EP1269506B1 - Mikroaktoranordnung - Google Patents

Mikroaktoranordnung Download PDF

Info

Publication number
EP1269506B1
EP1269506B1 EP01919213A EP01919213A EP1269506B1 EP 1269506 B1 EP1269506 B1 EP 1269506B1 EP 01919213 A EP01919213 A EP 01919213A EP 01919213 A EP01919213 A EP 01919213A EP 1269506 B1 EP1269506 B1 EP 1269506B1
Authority
EP
European Patent Office
Prior art keywords
micro actuator
thermomechanical
micro
actuator
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01919213A
Other languages
English (en)
French (fr)
Other versions
EP1269506A1 (de
Inventor
Hans Joachim Quenzer
Bernd Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1269506A1 publication Critical patent/EP1269506A1/de
Application granted granted Critical
Publication of EP1269506B1 publication Critical patent/EP1269506B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0042Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H2061/006Micromechanical thermal relay

Definitions

  • the present invention relates to a microactuator arrangement with a substrate having a first thermo-mechanical microactuator and a second thermo-mechanical microactuator, wherein the first thermo-mechanical microactuator is deflected in a thermal excitation substantially parallel to the surface of the substrate.
  • the Mikroaktoran angel is particularly suitable for use as a micro-relay.
  • Micro-relays are increasingly replacing conventional electromechanical relays because they can be manufactured at a lower cost and with less space required, and because of their size also achieve shorter switching times.
  • these micro-relays are usually realized on the basis of microactuators, which operate on the electrostatic action principle.
  • these electrostatic micro-relays are characterized by relatively small travel ranges and small actuating forces of the microactuators, which on the one hand leads to problems with regard to the dielectric strength of the microrelay and, on the other hand, to problems due to increased contact wear.
  • thermomechanical microactuators which are used in other areas of microsystems technology, are distinguished above all by the generation of comparatively large actuating forces and travel ranges with at the same time moderate power consumption. In microsystem technology, they are used primarily for the construction of micro-actuators that require the greatest possible actuating forces and travel ranges. An example of this is the use in microvalves. Since for the operation of thermal microactuators usually electrical power in the range of a few 100 mW are required, thermal drives are mainly primarily for the construction of individual control elements in question. However, a particular disadvantage of thermo-mechanical microactuators proves that a thermomechanical microactuator for holding its deflected state induced by thermal excitation (ON state) must be heated continuously by supplying energy. For this reason, thermo-mechanical micro-sensors in micro-relays as well as for a variety of other applications are not used or only in exceptional cases.
  • thermo-mechanical microactuators according to the preamble of claim 1.
  • a microactuator here is a single or a plurality of juxtaposed bar-shaped elements used parallel to a substrate surface at both ends clamped to the substrate and in a Preferred direction are biased parallel to the substrate surface. By heating the beam-shaped elements they expand in the clamped state, so that a deflection in the preferred direction results parallel to the substrate surface. This deflection movement can be used, for example, to open or close a valve opening in the substrate.
  • the thermo-mechanical microactuators of this document can not be used without the above disadvantages in a micro-relay, in which individual switching states must be kept for a long time.
  • thermomechanical microrelay disclosed in J.-Y. Lee et al., "A characterization of thermal parameters of thermally driven polysilicon microbridge actuators using electrical impedance analysis", Sensors and Actuators A75 (1999), 86-92.
  • a bridge-shaped polysilicon membrane is deflected by heating perpendicular to the substrate surface to connect electrical contacts.
  • keeping this connection requires constant power input.
  • thermo-mechanical actuators From WO 99/16096 a micro-relay of a plurality of identically constructed thermo-mechanical actuators is known, which are clamped on bar-shaped elements at both ends of the substrate. By heating the bar-shaped elements, a deflection of the two actuators is caused parallel to the substrate surface. About a mechanical locking mechanism, a lateral hooking with the second actuator, one of the actuators can be held without current in a certain position. The lock can be released again by actuating the second actuator.
  • the object of the present invention is to provide a further Mikroaktoran angel that allows switching between at least two switching states with great force and large travel, the respective switching states can be held without power.
  • the present microactuator arrangement consists of a substrate with at least two thermomechanical microactuators.
  • a first thermomechanical microactuator is arranged in a manner known from the prior art on the substrate, wherein it is deflected in a thermal excitation substantially parallel to the surface of the substrate, that carries out its actuating movement substantially parallel to the surface.
  • the second thermomechanical microactuator on the one hand is designed such that it is deflected at a thermal excitation substantially perpendicular to the surface of the substrate, ie performs its adjusting movement substantially perpendicular to the substrate surface.
  • the second thermo-mechanical microactuator is arranged relative to the first thermomechanical microactuator such that a portion of the first thermo-mechanical microactuator at a thermal excitation to below a portion of the second thermo-mechanical microactuator - in the deflected state - extends.
  • the second thermomechanical microactuator performs an actuator motion substantially perpendicular to the substrate surface, a portion of the first thermo-mechanical microactuator is in a deflected state between a portion of the second thermo-mechanical microactuator and the substrate surface, such that that portion of the first thermo-mechanical microactuator will shut off the second thermo-mechanical microactuator thermomechanical microactuator is clamped by this.
  • thermo-mechanical microactuators thus makes it possible to keep the switching state (ON state) of the first thermo-mechanical microactuator powerless.
  • first both thermo-mechanical microactuators are switched on, ie thermally excited, so that a first section of the first thermo-mechanical microactuator moves below a second section of the second thermo-mechanical microactuator.
  • the second thermo-mechanical microactuator is turned off, thereby clamping the first portion of the first thermo-mechanical microactuator. If this is then also switched off by interrupting the supply of heat, it remains in the deflected position, since it is held in this position by the clamping action of the switched-off second thermo-mechanical microactuator.
  • thermo-mechanical microactuator This holding position is on the one hand by the friction between the two microactuators and on the other hand by the high restoring force, with the second thermal Mikroaktor takes his rest position allows. In this way, the deflected state of the first thermo-mechanical microactuator is held without further energy supply, that is, without power. To release this holding position, it is only necessary to briefly turn on the second thermo-mechanical microactuator, whereby the holding position is released and the first thermo-mechanical microactuator returns to its rest position (OFF state), in which he also remains without energy.
  • thermomechanical microactuators in order to be able to use two switching states with the aid of thermomechanical microactuators, it is possible to use the large actuating forces and actuating strokes of thermomechanical microactuators even in areas for which they were hitherto unsuitable.
  • the present Mikroaktoranssen is particularly suitable for use in micro-relays, but can of course be used for other applications such as micro valves.
  • the use of the present microactuator arrangement makes it possible, especially when used in micro-relays, to combine comparatively large travel ranges with a relatively large contact pressure on the contacts to be bridged.
  • the first thermomechanical actuator also referred to below as a lateral actuator
  • a lateral actuator can in this case be designed so that it enables strokes or travel ranges of 50-80 ⁇ m. Through these large travel paths, the electrical contacts in the relay can have a greater mutual distance, so that on the one hand increases the dielectric strength of the relay and on the other hand, a crosstalk between each Lines is reduced.
