EP1252446B1 - Dynamische dichtung - Google Patents

Dynamische dichtung Download PDF

Info

Publication number
EP1252446B1
EP1252446B1 EP00988779A EP00988779A EP1252446B1 EP 1252446 B1 EP1252446 B1 EP 1252446B1 EP 00988779 A EP00988779 A EP 00988779A EP 00988779 A EP00988779 A EP 00988779A EP 1252446 B1 EP1252446 B1 EP 1252446B1
Authority
EP
European Patent Office
Prior art keywords
seal
seal according
blades
rows
feeding effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00988779A
Other languages
English (en)
French (fr)
Other versions
EP1252446A1 (de
Inventor
Heinrich Engländer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH, Leybold Vacuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1252446A1 publication Critical patent/EP1252446A1/de
Application granted granted Critical
Publication of EP1252446B1 publication Critical patent/EP1252446B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Definitions

  • the invention relates to a dynamic seal between a rotating and a stationary component, wherein at least one of the components is equipped with protruding into the sealing gap projections.
  • the present invention has for its object to provide an effective dynamic seal for about radially extending gaps between a rotating and a stationary component.
  • FIG. 1 and 2 show a seal 1 according to the invention with fixed blade rows 2 and rotating blade rows 3, whose longitudinal axes extend parallel to the axis of rotation 4 of the rotating component. They are arranged in concentric rows about the axis of rotation 4 and extend into the gap 5 to be sealed. The spaces which are separated by the sealing gap 5 and are to be mutually sealed are generally designated 8 and 9.
  • the rows of rotor blades 2 and the rows of stator blades 3 alternate. They engage in each other in the region of the gap 5 to be sealed and, if a conveying effect is desired, change in a manner known per se in the flow direction.
  • FIG. 2 indicates that the blades 2, 3 are components of the adjacent rotating or stationary components 6 and 7, between which the gap 5 to be sealed is located.
  • FIGS. 3 and 4 show a double-flow design of a seal 1 according to the invention.
  • An inner group of rows of blades delivers gases radially inward (arrow 11), an outer group of rows of blades inside out (arrow 12).
  • an effective separation of the sealed spaces 8 and 9 is also achieved.
  • This arrangement has the advantage that in the space to be protected (eg 8) vapor pressures of components in this room are not unduly fallen below.
  • this separation can be assisted by the introduction of inert gas between the two groups.
  • the inert gas is supplied via the stationary component 6.
  • An inlet bore is shown (several can also be provided) and denoted by 14.
  • FIG. 5 It consists of the drive part 21, in which the drive motor, not shown, is housed, and the gas delivery part 22.
  • the drive motor drives a shaft 23, the gas-tight (labyrinth seal 24) through the flange 25th the drive housing is guided.
  • the impeller 26 On the free end of the shaft 23, the impeller 26 is attached.
  • the seal 1 according to the invention is realized in the gap 5 between the underside of the impeller 26 and the flange 25.
  • the flange 25 carries Statorschaufelschschschschschschschitz, the impeller 25 rotating blade rows 3, which are arranged concentrically around the shaft 23 and engage in the region of the gap 5 in each other. If the gasket 1 has the effect that gases delivered by the impeller 26 can not get into the engine compartment, then it is expedient to make the gasket so that it has a radially outwardly promoting effect.
