A1 (ja) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7280014B2 (en) * | 2001-03-13 | 2007-10-09 | Rochester Institute Of Technology | Micro-electro-mechanical switch and a method of using and making thereof |
AU2002303933A1 (en) * | 2001-05-31 | 2002-12-09 | Rochester Institute Of Technology | Fluidic valves, agitators, and pumps and methods thereof |
US7211923B2 (en) * | 2001-10-26 | 2007-05-01 | Nth Tech Corporation | Rotational motion based, electrostatic power source and methods thereof |
US7378775B2 (en) * | 2001-10-26 | 2008-05-27 | Nth Tech Corporation | Motion based, electrostatic power source and methods thereof |
JP2004055410A (ja) | 2002-07-22 | 2004-02-19 | Advantest Corp | バイモルフスイッチ、バイモルフスイッチ製造方法、電子回路、及び電子回路製造方法 |
AU2003258020A1 (en) * | 2002-08-03 | 2004-02-23 | Siverta, Inc. | Sealed integral mems switch |
KR100485787B1 (ko) | 2002-08-20 | 2005-04-28 | 삼성전자주식회사 | 마이크로 스위치 |
US6621135B1 (en) * | 2002-09-24 | 2003-09-16 | Maxim Integrated Products, Inc. | Microrelays and microrelay fabrication and operating methods |
US7463125B2 (en) * | 2002-09-24 | 2008-12-09 | Maxim Integrated Products, Inc. | Microrelays and microrelay fabrication and operating methods |
US20060232365A1 (en) * | 2002-10-25 | 2006-10-19 | Sumit Majumder | Micro-machined relay |
US7190245B2 (en) | 2003-04-29 | 2007-03-13 | Medtronic, Inc. | Multi-stable micro electromechanical switches and methods of fabricating same |
KR100513696B1 (ko) * | 2003-06-10 | 2005-09-09 | 삼성전자주식회사 | 시이소오형 rf용 mems 스위치 및 그 제조방법 |
US7217582B2 (en) * | 2003-08-29 | 2007-05-15 | Rochester Institute Of Technology | Method for non-damaging charge injection and a system thereof |
US7287328B2 (en) * | 2003-08-29 | 2007-10-30 | Rochester Institute Of Technology | Methods for distributed electrode injection |
US8775997B2 (en) * | 2003-09-15 | 2014-07-08 | Nvidia Corporation | System and method for testing and configuring semiconductor functional circuits |
US8872833B2 (en) | 2003-09-15 | 2014-10-28 | Nvidia Corporation | Integrated circuit configuration system and method |
US8732644B1 (en) | 2003-09-15 | 2014-05-20 | Nvidia Corporation | Micro electro mechanical switch system and method for testing and configuring semiconductor functional circuits |
US7388459B2 (en) * | 2003-10-28 | 2008-06-17 | Medtronic, Inc. | MEMs switching circuit and method for an implantable medical device |
US6880940B1 (en) * | 2003-11-10 | 2005-04-19 | Honda Motor Co., Ltd. | Magnesium mirror base with countermeasures for galvanic corrosion |
US8711161B1 (en) | 2003-12-18 | 2014-04-29 | Nvidia Corporation | Functional component compensation reconfiguration system and method |
WO2005069331A1 (en) * | 2003-12-30 | 2005-07-28 | Massachusetts Institute Of Technology | Low-voltage micro-switch actuation technique |
US8581308B2 (en) | 2004-02-19 | 2013-11-12 | Rochester Institute Of Technology | High temperature embedded charge devices and methods thereof |
JP4137872B2 (ja) * | 2004-03-31 | 2008-08-20 | シャープ株式会社 | 静電アクチュエーター,マイクロスイッチ,マイクロ光スイッチ,マイクロ光スイッチシステム,通信装置および静電アクチュエーターの製造方法 |
JP4414263B2 (ja) * | 2004-03-31 | 2010-02-10 | 富士通株式会社 | マイクロスイッチング素子およびマイクロスイッチング素子製造方法 |
US7816999B2 (en) * | 2004-04-12 | 2010-10-19 | Siverta, Inc. | Single-pole double-throw MEMS switch |
US8723231B1 (en) * | 2004-09-15 | 2014-05-13 | Nvidia Corporation | Semiconductor die micro electro-mechanical switch management system and method |
US8711156B1 (en) | 2004-09-30 | 2014-04-29 | Nvidia Corporation | Method and system for remapping processing elements in a pipeline of a graphics processing unit |
US7280015B1 (en) * | 2004-12-06 | 2007-10-09 | Hrl Laboratories, Llc | Metal contact RF MEMS single pole double throw latching switch |
JP4417861B2 (ja) * | 2005-01-31 | 2010-02-17 | 富士通株式会社 | マイクロスイッチング素子 |