  • the second thermo-mechanical actuator hereinafter also referred to as a z-actuator, which holds the lateral actuator in a deflected position develops pressure forces in the rest position in the range of 10 mN-50 mN and more.
  • the lateral actuator thus provides for the large stroke while the z-actuator for closing the relay contacts provides the large pressure force, since he presses the lateral actuator with this pressure force against the substrate surface on which the micro-relay to be closed contacts are arranged.
  • the electrical power of about 200 - 300 mW for switching the micro-relay is required only during the short switching phases, while the individual switching states can be held without power.
  • the space required for the two microactuators on the substrate is usually about 2 mm x 1 mm and is therefore comparable to the areas required for microrelays according to the electrostatic action principle.
  • the present microactuator arrangement is thus clearly superior to any hitherto known micro-relay concept with regard to the achievable switching forces and the achievable switching strokes.
  • microactuator arrangement according to the invention is also suitable for other applications in which, on the one hand, at least two switching states must be held without power and, on the other hand, large actuating forces and travel paths are required.
  • microactuator arrangement with this arrangement not only two but also further switching states can be realized and kept without power.
  • This only requires that the lateral actuator at different deflections, which are generated by different degrees of thermal excitation, each with a portion extends below the z-actuator. This can be achieved for example by a correspondingly long boom on the lateral actuator, which extends in the deflection direction. In this way, the lateral actuator can be held by the z-actuator in any deflection position.
  • This embodiment enables a multiplicity of switching connections in a microrelay equipped with the microactuator arrangement according to the invention.
  • a further preferred embodiment of the present microactuator arrangement is characterized in that the two microactuators interlock when the holding position is taken.
  • This hooking can be realized in that the two overlapping in the holding position portions of the lateral actuator and the z-actuator engage, for example by one of the two sections has a recess into which engages a survey of the other of the two sections.
  • other geometrical configurations are conceivable, which lead to a corresponding entanglement or to a corresponding interlocking. The person skilled in the art knows such embodiments from many areas of the technique. In the case of a plurality of shift positions to be held, different holding positions can be predetermined by corresponding geometric design of the sections, with the two sections meshing with one another.
  • thermomechanical microactuators are known to the person skilled in the art.
  • a bar-shaped element is used as a basic element of the single microactuator, as is known for example from US 5,909,078.
  • This bar-shaped element is preferably etched out of the substrate such that it remains clamped on both sides of the substrate.
  • the second thermo-mechanical actuator that is, the z-actuator, consists of such an element which is connected in the form of a bridge to the substrate.
  • the thermal excitation of the two elements can be done in a variety of ways.
  • thermal excitations such as irradiation, arranging a heating element on the substrate, direct heating by current flow through the actuator element or attaching a Schumachers harsh on the actuator element are known in the art.
  • the last option in the present microactuator arrangement is used by applying to the beam-shaped elements a corresponding heating conductor layer, for example of polysilicon.
  • the microactuator arrangement is not limited to a lateral and a z-actuator. Thus, several such actuators in a corresponding arrangement be used for the substrate. Likewise, a mechanical coupling of different lateral actuators is possible, as is known from the mentioned in the introductory part US-Script.
  • contact bridges are provided from a highly conductive material on the underside of the lateral actuator.
  • the actuator itself or the bar-shaped elements of the actuator can in this case consist of other materials.
  • nickel is used as the material for the beam-shaped elements, since this has good thermo-mechanical properties and is suitable for building the elements in the required dimensions by known means of microstructure technology.
  • the electrically conductive contact bridges and the heating conductor layer are additionally insulated from the nickel via an intermediate layer.
  • thermomechanical microactuators on a substrate can be taken from the specialist literature at any time. This is usually a combination of photolithography, galvanic deposition and etching.
  • FIG. 1 shows a three-dimensional view of a microactuator arrangement according to a first exemplary embodiment.
  • the microactuator arrangement consists of the substrate 1, a semiconductor substrate on which a lateral microactuator 3 and a z-actuator 4 are arranged.
  • the lateral actuator 3 is composed of four bar-shaped elements 7, which are each anchored to the substrate 1 on one side. At these beam-shaped elements, a plate-shaped arm 9 is mounted, which extends in the direction of the deflection, that is, in the direction of the z-actuator 4.
  • the lateral actuator 3 can be seen in the figure in the deflected state. In the resting state, it is located above the indicated depression 11 in the substrate surface, which is produced during the production process during the undercutting of the bar-shaped elements 7.
  • the bar-shaped elements 7 are provided with Bankrupts harshen (not visible in the figure), which are supplied via corresponding pads 12 with power.
  • the bar-shaped elements hereby have dimensions of typically about 1 mm in length, 5-10 ⁇ m in width and 15-20 ⁇ m in height.
  • the z-actuator 4 is also composed of a bar-shaped element 8, which is clamped on both sides of the substrate 1.
  • This z-actuator 4 is designed in the form of a Brückenaktors.
  • the bar-shaped element 8 is also provided in this case with a corresponding, not shown, heating layer, which is supplied via connection pads 12 with power.
  • a plate-shaped arm 10 is provided, which extends in the direction of the lateral actuator 3. Both arms 9 and 10 can be hooked together by a corresponding configuration, as shown in the enlarged portion of Figure 2.
  • both actuators are first put into operation.
  • the lateral actuator 3 pushes its plate-shaped arm 9 under the z-actuator 4.
  • the z-actuator is first turned off and lowers with its arm 10 on the boom 9.
  • a suitable hook-like structure prevents after switching off the lateral actuator. 3 a release of this contact.
  • both actuators are also first switched on. The lateral actuator 3 is switched off but this time before the z-actuator 4.
  • the figure 1 shows the microactuator arrangement in the ON state.
  • the bar-shaped elements 7, 8 and the arms 9, 10 of the two actuators 3, 4 are made of nickel in this example.
  • the heating conductor extending below the bar-shaped elements is separated from this metallic structure by insulating layers.
  • Figure 2 shows another example of a microactuator assembly according to the present invention when used as a micro-relay.
  • the substrate 1 and the two microactuators 3, 4 with the respective bar-shaped elements 7, 8 and the arms 9, 10 can be seen.
  • four printed conductors 13 are arranged on the substrate 1, of which - can be seen in the enlarged view - all are interrupted by a gap.
  • contact bridges 14 At the bottom of the boom 9 of the lateral actuator 3 are contact bridges 14 for closing the open contacts.
  • These contact bridges 14 may be formed of a good conductive material such as gold, which is isolated from the material of the actuator. As a result, smaller lead resistances can be achieved in the relay.
  • several contacts or lines 13 can also be closed simultaneously.
  • the ON state of the micro-relay is shown, in which the contacts of the four lines are closed in different ways, as can be seen in the enlarged view.
  • the high pressure force is generated by the return movement of the z-actuator 4, which presses on the lateral actuator 3.
  • the enlarged view is also a geometric arrangement of a possible entanglement between the boom 10 of the z-actuator 4 and the boom 9 of the lateral actuator 3 can be seen.
  • a suitable metal such as nickel is recommended.
  • a suitable metal such as nickel is recommended.
  • the switching times of the relay are approximately between 10 ms and 100 ms. Due to the very good electrical conductivity of the bar-shaped elements, however, prohibits direct use as a heating element in this case.
  • a heat conductor layer is preferably attached to the actual actuator element, which of course must be isolated from the actual thermoactor.