  • FIG. 6 a partial section through a turbomolecular pump 31 is shown, the base part is denoted by 32.
  • the shaft 34 In the base part 32 with the drive motor 33, the shaft 34 is supported by bearings 35.
  • the shaft 34 carries the rotor 36 with its rotor blades 37, which are located together with the stator blades 38 in the delivery chamber 39.
  • a sealing system 1 designed according to the invention is provided. It comprises stator blades 2 which are arranged on two levels and which carries a ring-shaped component 42 which is fixed to the housing and has an L-shaped section, surrounding the shaft 34.
  • the rotor 36 is equipped with a recess 43 adapted to the shape of the ring component 42.
  • the stator blades 2 associated rotor blades 3 are attached on the rotor 36. If in an embodiment of this type z. B. a secure separation of the spaces 39 and 41 are achieved, it is expedient, the seal 1 in such a way that the inner (upper) blade row group 2, 3 a conveying action towards the engine compartment 41 and the outer (lower) blade row group 2, 3 a Conveying direction in the direction of delivery chamber 39 has. By introducing an inert gas between the two blade row groups, the separation effect can be further improved. Both the penetration of hydrocarbons from the engine and storage space 41 into the delivery chamber 39 and the penetration of harmful (eg, corrosive or toxic) gases from the delivery chamber 39 into the engine compartment 41 can be reliably avoided. The one to the FIGS. 3 and 4 mentioned advantage also exists.
  • FIG. 7 shows the use of a seal according to the invention in an axially compressing friction pump 51 according to the prior art.
  • the friction pump 51 consists of a suction side arranged turbomolecular pump stage 52 and a pressure side arranged Molekularpumpgen 53, which may be designed as Holweckpumpe (as shown) or as Gaede-, Siegbahn-, Engtractors- or side channel pump.
  • the seal 1 and the friction pump 51 are located in a common, approximately cylindrical housing 55 with lateral inlet 56.
  • a bearing on both ends (bearing 57, 58) shaft 59 carries the respective rotating components (rotor disk 6 of the seal 1, rotor 61 of Turbomolecular pumping stage 52, cylinder 62 of Holweck pumping stage 53).
  • the lateral inlet 56 of the pump 51 opens between the seal 1 and the axially compressing pumping stages 52, 53.
  • the outlet 64 of the pump 51 is located on the pressure side of the molecular pumping stage 53.
  • the peculiarity of the solution FIG. 7 is that the drive motor 68 is located on the high vacuum side of the axially conveying pump 51 (and not as usual on the pressure side of Holweckpumpch 53).
  • a relatively high pressure can be maintained in the engine compartment 41 (eg, 1 ⁇ 10 -2 mbar).
  • the use of highly vacuum-compatible materials in the engine compartment 41 is not required.
  • the execution after FIG. 8 differs from the execution FIG. 7 in that the seal 1 has a radially from outside to inside promoting effect.
  • a bypass 67 is connected to the engine compartment 41 which communicates with the suction side of the molecular pumping stage 62.
  • the gases conveyed by the seal 1 pass through the engine compartment 41 into the bypass 67 and from there to the molecular pumping stage 53.
  • the maintenance of a backing pressure in the engine compartment 41 is thereby ensured.
  • the seal 1 supports the flow rate of the turbomolecular pumping stage 52 without significantly increasing the overall length of the pump 51.
  • FIG. 9 shows an embodiment of a pump 51 for use in multi-chamber systems, here two-chamber systems. These are z.