US8021193B1 (en) | 2005-04-25 | 2011-09-20 | Nvidia Corporation | Controlled impedance display adapter |
US7793029B1 (en) | 2005-05-17 | 2010-09-07 | Nvidia Corporation | Translation device apparatus for configuring printed circuit board connectors |
JP4424260B2 (ja) * | 2005-06-07 | 2010-03-03 | オムロン株式会社 | 電磁リレー |
US20070074731A1 (en) * | 2005-10-05 | 2007-04-05 | Nth Tech Corporation | Bio-implantable energy harvester systems and methods thereof |
JP2007149370A (ja) * | 2005-11-24 | 2007-06-14 | Fujitsu Media Device Kk | スイッチ |
US8417838B2 (en) * | 2005-12-12 | 2013-04-09 | Nvidia Corporation | System and method for configurable digital communication |
US8412872B1 (en) | 2005-12-12 | 2013-04-02 | Nvidia Corporation | Configurable GPU and method for graphics processing using a configurable GPU |
JP4628275B2 (ja) * | 2006-01-31 | 2011-02-09 | 富士通株式会社 | マイクロスイッチング素子およびマイクロスイッチング素子製造方法 |
FR2897349B1 (fr) * | 2006-02-13 | 2008-06-13 | Schneider Electric Ind Sas | Microsysteme incluant un dispositif d'arret |
JP4855233B2 (ja) * | 2006-12-07 | 2012-01-18 | 富士通株式会社 | マイクロスイッチング素子およびマイクロスイッチング素子製造方法 |
JP4739173B2 (ja) * | 2006-12-07 | 2011-08-03 | 富士通株式会社 | マイクロスイッチング素子 |
FR2912128B1 (fr) * | 2007-02-05 | 2009-05-22 | Commissariat Energie Atomique | Microsysteme d'actionnement et procede de fabrication associe |
US8724483B2 (en) | 2007-10-22 | 2014-05-13 | Nvidia Corporation | Loopback configuration for bi-directional interfaces |
US8687639B2 (en) * | 2009-06-04 | 2014-04-01 | Nvidia Corporation | Method and system for ordering posted packets and non-posted packets transfer |
US9176909B2 (en) | 2009-12-11 | 2015-11-03 | Nvidia Corporation | Aggregating unoccupied PCI-e links to provide greater bandwidth |
US9331869B2 (en) * | 2010-03-04 | 2016-05-03 | Nvidia Corporation | Input/output request packet handling techniques by a device specific kernel mode driver |
US9330031B2 (en) | 2011-12-09 | 2016-05-03 | Nvidia Corporation | System and method for calibration of serial links using a serial-to-parallel loopback |
EP3411894B1 (en) | 2016-02-04 | 2023-06-14 | Analog Devices International Unlimited Company | Active opening mems switch device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4113190C1 (en) * | 1991-04-23 | 1992-07-16 | Rohde & Schwarz Gmbh & Co Kg, 8000 Muenchen, De | Electrostatically actuated microswitch - has armature attached to base via torsional struts to allow pivoting for contacting electrodes |
US5278368A (en) * | 1991-06-24 | 1994-01-11 | Matsushita Elec. Works, Ltd | Electrostatic relay |
DE4205340C1 (en) * | 1992-02-21 | 1993-08-05 | Siemens Ag, 8000 Muenchen, De | Micro-mechanical electrostatic relay with parallel electrodes - has frame shaped armature substrate with armature contacts above base electrode contacts on base substrate |
JP3402642B2 (ja) * | 1993-01-26 | 2003-05-06 | 松下電工株式会社 | 静電駆動型リレー |
US5619061A (en) * | 1993-07-27 | 1997-04-08 | Texas Instruments Incorporated | Micromechanical microwave switching |
JP3465940B2 (ja) * | 1993-12-20 | 2003-11-10 | 日本信号株式会社 | プレーナー型電磁リレー及びその製造方法 |
CH691559A5 (fr) * | 1997-04-21 | 2001-08-15 | Asulab Sa | Micro-contacteur magnétique et son procédé de fabrication. |
DE19820821C1 (de) * | 1998-05-09 | 1999-12-16 | Inst Mikrotechnik Mainz Gmbh | Elektromagnetisches Relais |
US6046659A (en) * | 1998-05-15 | 2000-04-04 | Hughes Electronics Corporation | Design and fabrication of broadband surface-micromachined micro-electro-mechanical switches for microwave and millimeter-wave applications |
DE19823690C1 (de) * | 1998-05-27 | 2000-01-05 | Siemens Ag | Mikromechanisches elektrostatisches Relais |
JP3087741B2 (ja) * | 1998-11-04 | 2000-09-11 | 日本電気株式会社 | マイクロマシンスイッチ |
US6160230A (en) * | 1999-03-01 | 2000-12-12 | Raytheon Company | Method and apparatus for an improved single pole double throw micro-electrical mechanical switch |