Landscapes

  • Micromachines (AREA)
  • Thermally Actuated Switches (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

    Technisches Anwendungsgebiet
  • Die vorliegende Erfindung betrifft eine Mikroaktoranordnung mit einem Substrat mit einem ersten thermomechanischen Mikroaktor und einem zweiten thermomechanischen Mikroaktor, wobei der erste thermomechanische Mikroaktor bei einer thermischen Anregung im Wesentlichen parallel zur Oberfläche des Substrates ausgelenkt wird. Die Mikroaktoranordnung eignet sich insbesondere für den Einsatz als Mikrorelais.
  • Mikrorelais ersetzen zunehmend konventionelle elektromechanische Relais, da sie mit geringeren Kosten und geringerem Platzbedarf hergestellt werden können und aufgrund ihrer Größe auch geringere Schaltzeiten erreichen. Derzeit werden diese Mikrorelais in der Regel auf Basis von Mikroaktoren realisiert, die nach dem elektrostatischen Wirkprinzip arbeiten. Diese elektrostatischen Mikrorelais zeichnen sich allerdings durch relativ kleine Stellwege und kleine Stellkräfte der Mikroaktoren aus, was einerseits zu Problemen hinsichtlich der Durchschlagfestigkeit des Mikrorelais und andererseits zu Problemen aufgrund eines erhöhten Kontaktverschleißes führt.
  • Thermomechanische Mikroaktoren, die in anderen Bereichen der Mikrosystemtechnik zum Einsatz kommen, zeichnen sich demgegenüber vor allem durch die Erzeugung vergleichsweise großer Stellkräfte und Stellwege bei gleichzeitig moderatem Leistungsverbrauch aus. Sie finden in der Mikrosystemtechnik vor allem für die Konstruktion von Mikrostellelementen Anwendung, bei denen es auf möglichst große Stellkräfte und Stellwege ankommt. Ein Beispiel hierfür ist der Einsatz in Mikroventilen. Da für den Betrieb thermischer Mikroaktoren in der Regel elektrische Leistungen im Bereich von einigen 100 mW benötigt werden, kommen thermische Antriebe bisher vornehmlich für den Aufbau einzelner Stellelemente in Frage.
    Als besonderer Nachteil thermomechanischer Mikroaktoren erweist sich jedoch, dass ein thermomechanischer Mikroaktor zum Halten seines durch thermische Anregung herbeigeführten ausgelenkten Zustandes (ON-Zustand) kontinuierlich durch Energiezufuhr geheizt werden muss. Aus diesem Grunde werden thermomechanische Mikroatoren in Mikrorelais wie auch für eine Vielzahl von anderen Applikationen bisher nicht oder nur in Ausnahmefällen eingesetzt.
  • Stand der Technik
  • Die US 5,909,078 zeigt ein Beispiel für eine Mikroaktoranordnung mit thermomechanischen Mikroaktoren gemäß dem Oberbegriff des Patentanspruches 1. Als Mikroaktor wird hierbei ein einzelner oder eine Vielzahl von nebeneinander angeordneten balkenförmigen Elementen eingesetzt, die parallel zu einer Substratoberfläche an jeweils beiden Enden am Substrat eingespannt und in einer Vorzugsrichtung parallel zur Substratoberfläche vorgespannt sind. Durch Aufheizen der balkenförmigen Elemente dehnen sich diese im eingespannten Zustand aus, so dass eine Auslenkung in der Vorzugsrichtung parallel zur Substratoberfläche resultiert. Diese Auslenkbewegung kann beispielsweise zum Öffnen oder Schließen einer Ventilöffnung im Substrat eingesetzt werden.
    Auch die thermomechanischen Mikroaktoren dieser Druckschrift lassen sich jedoch nicht ohne die obigen Nachteile in einem Mikrorelais verwenden, in dem einzelne Schaltzustände längere Zeit gehalten werden müssen.
    Den gleichen Nachteil weist das thermomechanische Mikrorelais auf, das in J.-Y. Lee et al., "A characterization of thermal parameters of thermally driven polysilicon microbridge actuators using electrical impedance analysis", Sensors and Actuators A75 (1999), 86-92, beschrieben wird. Bei diesem Relais wird eine brükkenförmig ausgebildete Polysilizium-Membran durch Aufheizen senkrecht zur Substratoberfläche ausgelenkt, um elektrische Kontakte zu verbinden. Zum Halten dieser Verbindung ist jedoch ständige Energiezufuhr erforderlich.
  • Aus der WO 99/16096 ist ein Mikrorelais aus mehreren gleichartig aufgebauten thermomechanischen Aktuatoren bekannt, die über balkenförmige Elemente an jeweils beiden Enden am Substrat eingespannt sind. Durch Aufheizen der balkenförmigen Elemente wird eine Auslenkung der beiden Aktuatoren parallel zur Substratoberfläche hervorgerufen. Über einen mechanischen Verriegelungsmechanismus, einem seitlichen Verhaken mit dem zweiten Aktuator, kann einer der Aktuatoren stromlos in einer bestimmten Position gehalten werden. Die Verriegelung kann durch Betätigung des zweiten Aktuators wieder gelöst werden.
  • Ausgehend von diesem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, eine weitere Mikroaktoranordnung anzugeben, die ein Umschalten zwischen zumindest zwei Schaltzuständen mit großer Stellkraft und großem Stellweg ermöglicht, wobei die jeweiligen Schaltzustände leistungslos gehalten werden können.
  • Darstellung der Erfindung
  • Die Aufgabe wird mit der Mikroaktoranordnung nach Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Mikroaktoranordnung sind Gegenstand der Unteransprüche.