  • the distance of the intake is predetermined, which often leads in the prior art that relatively long, cantilevered rotor systems are required, requiring complex storage systems.
  • FIG. 9 has two lateral inlets 56, 56 '. They are separated by at least one seal 1 from each other.
  • the gasket 1 is formed so as to have an outside-in promoting effect.
  • the inlet 56 "sees" the inlet region of the axially conveying friction pump 51 as well as the periphery of the radially outwardly inwardly promoting seal 1.
  • the outlet of the radially conveying seal 1 opens into the inlet region of a second turbomolecular pump stage 52 ', to which the second inlet 56' is connected.
  • the seal 1 causes the pressure at the inlet 56 to be lower than at the inlet 56 '.
  • the drive motor 68 is located on the pressure side of the turbomolecular pump stage 52 '. This pressure side is connected to the suction side of the molecular pumping stage 53 via the bypass 67.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung bezieht sich auf eine dynamische Dichtung zwischen einem rotierenden und einem feststehenden Bauteil, bei welcher zumindest eines der Bauteile mit in den Dichtspalt hineinragenden Vorsprüngen ausgerüstet ist.
  • Insbesondere bei Vakuumpumpen besteht häufig die Forderung, Wellen abzudichten, die eine Trennwand zwischen zwei Räumen mit unterschiedlichen Drücken durchsetzen. Üblicherweise werden dazu Labyrinthdichtungen eingesetzt, wie es beispielsweise auch aus der US-A-33 99 827 bekannt ist.
  • Bei Spaltdichtungen, die sich etwa radial erstrecken, ist es bekannt, (vergleiche EP-A-408791 , Spaltdichtung 43 in Figur 5) Spülgase (Stickstoff, Argon oder dergleichen) einzusetzen, um z.B. einen Lager-/Motorraum vor dem Eindringen schädlicher Gase zu schützen. Das Spülgas wird in den Lager/-Motorraum eingelassen und gelangt durch die Spaltdichtung in den Förderraum, so dass sichergestellt ist, dass Gase aus dem Förderraum nicht in den Motorraum gelangen können.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine wirksame dynamische Dichtung für sich etwa radial erstreckende Spalte zwischen einem rotierenden und einem feststehenden Bauteil zu schaffen.
  • Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst.
  • Durch den Einsatz von Vorsprüngen, die als ineinander greifende Schaufelreihen ausgebildet sind, kann nicht nur die gewünschte Dichtwirkung verbessert werden; darüber hinaus besteht die Möglichkeit, der Dichtung Fördereigenschaften zu geben, die für die jeweilige Applikation von Vorteil sind. Soll z. B. ein Raum vor dem Eindringen von Gasen geschützt werden, können die Schaufelreihen bzw. die Anstellwinkel der die Schaufelreihen bildenden Schaufeln so gewählt werden, daß die Dichtung eine Förderrichtung hat, die der unerwünschten Strömungsrichtung der schädlichen Gase entgegengerichtet ist.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 10 erläutert werden. Es zeigen
    • Figuren 1 und 2 Schnitte durch eine Ausführung der erfindungsgemäßen Dichtung,
    • Figuren 3 und 4 Schnitte durch eine zweiflutige Ausführung,
    • Figuren 5 und 6 Anwendungen bei Maschinen nur fliegend gelagerten Rotoren, sowie
    • Figuren 7 bis 9 Anwendungen bei einer Vakuumpumpe mit auf beiden Stirnseiten gelagertem Rotorsystem.