JP2001076605A (ja) * | 1999-07-01 | 2001-03-23 | Advantest Corp | 集積型マイクロスイッチおよびその製造方法 |
DE10031569A1 (de) * | 1999-07-01 | 2001-02-01 | Advantest Corp | Integrierter Mikroschalter und Verfahren zu seiner Herstellung |
US6384353B1 (en) * | 2000-02-01 | 2002-05-07 | Motorola, Inc. | Micro-electromechanical system device |
US6504118B2 (en) * | 2000-10-27 | 2003-01-07 | Daniel J Hyman | Microfabricated double-throw relay with multimorph actuator and electrostatic latch mechanism |
US6473361B1 (en) * | 2000-11-10 | 2002-10-29 | Xerox Corporation | Electromechanical memory cell |
-
2000
- 2000-02-02 DE DE10004393A patent/DE10004393C1/de not_active Expired - Fee Related
-
2001
- 2001-02-01 WO PCT/DE2001/000389 patent/WO2001057901A1/de not_active Application Discontinuation
- 2001-02-01 JP JP2001557065A patent/JP2003522379A/ja active Pending
- 2001-02-01 KR KR1020027009941A patent/KR20020075904A/ko not_active Application Discontinuation
- 2001-02-01 EP EP01913558A patent/EP1252640A1/de not_active Withdrawn
-
2002
- 2002-08-02 US US10/211,058 patent/US6734770B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0157901A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20030006868A1 (en) | 2003-01-09 |
JP2003522379A (ja) | 2003-07-22 |
WO2001057901A1 (de) | 2001-08-09 |
US6734770B2 (en) | 2004-05-11 |
KR20020075904A (ko) | 2002-10-07 |
DE10004393C1 (de) | 2002-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001057901A1 (de) | Mikrorelais | |
DE60113233T2 (de) | Elektronisch schaltendes bistabiles mikro-relais und verfahren zu seinem betrieb | |
DE60225484T2 (de) | Membranakivierter mikroelektromechanischer schalter | |
DE60222075T2 (de) | Elektrostatischer Betätiger, und elektrostatisches Relais und andere Vorrichtungen unter Benutzung derselben | |
DE60113232T2 (de) | Verfahren zum Lesen eines Identifizierungsmittels und Identifizierungsmittel | |
DE60222468T2 (de) | Mems-einrichtung mit dreischichtigem biegebalken und diesbezügliche verfahren | |
DE19820821C1 (de) | Elektromagnetisches Relais | |
DE602005001745T2 (de) | Monolithische MEMS-Vorrichtung mit im Gleichgewicht befindlicher Kragplatte | |
EP1163692B1 (de) | Substratparallel arbeitendes mikrorelais | |
DE4205340C1 (en) | Micro-mechanical electrostatic relay with parallel electrodes - has frame shaped armature substrate with armature contacts above base electrode contacts on base substrate | |
US12027336B2 (en) | Capacitively operable MEMS switch | |
DE3544656A1 (de) | Synchron betaetigbare elektrische stromschalteinrichtung | |
WO2008110389A1 (de) | Mikromechanische schaltervorrichtung mit mechanischer kraftverstärkung | |
EP0610464B1 (de) | Beschleunigungsschalter und verfahren zur herstellung | |
DE60311504T2 (de) | Mikromechanisches relais mit anorganischer isolierung | |
EP1269506B1 (de) | Mikroaktoranordnung | |
EP1057196A1 (de) | Mikromechanisches elektrostatisches relais | |
DE60307136T2 (de) | Mikromechanischer elektrostatischer schalter mit niedriger betätigungsspannung | |
EP1203391A1 (de) | Elektromechanisches mikrorelais und verfahren zu dessen herstellung | |
WO2003060940A1 (de) | Mikro-elektromechanisches system und verfahren zu dessen herstellung | |
DE19950964B4 (de) | Mikromechanisches Relais und Verfahren zur Herstellung | |
DE102006036499B4 (de) | Mikromechanisches Bauelement | |
EP1191559A2 (de) | Mikroschalter und Verfahren zu dessen Herstellung | |
WO2022243017A1 (de) | Mikromechanischer schalter | |
EP3977497A1 (de) | Anordnung von mems-schaltern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020621 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PLOETZ, FLORIAN Inventor name: AIGNER, ROBERT Inventor name: MICHAELIS, SVEN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20040427 |