  • Die vorliegende Mikroaktoranordnung besteht aus einem Substrat mit zumindest zwei thermomechanischen Mikroaktoren. Ein erster thermomechanischer Mikroaktor ist in einer aus dem Stand der Technik bekannten Weise auf dem Substrat angeordnet, wobei er bei einer thermischen Anregung im Wesentlichen parallel zur Oberfläche des Substrates ausgelenkt wird, d.h. seine Stellbewegung im Wesentlichen parallel zur Oberfläche ausführt. Erfindungsgemäß ist der zweite thermomechanische Mikroaktor einerseits derart ausgebildet, dass er bei einer thermischen Anregung im Wesentlichen senkrecht zur Oberfläche des Substrates ausgelenkt wird, d.h. seine Stellbewegung im Wesentlichen senkrecht zur Substratoberfläche durchführt. Andererseits ist der zweite thermomechanische Mikroaktor relativ zum ersten thermomechanischen Mikroaktor derart angeordnet, dass ein Abschnitt des ersten thermomechanischen Mikroaktors bei einer thermischen Anregung bis unter einen Abschnitt des zweiten thermomechanischen Mikroaktors - in ausgelenktem Zustand - reicht. Da der zweite thermomechanische Mikroaktor eine Stellbewegung im Wesentlichen senkrecht zur Substratoberfläche vollführt, befindet sich somit ein Abschnitt des ersten thermomechanischen Mikroaktors in einem ausgelenkten Zustand zwischen einem Abschnitt des zweiten thermomechanischen Mikroaktors und der Substratoberfläche, so dass dieser Abschnitt des ersten thermomechanischen Mikroaktors bei Abschalten des zweiten thermomechanischen Mikroaktors von diesem eingeklemmt wird.
  • Diese Anordnung zweier thermomechanischer Mikroaktoren ermöglicht es somit, den Schaltzustand (ON-Zustand) des ersten thermomechanischen Mikroaktors leistungslos zu halten. Beim Umschalten vom Ruhezustand (OFF-Zustand) in den ON-Zustand werden zunächst beide thermomechanischen Mikroaktoren angeschaltet, d.h. thermisch angeregt, so dass sich ein erster Abschnitt des ersten thermomechanischen Mikroaktors unter einen zweiten Abschnitt des zweiten thermomechanischen Mikroaktors bewegt. Anschließend wird der zweite thermomechanische Mikroaktor abgeschaltet und klemmt dadurch den ersten Abschnitt des ersten thermomechanischen Mikroaktors ein. Wird dieser anschließend ebenfalls durch Unterbrechung der Wärmezufuhr abgeschaltet, so verbleibt er in der ausgelenkten Stellung, da er durch die Klemmwirkung des abgeschalteten zweiten thermomechanischen Mikroaktors in dieser Position gehalten wird. Diese Haltestellung wird einerseits durch die Reibung zwischen den beiden Mikroaktoren und andererseits durch die hohe Rückstellkraft, mit der zweite thermische Mikroaktor seine Ruhestellung einnimmt, ermöglicht. Auf diese Weise wird der ausgelenkte Zustand des ersten thermomechanischen Mikroaktors ohne weitere Energiezufuhr, das heißt leistungslos, gehalten. Zum Lösen dieser Haltestellung ist es lediglich erforderlich, den zweiten thermomechanischen Mikroaktor kurz anzuschalten, wodurch die Haltestellung gelöst wird und der erste thermomechanische Mikroaktor in seine Ruhestellung (OFF-Zustand) zurückkehrt, in der er ebenfalls ohne Energiezufuhr verbleibt.
  • Durch diese Eigenschaft der erfindungsgemäßen Mikroaktoranordnung, zwei Schaltzustände mit Hilfe von thermomechanischen Mikroaktoren leistungslos halten zu können, eröffnet sich die Möglichkeit, die großen Stellkräfte und Stellhübe thermomechanischer Mikroaktoren auch in Bereichen einzusetzen, für die sie bisher nicht geeignet waren. Die vorliegende Mikroaktoranordnung ist hierbei besonders für den Einsatz in Mikrorelais geeignet, läßt sich aber selbstverständlich auch für andere Anwendungen wie beispielsweise für Mikroventile einsetzen. Durch die Verwendung der vorliegenden Mikroaktoranordnung wird es gerade beim Einsatz in Mikrorelais möglich, vergleichsweise große Stellwege mit einer relativ großen Andruckkraft auf die zu überbrükkenden Kontakte zu kombinieren. Der erste thermomechanische Aktor, im Folgenden auch als lateraler Aktor bezeichnet, kann hierbei so ausgelegt werden, dass er Hübe bzw. Stellwege von 50 - 80 µm ermöglicht. Durch diese großen Stellwege können die elektrischen Kontakte im Relais einen größeren gegenseitigen Abstand aufweisen, so dass einerseits die Durchschlagfestigkeit des Relais erhöht und andererseits ein Übersprechen zwischen einzelnen Leitungen vermindert wird. Gleichzeitig entwikkelt der zweite thermomechanische Aktor, im folgenden auch als z-Aktor bezeichnet, der den lateralen Aktor in einer ausgelenkten Position hält, bei seiner Rückstellbewegung in die Ruhelage Andruckkräfte im Bereich von 10 mN - 50 mN und mehr. Der laterale Aktor sorgt demnach für den großen Hub während der z-Aktor für das Schließen der Relais-Kontakte die große Andruckkraft liefert, da er den lateralen Aktor mit dieser Andruckkraft gegen die Substratoberfläche presst, auf der beim Mikrorelais die zu schließenden Kontakte angeordnet sind.
  • Die elektrische Leistung von ca. 200 - 300 mW zum Schalten des Mikrorelais wird nur während der kurzen Schaltphasen benötigt, während die einzelnen Schaltzustände leistungslos gehalten werden können. Der benötigte Flächenbedarf für die beiden Mikroaktoren auf dem Substrat beträgt in der Regel etwa 2 mm x 1 mm und ist damit vergleichbar den Flächen, die für Mikrorelais nach dem elektrostatischen Wirkprinzip benötigt werden. Die vorliegende Mikroaktoranordnung ist damit im Hinblick auf die erreichbaren Schaltkräfte und die erreichbaren Schalthübe jedem bislang bekannten Mikrorelais-Konzept deutlich überlegen.
  • Es versteht sich jedoch von selbst, dass die erfindungsgemäße Mikroaktoranordnung auch für andere Anwendungen geeignet ist, bei denen einerseits zumindest zwei Schaltzustände leistungslos gehalten werden müssen und andererseits große Stellkräfte und Stellwege erforderlich sind.