  • Die Figuren 1 und 2 zeigen eine Dichtung 1 nach der Erfindung mit feststehenden Schaufelreihen 2 und rotierenden Schaufelreihen 3, deren Längsachsen sich parallel zur Drehachse 4 des rotierenden Bauteils erstrecken. Sie sind in konzentrischen Reihen um die Drehachse 4 angeordnet und erstrecken sich in den abzudichtenden Spalt 5. Die durch den Dichtspalt 5 getrennten, gegenseitig abzudichtenden Räume sind generell mit 8 und 9 bezeichnet. Die Reihen der Rotorschaufeln 2 und die Reihen der Statorschaufeln 3 wechseln einander ab. Sie greifen im Bereich des abzudichtenden Spaltes 5 ineinander und haben - wenn eine Förderwirkung gewünscht ist - in an sich bekannter Weise in Strömungsrichtung wechselnde Anstellwinkel. Figur 2 lässt erkennen, dass die Schaufeln 2, 3 Bestandteile der angrenzenden rotierenden bzw. feststehenden Bauteile 6 bzw. 7 sind, zwischen denen sich der abzudichtende Spalt 5 befindet.
  • In Figuren 3 und 4 zeigen eine zweiflutige Ausführung einer Dichtung 1 nach der Erfindung. Eine innere Gruppe von Schaufelreihen fördert Gase radial nach innen (Pfeil 11), eine äußere Gruppe von Schaufelreihen von innen nach außen (Pfeil 12). Dadurch wird ebenso eine wirksame Trennung der abzudichtenden Räume 8 und 9 erreicht. Diese Anordnung hat den Vorteil, dass im zu schützenden Raum (z. B. 8) Dampfdrücke von Komponenten in diesem Raum nicht unzulässig unterschritten werden. Zusätzlich kann diese Trennung durch Einlass von Inertgas zwischen den beiden Gruppen unterstützt werden. Die Inertgaszufuhr erfolgt über das feststehende Bauteil 6. Eine Einlassbohrung ist dargestellt (auch mehrere können vorgesehen sein) und mit 14 bezeichnet.
  • Figur 5 zeigt die Anwendung der Erfindung bei einem Gebläse 20. Es besteht aus dem Antriebsteil 21, in dem der nicht dargestellte Antriebsmotor untergebracht ist, und dem Gasförderteil 22. Der Antriebsmotor treibt eine Welle 23 an, die möglichst gasdicht (Labyrinthdichtung 24) durch den Flansch 25 des Antriebsgehäuses hindurch geführt ist. Auf dem freien Ende der Welle 23 ist das Gebläserad 26 befestigt. Zur Unterstützung der Labyrinthdichtung 24 ist im Spalt 5 zwischen der Unterseite des Gebläserades 26 und dem Flansch 25 die erfindungsgemäße Dichtung 1 realisiert. Der Flansch 25 trägt Statorschaufelreihen 2, das Gebläserad 25 rotierende Schaufelreihen 3, die konzentrisch um die Welle 23 angeordnet sind und im Bereich des Spaltes 5 ineinander greifen. Soll die Dichtung 1 die Wirkung haben, dass vom Gebläserad 26 geförderte Gase nicht in den Motorraum gelangen können, dann ist es zweckmäßig, die Dichtung so zu gestalten, dass sie eine radial nach außen fördernde Wirkung hat.
  • In Figur 6 ist ein Teilschnitt durch eine Turbomolekularpumpe 31 dargestellt, deren Basisteil mit 32 bezeichnet ist. Im Basisteil 32 mit dem Antriebsmotor 33 stützt sich die Welle 34 über Lager 35 ab. Die Welle 34 trägt den Rotor 36 mit seinen Rotorschaufeln 37, die sich gemeinsam mit den Statorschaufeln 38 im Förderraum 39 befinden. Um diesen Förderraum 39 vom Motor- und Lagerraum 41 wirksam zu trennen, ist ein erfindungsgemäß gestaltetes Dichtungssystem 1 vorgesehen. Es umfasst auf zwei Ebenen angeordnete Statorschaufeln 2, die ein gehäusefestes, im Schnitt L-förmiges, die Welle 34 umgebendes Ringbauteil 42 trägt. Der Rotor 36 ist mit einer der Form des Ringbauteiles 42 angepassten Aussparung 43 ausgerüstet. Am Rotor 36 sind die den Statorschaufeln 2 zugeordneten Rotorschaufeln 3 befestigt. Soll bei einer Ausführung dieser Art z. B. eine sichere Trennung der Räume 39 und 41 erreicht werden, ist es zweckmäßig, die Dichtung 1 so auszubilden, dass die innere (obere) Schaufelreihengruppe 2, 3 eine Förderwirkung in Richtung Motorraum 41 und die äußere (untere) Schaufelreihengruppe 2, 3 eine Förderrichtung in Richtung Förderraum 39 hat. Durch Einlass eines Inertgases zwischen die beiden Schaufelreihengruppen kann die Trennwirkung noch verbessert werden. Sowohl das Eindringen von Kohlenwasserstoffen aus dem Motor- und Lagerraum 41 in den Förderraum 39 als auch das Eindringen schädlicher (z. B. korrosiver oder toxischer) Gase aus dem Förderraum 39 in den Motorraum 41 kann sicher vermieden werden. Der zu den Figuren 3 und 4 noch erwähnte Vorteil besteht ebenfalls.
  • Figur 7 zeigt den Einsatz einer erfindungsgemäßen Dichtung in einer axial verdichtenden Reibungspumpe 51 nach dem Stand der Technik. Die Reibungspumpe 51 besteht aus einer saugseitig angeordneten Turbomolekularpumpenstufe 52 und einer druckseitig angeordneten Molekularpumpstufen 53, die als Holweckpumpe (wie dargestellt) oder auch als Gaede-, Siegbahn-, Engländer- oder Seitenkanalpumpe ausgebildet sein kann.
  • Die Dichtung 1 und die Reibungspumpe 51 befinden sich in einem gemeinsamen, etwa zylindrischen Gehäuse 55 mit seitlichem Einlass 56. Eine auf beiden Stirnseiten gelagerte (Lager 57, 58) Welle 59 trägt die jeweils rotierenden Bauteile (Rotorscheibe 6 der Dichtung 1, Rotor 61 der Turbomolekularpumpstufe 52, Zylinder 62 der Holweckpumpstufe 53). Der seitliche Einlass 56 der Pumpe 51 mündet zwischen der Dichtung 1 und den axial verdichtenden Pumpstufen 52, 53. Der Auslass 64 der Pumpe 51 befindet sich auf der Druckseite der Molekularpumpstufe 53.
  • Die Besonderheit der Lösung nach Figur 7 besteht darin, dass sich der Antriebsmotor 68 auf der Hochvakuumseite der axial fördernden Pumpe 51 befindet (und nicht wie üblich auf der Druckseite der Holweckpumpstufe 53). Dadurch, dass sich die Dichtung 1 zwischen dem Einlass 56 und dem Antriebsmotor 68 befindet, kann im Motorraum 41 ein relativ hoher Druck aufrecht erhalten werden (z. B. 1 x 10-2 mbar). Die Verwendung hochvakuumtauglicher Werkstoffe im Motorraum 41 ist nicht erforderlich.
  • Die Ausführung nach Figur 8 unterscheidet sich von der Ausführung nach Figur 7 dadurch, dass die Dichtung 1 eine radial von außen nach innen fördernde Wirkung hat. Außerdem ist ein Bypass 67 an den Motorraum 41 angeschlossen, der mit der Saugseite der Molekularpumpstufe 62 in Verbindung steht. Entsprechend den eingezeichneten Pfeilen 69 gelangen die von der Dichtung 1 geförderten Gase durch den Motorraum 41 in den Bypass 67 und von dort aus zur Molekularpumpstufe 53. Die Aufrechterhaltung eines Vorvakuumdruckes im Motorraum 41 ist dadurch sichergestellt. Außerdem unterstützt die Dichtung 1 die Förderleistung der Turbomolekularpumpstufe 52, ohne dass sich damit die Baulänge der Pumpe 51 wesentlich vergrößert.
  • Figur 9 zeigt eine Ausführung einer Pumpe 51 für den Einsatz bei Mehrkammersystemen, hier Zweikammersystemen. Dabei handelt es sich z. B. um Analysengeräte mit mehreren Kammern, die auf unterschiedliche Drücke evakuiert werden müssen. Dadurch ist der Abstand der Ansaugstutzen vorgegeben, was beim Stand der Technik häufig dazu führt, dass relativ lange, fliegend gelagerte Rotorsysteme nötig sind, die aufwendige Lagersysteme erfordern.
  • Die Ausführung nach Figur 9 weist zwei seitliche Einlässe 56, 56'. Sie sind durch mindestens eine Dichtung 1 voneinander getrennt. Die Dichtung 1 ist so ausgebildet, dass sie eine von außen nach innen fördernde Wirkung hat. Der Einlass 56 "sieht" den Eintrittsbereich der axial fördernden Reibungspumpe 51 sowie die Peripherie der radial von außen nach innen fördernden Dichtung 1. Der Auslass der radial fördernden Dichtung 1 mündet in den Einlassbereich einer zweiten Turbomolekularpumpenstufe 52', an den der zweite Einlass 56' angeschlossen ist. Die Dichtung 1 bewirkt, dass der Druck am Einlass 56 niedriger ist als am Einlass 56'. Auf der Druckseite der Turbomolekularpumpenstufe 52' befindet sich der Antriebsmotor 68. Diese Druckseite ist über den Bypass 67 mit der Saugseite der Molekularpumpstufe 53 verbunden.