  • Ein weiterer Vorteil der erfindungsgemäßen Mikroaktoranordnung besteht darin, dass mit dieser Anordnung nicht nur zwei sondern auch weitere Schaltzustände realisiert und leistungslos gehalten werden können. Dies erfordert lediglich, dass der laterale Aktor bei unterschiedlichen Auslenkungen, die durch unterschiedlich starke thermische Anregung erzeugt werden, jeweils mit einem Abschnitt bis unter den z-Aktor reicht. Dies kann beispielsweise durch einen entsprechend langen Ausleger am lateralen Aktor erreicht werden, der sich in Auslenkungsrichtung erstreckt. Auf diese Weise kann der laterale Aktor durch den z-Aktor in jeder beliebigen Auslenkungsposition gehalten werden. Diese Ausgestaltung ermöglicht eine Vielzahl von Schaltverbindungen in einem mit der erfindungsgemäßen Mikroaktoranordnung ausgestatteten Mikrorelais.
  • Eine weitere bevorzugte Ausführungsform der vorliegenden Mikroaktoranordnung zeichnet sich dadurch aus, dass sich die beiden Mikroaktoren beim Einnehmen der Halteposition ineinander verhaken. Dies erlaubt eine sehr sichere Halteposition, bei der die Reibung zwischen den beiden Aktoren keine Rolle spielt. Dieses Verhaken kann dadurch realisiert werden, dass die beiden in der Halteposition übereinanderliegenden Abschnitte des lateralen Aktors und des z-Aktors ineinandergreifen, beispielsweise indem einer der beiden Abschnitte eine Ausnehmung aufweist, in die eine Erhebung des anderen der beiden Abschnitte eingreift. Selbstverständlich sind auch andere geometrische Ausgestaltungen denkbar, die zu einer entsprechenden Verhakung oder zu einem entsprechenden Ineinandergreifen führen. Der Fachmann kennt derartige Ausgestaltungen aus vielen Bereichen der Technik. Bei mehreren zu haltenden Schaltpositionen können durch entsprechende geometrische Ausgestaltung der Abschnitte unterschiedliche Haltestellungen vorgegeben werden, bei die beiden Abschnitte ineinandergreifen.
  • Die Herstellung und die unterschiedlichen Ausgestaltungsmöglichkeiten thermomechanischer Mikroaktoren sind dem Fachmann bekannt. Vorzugsweise wird bei der vorliegenden Mikroaktoranordnung ebenfalls ein balkenförmiges Element als Grundelement des einzelnen Mikroaktors eingesetzt, wie dies beispielsweise aus der US 5,909,078 bekannt ist. Dieses balkenförmige Element wird vorzugsweise derart aus dem Substrat herausgeätzt, dass es beidseitig am Substrat eingespannt bleibt. Auch der zweite thermomechanische Aktor, das heißt der z-Aktor, besteht aus einem derartigen Element, das in Form einer Brücke mit dem Substrat verbunden ist.
    Die thermische Anregung der beiden Elemente kann auf die unterschiedlichste Art erfolgen. Beispiele für thermische Anregungen, wie Bestrahlung, Anordnen eines Heizelementes am Substrat, Direktbeheizung durch Stromfluss durch das Aktorelement oder Anbringen einer Heizleitungsschicht am Aktorelement sind dem Fachmann bekannt. Vorzugsweise wird die letzte Möglichkeit bei der vorliegenden Mikroaktoranordnung eingesetzt, indem auf die balkenförmigen Elemente eine entsprechende Heizleitungsschicht, beispielsweise aus Polysilizium, aufgebracht wird.
  • Die Mikroaktoranordnung ist nicht auf einen lateralen und einen z-Aktor beschränkt. So können auch mehrere derartiger Aktoren in entsprechender Anordnung auf dem Substrat eingesetzt werden. Ebenso ist eine mechanische Kopplung unterschiedlicher lateraler Aktoren möglich, wie sie aus der im einleitenden Teil genannten US-Schrift bekannt ist.
  • Bei Einsatz als Mikrorelais sind auf dem Substrat die zu schaltenden, das heißt elektrisch zu überbrükkenden Leiterbahnen bzw. Kontaktflächen aufgebracht. Zur Überbrückung der Unterbrechungen zwischen diesen Kontaktflächen sind an der Unterseite des lateralen Aktors entsprechende Kontaktbrücken aus einem gut leitenden Material vorgesehen. Der Aktor selbst bzw. die balkenförmigen Elemente des Aktors können hierbei aus anderen Materialien bestehen. Vorzugsweise wird jedoch Nickel als Material für die balkenförmigen Elemente eingesetzt, da dieses gute thermomechanische Eigenschaften aufweist und zum Aufbau der Elemente in den erforderlichen Dimensionen mit bekannten Mitteln der Mikrostrukturtechnik geeignet ist. In diesem Fall sind die elektrisch leitenden Kontaktbrücken sowie die Heizleitungsschicht zusätzlich gegenüber dem Nickel über eine Zwischenschicht isoliert.
  • Verfahren zur Herstellung derartiger thermomechanischer Mikroaktoren auf einem Substrat können jederzeit der Fachliteratur entnommen werden. Es handelt sich hierbei in der Regel um eine Kombination aus Photolithographie, galvanischen Abscheideverfahren und Ätzverfahren.
  • Die vorliegende Mikroaktoranordnung wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit den Zeichnungen ohne Beschränkung des allgemeinen Erfindungsgedankens nochmals näher erläutert. Hierbei zeigen:
  • Fig. 1
    schematisch ein Beispiel für eine erfindungsgemäße Mikroaktoranordnung; und
    Fig. 2
    ein weiteres Beispiel für eine erfindungsgemäße Mikroaktoranordnung in der Anwendung als Mikrorelais.
    Wege zur Ausführung der Erfindung
  • Figur 1 zeigt eine dreidimensionale Ansicht einer Mikroaktoranordnung gemäß einem ersten Ausführungsbeispiel. Die Mikroaktoranordnung besteht aus dem Substrat 1, einem Halbleitersubstrat, auf dem ein lateraler Mikroaktor 3 sowie ein z-Aktor 4 angeordnet sind. Der laterale Aktor 3 setzt sich aus vier balkenförmigen Elementen 7 zusammen, die jeweils auf einer Seite am Substrat 1 verankert sind. An diesen balkenförmigen Elementen ist ein plattenförmiger Ausleger 9 angebracht, der sich in Richtung der Auslenkung, das heißt-in Richtung zum z-Aktor 4 erstreckt. Der laterale Aktor 3 ist in der Figur in ausgelenktem Zustand zu erkennen. Im Ruhezustand befindet er sich über der angedeuteten Vertiefung 11 in der Substratoberfläche, die beim Herstellungsprozess bei der Unterätzung der balkenförmigen Elemente 7 erzeugt wird. Die balkenförmigen Elemente 7 sind mit Heizleitungsschichten versehen (nicht in der Figur zu erkennen), die über entsprechende Anschlusspads 12 mit Strom versorgt werden. Die balkenförmigen Elemente haben hierbei Dimensionen von typischerweise etwa 1 mm Länge, 5-10 µm Breite und 15-20 µm Höhe.
  • Der z-Aktor 4 setzt sich ebenfalls aus einem balkenförmigen Element 8 zusammen, das an beiden Seiten am Substrat 1 eingespannt ist. Dieser z-Aktor 4 ist in Form eines Brückenaktors ausgeführt. Das balkenförmige Element 8 ist auch in diesem Fall mit einer entsprechenden, nicht dargestellten, Heizleitungsschicht versehen, die über Anschlusspads 12 mit Strom versorgt wird. Auch am z-Aktor 4 ist ein plattenförmiger Ausleger 10 vorgesehen, der sich in Richtung des lateralen Aktors 3 erstreckt. Beide Ausleger 9 und 10 können sich durch eine entsprechende Ausgestaltung miteinander verhaken, wie dies im vergrößerten Bereich der Figur 2 dargestellt ist.
  • Im Ruhezustand befinden sich die balkenförmigen Elemente 7 des lateralen Aktors 3 über der Vertiefung 11, das balkenförmige Element 8 des z-Aktors 4 liegt auf dem Substrat 1 auf. Für den Übergang in den ON-Zustand des Mikrorelais werden zunächst beide Aktoren in Betrieb gesetzt. Dadurch schiebt der laterale Aktor 3 seinen plattenförmigen Ausleger 9 unter den z-Aktor 4. Daraufhin wird der z-Aktor als erster abgeschaltet und senkt sich mit seinem Ausleger 10 auf den Ausleger 9. Eine geeignete hakenähnliche Struktur verhindert nach dem Abschalten des lateralen Aktors 3 ein Lösen dieses Kontaktes. Für den Übergang in den OFF-Zustand werden ebenfalls beide Aktoren zunächst eingeschaltet. Der laterale Aktor 3 wird aber diesmal vor dem z-Aktor 4 abgeschaltet. Dadurch wird der plattenförmige Ausleger 9, der in diesem Beispiel in Form eines Nickelplättchens ausgeführt ist, unter dem z-Aktor 4 hervorgezogen, so dass die Kontakte gelöst werden. Die Figur 1 zeigt die Mikroaktoranordnung im ON-Zustand. Die balkenförmigen Elemente 7, 8 sowie die Ausleger 9, 10 der beiden Aktoren 3, 4 sind in diesem Beispiel aus Nickel gefertigt. Der unterhalb der balkenförmigen Elemente verlaufende Heizleiter wird von dieser metallischen Struktur durch Isolationsschichten getrennt.
  • Figur 2 zeigt ein weiteres Beispiel für eine Mikroaktoranordnung gemäß der vorliegenden Erfindung bei der Anwendung als Mikrorelais. Auch in dieser Figur sind wiederum das Substrat 1 sowie die beiden Mikroaktoren 3, 4 mit den jeweiligen balkenförmigen Elementen 7, 8 und den Auslegern 9, 10 zu erkennen. Zusätzlich sind auf dem Substrat 1 vier Leiterbahnen 13 angeordnet, von denen - in der vergrößerten Ansicht zu erkennen - alle durch einen Spalt unterbrochen sind. An der Unterseite des Auslegers 9 des lateralen Aktors 3 befinden sich Kontaktbrücken 14 zum Schließen der offenen Kontakte. Diese Kontaktbrücken 14 können aus einem gut leitfähigen Material wie Gold gebildet sein, das gegenüber dem Material des Aktors isoliert wird. Hierdurch können kleinere Zuleitungswiderstände im Relais erreicht werden. Wie in der Figur gezeigt ist, können mit dem vorliegenden Mikrorelais mehrere Kontakte bzw. Leitungen 13 auch gleichzeitig geschlossen werden. Selbst die Realisierung von mehr als zwei Schaltzuständen kann mit diesem Relaisaufbau erreicht werden. So wäre ein Umschalten von einer der Leitungen zu einer anderen damit problemlos möglich.
    In der Figur ist der ON-Schaltzustand des Mikrorelais dargestellt, bei der die Kontakte der vier Leitungen in unterschiedlicher Weise geschlossen werden, wie dies in der vergrößerten Ansicht zu erkennen ist. Durch die hohe Andruckkraft der Kontaktbrücken 14 auf die Leitungen 13 wird eine hohe Lebensdauer der Kontakte ermöglicht. Die hohe Andruckkraft wird durch die Rückstellbewegung des z-Aktors 4 erzeugt, der auf den lateralen Aktor 3 drückt. In der vergrößerten Darstellung ist ebenfalls eine geometrische Anordnung einer möglichen Verhakung zwischen dem Ausleger 10 des z-Aktors 4 und dem Ausleger 9 des lateralen Aktors 3 zu erkennen.
  • Für den Aufbau der Mikroaktoren empfiehlt sich die Verwendung eines geeigneten Metalls wie zum Beispiel Nickel. Damit kann neben den notwendigen Festigkeiten auch eine gute thermische Leitfähigkeit der balkenförmigen Elemente erreicht werden, so dass die Schaltzeiten des Relais etwa zwischen 10 ms und 100 ms liegen. Aufgrund der sehr guten elektrischen Leitfähigkeit der balkenförmigen Elemente verbietet sich aber in diesem Fall die direkte Nutzung als Heizleiter. Hierzu wird vorzugsweise eine Heizleiterschicht an dem eigentlichen Aktorelement angebracht, die selbstverständlich gegenüber dem eigentlichen Thermoaktor isoliert sein muss.
  • Bezugszeichenliste
  • 1
    Substrat
    2
    Oberfläche des Substrates
    3
    lateraler Mikroaktor
    4
    z-Mikroaktor
    5
    erster Abschnitt (9)
    6
    zweiter Abschnitt (10)
    7
    balkenförmiges Element
    8
    balkenförmiges Element
    9
    plattenförmiger Ausleger
    10
    plattenförmiger Ausleger
    11
    Vertiefung
    12
    Anschlusspads
    13
    Leiterbahnen
    14
    Kontaktbrücken