Claims (11)

  1. Dichtung zwischen einem rotierenden und einem feststehenden Bauteil, bei welcher zumindest eines der Bauteile mit in den Dichtspalt hineinragenden Vorsprüngen ausgerüstet ist, dadurch gekennzeichnet, dass sich der Dichtspalt (5) etwa radial erstreckt, dass beide Bauteile mit sich axial erstreckenden, konzentrisch zur Drehachse des rotierenden Bauteils angeordneten, ineinander greifenden Vorsprüngen ausgerüstet sind, welche als Schaufelreihen ausgebildet sind.
  2. Dichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Schaufelreihen (2, 3) eine fördernde Wirkung haben.
  3. Di"htung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie zweiflutig ausgebildet ist.
  4. Dichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Eigenschaften der die zweiflutig ausgebildete Dichtung bildenden Schaufelreihen (2, 3) derart gewählt sind, dass außen liegende Schaufelreihen in entgegengesetzter Richtung zu den innen liegenden Schaufelreihen fördern.
  5. Dichtung nach Anspruch 4, dadurch gekennzeichnet, dass zwischen den beiden Schaufelreihengruppen, die die zweiflutige Dichtung (1) bilden, ein Inertgaseinlass (14) vorgesehen ist.
  6. Dichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie Bestandteil eines Gebläses (20) oder einer Pumpe (31) ist und sich zwischen dem Förderraum und dem Motorraum befindet.
  7. Dichtung nach Anspruch 6, dadurch gekennzeichnet, dass sie eine fördernde Wirkung in Richtung Schöpfraum hat.
  8. Dichtung nach Anspruch 6, dadurch gekennzeichnet, dass sie Bestandteil einer Turbomolekularvakuumpumpe ist, dass sie eine in Richtung Motorraum fördernde Wirkung hat und dass der Motorraum über einen Bypass (67) mit einer Vorvakuumpumpstufe in Verbindung steht.
  9. Dichtung nach Anspruch 8, dadurch gekennzeichnet, dass sich der Motorraum (41) auf der Saugseite der Turbomolekularvakuumpumpe befindet.
  10. Dichtung nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass sie Bestandteil einer Turbomolekularvakuumpumpe mit mindestens zwei Einlässen (56, 56') ist und dass sie sich zwischen den Einlassbereichen befindet.
  11. Dichtung nach Anspruch 10, dadurch gekennzeichnet, dass sie eine fördernde Wirkung hat und dass ihre Peripherie mit einem ersten und ihr Zentrum mit einem zweiten Einlassbereich verbunden ist.
EP00988779A 2000-02-01 2000-12-09 Dynamische dichtung Expired - Lifetime EP1252446B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10004263A DE10004263A1 (de) 2000-02-01 2000-02-01 Dynamische Dichtung
DE10004263 2000-02-01
PCT/EP2000/012469 WO2001057403A1 (de) 2000-02-01 2000-12-09 Dynamische dichtung