Claims (11)

  1. Mikroaktoranordnung, insbesondere Mikrorelais, mit einem Substrat (1), auf dem ein erster thermomechanischer Mikroaktor (3) und ein zweiter thermomechanischer Mikroaktor (4) angeordnet sind, wobei der erste thermomechanische Mikroaktor (3) bei einer thermischen Anregung im Wesentlichen parallel zur Oberfläche (2) des Substrates (1) ausgelenkt wird,
    dadurch gekennzeichnet,
    dass der zweite thermomechanische Mikroaktor (4) derart ausgebildet und relativ zum ersten thermomechanischen Mikroaktor (3) angeordnet ist, dass er bei einer thermischen Anregung im Wesentlichen senkrecht zur Oberfläche (2) des Substrates (1) ausgelenkt wird und ein erster Abschnitt (5) des ersten thermomechanischen Mikroaktors (3) in einem ausgelenkten Zustand bis unter einen zweiten Abschnitt (6) des zweiten thermomechanischen Mikroaktors (4) in einem ausgelenktem Zustand reicht.
  2. Mikroaktoranordnung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass sich der erste und/oder der zweite thermomechanische Mikroaktor (3, 4) aus ein oder mehreren balkenförmigen Elementen zusammensetzen, die beidseitig am Substrat (1) eingespannt sind.
  3. Mikroaktoranordnung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die ein oder mehreren balkenförmigen Elemente mit einer Heizleitungsschicht versehen sind.
  4. Mikroaktoranordnung nach Anspruch 2 oder 3,
    dadurch gekennzeichnet,
    dass die ein oder mehreren balkenförmigen Elemente aus einem elektrisch leitfähigen Material bestehen.
  5. Mikroaktoranordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    dass der erste Abschnitt (5) des ersten thermomechanischen Mikroaktors (3) als plattenförmiger Ausleger ausgestaltet ist, der sich in Auslenkungsrichtung des ersten thermomechanischen Mikroaktors (3) erstreckt.
  6. Mikroaktoranordnung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der plattenförmige Ausleger eine derartige Länge in Auslenkungsrichtung des ersten thermomechanischen Mikroaktors (3) aufweist, dass er bei unterschiedlich starken Auslenkungen des ersten thermomechanischen Mikroaktors (3) bis unter den zweiten Abschnitt (6) des zweiten thermomechanischen Mikroaktors (4) reicht.
  7. Mikroaktoranordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
    dass der zweite Abschnitt (6) des zweiten thermomechanischen Mikroaktors (4) als plattenförmiger Ausleger ausgestaltet ist, der sich entgegen der Auslenkungsrichtung des ersten thermomechanischen Mikroaktors (3) erstreckt.
  8. Mikroaktoranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
    dass der erste und der zweite Abschnitt (5, 6) derart ausgestaltet sind, dass sie ineinander greifen, wenn die thermische Anregung des zweiten thermomechanischen Mikroaktors (4) beendet wird, während sich der erste thermomechanische Mikroaktor (3) im ausgelenkten Zustand befindet.
  9. Mikroaktoranordnung nach Anspruch 8,
    dadurch gekennzeichnet,
    dass der erste Abschnitt (5) eine Ausnehmung aufweist, in die eine Erhebung am zweiten Abschnitt (6) eingreift oder umgekehrt.
  10. Mikroaktoranordnung nach einem der Ansprüche 1 bis
    9, dadurch gekennzeichnet,
    dass auf dem Substrat (1) ein oder mehrere Leiterbahnen (13) und/oder Kontaktflächen mit einer oder mehreren Unterbrechung(en) vorgesehen sind, die durch Auslenkung des ersten thermomechanischen Mikroaktors (3) überbrückt werden können.
  11. Mikroaktoranordnung nach Anspruch 10,
    dadurch gekennzeichnet,
    dass der erste thermomechanische Mikroaktor (3) ein oder mehrere elektrisch leitfähige Kontaktbrücken (14) zum Überbrücken der Unterbrechung(en) aufweist.
EP01919213A 2000-03-29 2001-03-16 Mikroaktoranordnung Expired - Lifetime EP1269506B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10015598A DE10015598C2 (de) 2000-03-29 2000-03-29 Mikroaktoranordnung
DE10015598 2000-03-29
PCT/DE2001/001040 WO2001073805A1 (de) 2000-03-29 2001-03-16 Mikroaktoranordnung