Publications (2)

Publication Number Publication Date
EP1252446A1 EP1252446A1 (de) 2002-10-30
EP1252446B1 true EP1252446B1 (de) 2008-10-08

Family

ID=7629398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00988779A Expired - Lifetime EP1252446B1 (de) 2000-02-01 2000-12-09 Dynamische dichtung

Country Status (5)

Country Link
US (1) US6705844B2 (de)
EP (1) EP1252446B1 (de)
JP (1) JP4805515B2 (de)
DE (2) DE10004263A1 (de)
WO (1) WO2001057403A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004271A1 (de) * 2000-02-01 2001-08-02 Leybold Vakuum Gmbh Reibungsvakuumpumpe
CA2349970A1 (en) * 2001-05-31 2002-11-30 Martin Gagnon Ventilation method and device
JP4205910B2 (ja) * 2002-04-02 2009-01-07 イーグル工業株式会社 摺動部品
DE10324849B4 (de) * 2003-06-02 2005-12-22 Minebea Co., Ltd. Elektromotor mit einer Wellendichtung zur Abdichtung einer Motorwelle des Elektromotors
US7717684B2 (en) * 2003-08-21 2010-05-18 Ebara Corporation Turbo vacuum pump and semiconductor manufacturing apparatus having the same
DE10353034A1 (de) * 2003-11-13 2005-06-09 Leybold Vakuum Gmbh Mehrstufige Reibungsvakuumpumpe
JP4719414B2 (ja) * 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
EP1957800B1 (de) * 2005-09-19 2010-12-29 Ingersoll Rand Company Antriebsrad für einen radialverdichter
CN101297118B (zh) * 2005-09-19 2011-09-28 英格索尔-兰德公司 用于离心压缩机的静止密封环
US20070065277A1 (en) * 2005-09-19 2007-03-22 Ingersoll-Rand Company Centrifugal compressor including a seal system
DE102008004297A1 (de) * 2008-01-15 2009-07-16 Oerlikon Leybold Vacuum Gmbh Turbomolekularpumpe
DE102008042656A1 (de) * 2008-10-07 2010-04-15 Ilmvac Gmbh Elektromotor mit gekapseltem Motorgehäuse
WO2010137521A1 (ja) * 2009-05-25 2010-12-02 イーグル工業株式会社 シール装置
US8353671B2 (en) * 2009-10-15 2013-01-15 Asia Vital Components Co., Ltd. Fan with pressurizing structure
JP6079052B2 (ja) * 2012-08-24 2017-02-15 株式会社島津製作所 真空ポンプ
US10352844B2 (en) 2013-03-15 2019-07-16 Particles Plus, Inc. Multiple particle sensors in a particle counter
US9677990B2 (en) 2014-04-30 2017-06-13 Particles Plus, Inc. Particle counter with advanced features
US11579072B2 (en) 2013-03-15 2023-02-14 Particles Plus, Inc. Personal air quality monitoring system
US10983040B2 (en) 2013-03-15 2021-04-20 Particles Plus, Inc. Particle counter with integrated bootloader
DE102013213815A1 (de) * 2013-07-15 2015-01-15 Pfeiffer Vacuum Gmbh Vakuumpumpe
US20150063982A1 (en) * 2013-09-01 2015-03-05 Particles Plus, Inc. Multi-stage inflow turbine pump for particle counters
CN106999740B (zh) 2014-12-04 2021-11-26 瑞思迈私人有限公司 用于输送空气的可穿戴设备
DE102016210701A1 (de) * 2016-06-15 2017-12-21 Inficon Gmbh Massenspektrometrischer Lecksucher mit Turbomolekularpumpe und Boosterpumpe auf gemeinsamer Welle
JP7108377B2 (ja) * 2017-02-08 2022-07-28 エドワーズ株式会社 真空ポンプ、真空ポンプに備わる回転部、およびアンバランス修正方法
US10557471B2 (en) 2017-11-16 2020-02-11 L Dean Stansbury Turbomolecular vacuum pump for ionized matter and plasma fields
US11988591B2 (en) 2020-07-01 2024-05-21 Particles Plus, Inc. Modular optical particle counter sensor and apparatus