Publications (2)

Publication Number Publication Date
EP1269506A1 EP1269506A1 (de) 2003-01-02
EP1269506B1 true EP1269506B1 (de) 2007-03-07

Family

ID=7636825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01919213A Expired - Lifetime EP1269506B1 (de) 2000-03-29 2001-03-16 Mikroaktoranordnung

Country Status (6)

Country Link
US (1) US6684638B2 (de)
EP (1) EP1269506B1 (de)
JP (1) JP4880167B2 (de)
AT (1) ATE356420T1 (de)
DE (2) DE10015598C2 (de)
WO (1) WO2001073805A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005815A1 (de) 2007-09-10 2009-03-26 Vogel, Albrecht, Dipl.-Ing.Dr-Ing. Elektrisches Schaltgerät mit einer Mikrorelais-Anordnung
EP2126942A1 (de) * 2007-03-16 2009-12-02 Simpler Networks Inc. Mems-aktoren und -schalter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066326A2 (en) * 2003-01-17 2004-08-05 The Regents Of The University Of California Electro-thermally actuated lateral contact microrelay and associated manufacturing process
US7312678B2 (en) * 2005-01-05 2007-12-25 Norcada Inc. Micro-electromechanical relay
DE102006002753B4 (de) * 2006-01-20 2010-09-30 X-Fab Semiconductor Foundries Ag Verfahren und Anordnung zur Bewertung der Unterätzung von tiefen Grabenstrukturen in SOI-Scheiben
US7480432B2 (en) 2006-02-28 2009-01-20 Corning Incorporated Glass-based micropositioning systems and methods
FR2984013B1 (fr) * 2011-12-09 2014-01-10 St Microelectronics Rousset Dispositif mecanique de commutation electrique integre possedant un etat bloque
DE102015120430A1 (de) 2015-11-25 2017-06-01 Technische Universität Darmstadt Aktoranordnung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511974A (en) * 1981-02-04 1985-04-16 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Load condition indicating method and apparatus for forklift truck
US5619177A (en) * 1995-01-27 1997-04-08 Mjb Company Shape memory alloy microactuator having an electrostatic force and heating means
US5909078A (en) * 1996-12-16 1999-06-01 Mcnc Thermal arched beam microelectromechanical actuators
US5994816A (en) * 1996-12-16 1999-11-30 Mcnc Thermal arched beam microelectromechanical devices and associated fabrication methods
US5796152A (en) 1997-01-24 1998-08-18 Roxburgh Ltd. Cantilevered microstructure
AUPO794697A0 (en) * 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd A device (MEMS10)
US6070851A (en) * 1998-06-08 2000-06-06 Industrial Technology Research Institute Thermally buckling linear micro structure
JP3536202B2 (ja) * 2000-03-16 2004-06-07 日本航空電子工業株式会社 光スイッチ
US6360539B1 (en) * 2000-04-05 2002-03-26 Jds Uniphase Corporation Microelectromechanical actuators including driven arched beams for mechanical advantage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2126942A1 (de) * 2007-03-16 2009-12-02 Simpler Networks Inc. Mems-aktoren und -schalter
EP2126942B1 (de) * 2007-03-16 2014-05-21 Réseaux MEMS, Société en Commandite Mems-aktoren und -schalter
DE102008005815A1 (de) 2007-09-10 2009-03-26 Vogel, Albrecht, Dipl.-Ing.Dr-Ing. Elektrisches Schaltgerät mit einer Mikrorelais-Anordnung

Also Published As

Publication number Publication date
JP4880167B2 (ja) 2012-02-22
DE50112158D1 (de) 2007-04-19
US20030051473A1 (en) 2003-03-20
DE10015598C2 (de) 2002-05-02
EP1269506A1 (de) 2003-01-02
JP2003528744A (ja) 2003-09-30
ATE356420T1 (de) 2007-03-15
DE10015598A1 (de) 2001-10-18
WO2001073805A1 (de) 2001-10-04
US6684638B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
DE69606760T2 (de) Miniaturvorrichtung zur Durchführung einer vorbestimmten Funktion, insbesondere Mikro-Relais
DE69806487T2 (de) Mikromechanische vorrichtungen mit thermischer bogentraverse und zugehörige herstellungsverfahren
DE60113233T2 (de) Elektronisch schaltendes bistabiles mikro-relais und verfahren zu seinem betrieb
DE10004393C1 (de) Mikrorelais
DE60115086T2 (de) Kontaktstruktur für mikro-relais für rf-anwendungen
WO1998021734A1 (de) Verfahren zum herstellen eines mikromechanischen relais
EP1269506B1 (de) Mikroaktoranordnung
EP2009665A2 (de) 2-poliges Relais
CH633385A5 (de) Piezoelektrische schaltvorrichtung.
DE19823690C1 (de) Mikromechanisches elektrostatisches Relais
DE3280416T2 (de) Leistungsschaltvorrichtung.
WO2000057445A1 (de) Substratparallel arbeitendes mikrorelais
DE102006007603A1 (de) Relais mit reduziertem Kriechstrom
DE102021202409A1 (de) Kapazitiv betätigbarer MEMS-Schalter
DE10310072B4 (de) Mikromechanischer Aktor
DE19950964B4 (de) Mikromechanisches Relais und Verfahren zur Herstellung
DE10043549C1 (de) Mikroschalter und Verfahren zu dessen Herstellung
DE102008011175B4 (de) Mikromechanischer Aktuator und Verfahren zu seiner Herstellung
EP1858038B1 (de) Relais mit Kontaktkraftverstärkung
EP1156504A2 (de) Mikromechanisches Relais mit verbessertem Schaltverhalten
DE102004062992B4 (de) Schaltbares Hochfrequenz-MEMS-Element mit bewegbarem Schaltelement und Verfahren zu seiner Herstellung
EP2728597B1 (de) Schaltgerät mit einer Kontaktanordnung
WO2005083734A1 (de) Hochfrequenz-mems-schalter mit gebogenem schaltelement und verfahren zu seiner herstellung
EP3619732B1 (de) Sprungschalter mit einer stromführenden sprungfeder, verfahren zur herstellung eines derartigen sprungschalters sowie überlastrelais und ausgelöstmelder mit einem derartigen sprungschalter
DE29520885U1 (de) Mikromechanischer Aktor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50112158

Country of ref document: DE

Date of ref document: 20070419

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070412

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070807

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

26N No opposition filed

Effective date: 20071210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27C#80686 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27C#80686 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200324

Year of fee payment: 20

Ref country code: IT

Payment date: 20200325

Year of fee payment: 20

Ref country code: GB

Payment date: 20200325

Year of fee payment: 20

Ref country code: NL

Payment date: 20200323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200325

Year of fee payment: 20

Ref country code: BE

Payment date: 20200323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50112158

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210315

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20210316