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD23221A (de) *
US1715597A (en) * 1924-10-11 1929-06-04 Anton J Haug Packing
DE491159C (de) * 1927-04-13 1930-02-07 Rudolf Weber Stopfbuechse
US2127865A (en) * 1934-08-31 1938-08-23 Robert H Goddard Seal for centrifugal pumps
GB827015A (en) * 1957-02-04 1960-01-27 Atomic Energy Authority Uk Improvements in or relating to shaft seals
US3399827A (en) * 1967-05-19 1968-09-03 Everett H. Schwartzman Vacuum pump system
US3466052A (en) * 1968-01-25 1969-09-09 Nasa Foil seal
DE2440141A1 (de) * 1973-08-22 1975-04-03 Rolls Royce 1971 Ltd Dichtungseinrichtung
US3957277A (en) * 1975-02-10 1976-05-18 United Technologies Corporation Labyrinth seal structure for gas turbine engine
US4199154A (en) * 1976-07-28 1980-04-22 Stauffer Chemical Company Labyrinth sealing system
FR2521650A1 (fr) * 1982-02-16 1983-08-19 Cit Alcatel Pompe rotative a vide eleve
DE3221380C1 (de) * 1982-06-05 1983-07-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Wellendichtung mit aktiv-magnetisch geregeltem Dichtspalt
FI822245A0 (fi) * 1982-06-22 1982-06-22 Outokumpu Oy Axeltaetning vid en centrifugalpump och foerfarande foer aostadkommande av densamma
JPS6040861U (ja) * 1983-08-30 1985-03-22 石川島播磨重工業株式会社 シ−ル装置
JPS6134387A (ja) * 1984-07-26 1986-02-18 World Chem:Kk 高圧多段式シ−ルレスポンプ
JPH0222530Y2 (de) * 1985-10-14 1990-06-18
JPS62101094U (de) * 1985-12-18 1987-06-27
JPS62153597A (ja) * 1985-12-27 1987-07-08 Hitachi Ltd 真空ポンプ
FR2602834A1 (fr) 1986-08-13 1988-02-19 Cit Alcatel Pompe turbomoleculaire sur paliers a gaz
JPS63150099U (de) * 1987-03-20 1988-10-03
JPH029993A (ja) * 1988-06-28 1990-01-12 Daikin Ind Ltd 渦流形ターボ機械
DE58907244D1 (de) 1989-07-20 1994-04-21 Leybold Ag Reibungspumpe mit glockenförmigem Rotor.
DE59006034D1 (de) * 1989-12-06 1994-07-14 Pacific Wietz Gmbh & Co Kg Gasgesperrte, kontaktlose Dichtungsanordnung für eine Welle.
JPH03223572A (ja) * 1990-01-27 1991-10-02 Yasuro Nakanishi 軸封装置
GB2251040B (en) * 1990-12-22 1994-06-22 Rolls Royce Plc Seal arrangement
JPH0512693U (ja) * 1991-07-26 1993-02-19 三菱重工業株式会社 遠心圧縮機
US5261676A (en) * 1991-12-04 1993-11-16 Environamics Corporation Sealing arrangement with pressure responsive diaphragm means
JPH05296190A (ja) * 1992-04-15 1993-11-09 Hitachi Ltd ターボ機械
US6419461B2 (en) * 1997-08-13 2002-07-16 Seiko Instruments Inc. Turbo molecular pump
US6152452A (en) * 1997-10-17 2000-11-28 Wang; Yuming Face seal with spiral grooves
JPH11311197A (ja) * 1998-04-27 1999-11-09 Shimadzu Corp ガス圧縮装置

Also Published As

Publication number Publication date
DE50015396D1 (de) 2008-11-20
DE10004263A1 (de) 2001-08-02
JP2003521651A (ja) 2003-07-15
JP4805515B2 (ja) 2011-11-02
US20030108440A1 (en) 2003-06-12
US6705844B2 (en) 2004-03-16
EP1252446A1 (de) 2002-10-30
WO2001057403A1 (de) 2001-08-09

Similar Documents

Publication Publication Date Title
EP1252446B1 (de) Dynamische dichtung
EP1252445B1 (de) Turbomolekularpumpe
EP0159464B1 (de) Molekularvakuumpumpe
EP0408791B1 (de) Reibungspumpe mit glockenförmigem Rotor
EP1078166B2 (de) Reibungsvakuumpumpe mit stator und rotor
WO1993023672A1 (de) Gasreibungsvakuumpumpe
EP2295812A1 (de) Vakuumpumpe
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
DE3722164C2 (de) Turbomolekularpumpe
EP2253851B1 (de) Vakuumpumpe
EP2039941B1 (de) Vakuumpumpe
EP0825346B1 (de) Eingangsstufe für eine zweiflutige Gasreibungspumpe
DE3032967C2 (de)
EP1119709A1 (de) Reibungsvakuumpumpe mit stator und rotor
DE2409857B2 (de) Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
WO2003031823A1 (de) Axial fördernde reibungsvakuumpumpe
EP3267040B1 (de) Turbomolekularpumpe
EP1119710B1 (de) Reibungsvakuumpumpe
EP2990656A2 (de) Vakuumpumpe
EP2235377B1 (de) Turbomolekularpumpe
EP3327293B1 (de) Vakuumpumpe mit mehreren einlässen
EP1101944A2 (de) Turbomolekularpumpe
DE3500320A1 (de) Kryogeneratorpumpe
DE10124339A1 (de) Rotorscheiben mit Schaufeln für eine Turbomolekularpumpe
DE1728420A1 (de) Mehrstufige Fluessigkeitsringpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50015396

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120103

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111228

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015396

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121209