EP1226617A2 - Dispositif a piles a combustibles et procede de fonctionnement correspondant - Google Patents

Dispositif a piles a combustibles et procede de fonctionnement correspondant

Info

Publication number
EP1226617A2
EP1226617A2 EP00978943A EP00978943A EP1226617A2 EP 1226617 A2 EP1226617 A2 EP 1226617A2 EP 00978943 A EP00978943 A EP 00978943A EP 00978943 A EP00978943 A EP 00978943A EP 1226617 A2 EP1226617 A2 EP 1226617A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
cell stack
cell system
stack
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00978943A
Other languages
German (de)
English (en)
Inventor
Manfred Baldauf
Joachim Grosse
Günter Luft
Kurt Pantel
Walter Preidel
Manfred Waidhas
Ulrich Gebhardt
Rolf BRÜCK
Jörg-Roman KONIECZNY
Meike Reizig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH, Siemens AG filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1226617A2 publication Critical patent/EP1226617A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system and an operating method for such a fuel cell system.
  • the invention is advantageously applied to a direct methanol fuel cell.
  • DMFC direct methanol fuel cell
  • PEM Proton Exchange Membrane or Polymer Electrolyte Membrane
  • a direct methanol fuel cell system which is operated with gaseous fuel.
  • an evaporator is connected upstream of the cell and / or the stack.
  • the system also provides a condenser downstream of the stack, in which the carbon dioxide formed is separated from the anode exhaust gas before it is returned to the evaporator.
  • a disadvantage of the system is that the energy for the evaporator must be supplied externally.
  • the object of the invention is to improve the efficiency of known fuel line systems.
  • the object is achieved by the features of claim 1.
  • An associated operating method is specified in claim 11.
  • Advantageous refinements of the invention result from the dependent claims.
  • the invention relates to a fuel cell system with at least one fuel cell stack, process medium supply lines, electrical lines and upstream evaporator, in which at least one line is provided through which the heat from at least part of the stack can be used in at least one other device.
  • the waste heat of at least part of the fuel stack is used in various ways.
  • the invention can be implemented in particular on a direct methanol fuel cell.
  • the fuel is an alcohol, preferably methanol, which is directly in the Brerx.
  • - Substance cell is implemented.
  • the line is not only a pipe, a hose or some other objective connection between two elements of the system, but any other connection, that is to say a thermal contact, can also be so called.
  • the "device” that is heated is primarily an element of the fuel cell system such as the evaporator, the condenser, the preheating for the fuel, the device for preheating the process medium, the gas cleaning system and / or the compressor.
  • the heating of a device or room located outside the system and / or any further use of the first waste heat as well as the use of the second waste heat from the fuel cell stack, namely the waste heat of one of the aforementioned rates, also encompassed by the invention eg the use of waste heat from the evaporator to heat a living space or passenger depending on the application of the fuel cell system in the mobile or stationary area.
  • the above-mentioned elements or devices are all heat exchangers and cool the introduced warm gases and / or liquids.
  • waste heat from a fuel cell stack which in technical terminology is referred to briefly as a stack, is firstly via at least one exhaust gas and / or a heated cooling medium, which e.g. is passed from the stack into the evaporator and secondly via a thermal contact in which, for example, the evaporator is integrated in the stack.
  • the evaporator is arranged with the stack in a housing and / or is integrated in the end plates of the stack.
  • the integration of the evaporator in the stack also means, for example, that the process medium to be heated is carried out between the fuel cell units to cool them.
  • the fuel cell stack is operated at temperatures above 80 ° C. and below 300 ° C., preferably between 100 ° C. and 220 ° C. and in particular at a temperature of approx. 160 ° C.
  • a DMFC system according to the invention can also be referred to as a high-temperature polymer electrolyte membrane fuel cell (HTM fuel cell).
  • the system is preferably operated in such a way that recyclable components of the anode and / or cathode exhaust gas, such as water and / or methanol, are recovered and / or circulated.
  • the system thus comprises a condenser through which the anode exhaust gas is passed.
  • the mixture of methanol and water contained in the anode exhaust gas is condensed out and separated from the carbon dioxide.
  • the gas mixture is passed through the adsorber / catalyst, which e.g. consists of soda lime, zeolites and / or a membrane.
  • the gas cleaning is controlled with the aid of sensors, for example a sensor being attached to each gas outlet, which measures the temperature, composition and / or quantity of the gas released into the environment and passes it on to a control device.
  • sensors for example a sensor being attached to each gas outlet, which measures the temperature, composition and / or quantity of the gas released into the environment and passes it on to a control device.
  • Gas cleaning can e.g. can also be combined with the condenser and / or a device for preheating the process medium to form a catalytically coated heat exchanger into which the exhaust gas containing methanol is introduced.
  • electrical heating is advantageous for the cold start in order to ensure that the working temperature of the catalytic coating is reached quickly.
  • the waste heat from gas cleaning e.g. be made usable via another heat exchanger.
  • the cooling capacity of the evaporator is used to condense the exhaust gas, so that the evaporator and the condenser form an aggregate or a heat exchanger.
  • insulation of at least part of a stack may be preferred over maintaining the operating temperature through part-load operation. This insulation is realized, for example, by means of a double-walled housing, which may be filled with latent heat storage materials.
  • the system is started up with a liquid fuel during a cold start according to one embodiment of the method, the minimum stacking temperature for starting being predetermined by the freezing point of the electrolyte.
  • hydrogen is fed into the stack to start up the DMFC system because starting the stack with hydrogen is possible at much lower temperatures than when using the methanol / water mixture.
  • a corresponding hydrogen store such as a palladium sponge, a pressure vessel and / or a hydride store, is carried along.
  • the hydrogen storage is refilled electrolytically from the water and / or water-methanol tank, for example during operation of the system.
  • the electrolysis is carried out with an extra electrolysis device and / or a stack or part of a stack is used for the electrolysis.
  • the energy required for the electrolysis can be made available directly from a partial stack of the system and / or from an energy store such as a battery or a capacitor.
  • the hydrogen that is still unused after the system has been started can be used to heat a device such as the evaporator or can simply be introduced into the gas cleaning system. ) to t HH in O in o in O in
  • the control unit is generally used to optimize the efficiency and / or to optimally adapt to the power required by the system (for example via the accelerator pedal pressure).
  • a stack voltage-dependent power control driving the system with optimal load utilization
  • water management which e.g. together with a starter cartridge, which eliminates the need to carry a water tank and the optimal use of energy by the control unit.
  • control and construction of the system is carried out in such a way that heating and cooling of the individual components such as evaporators, preheaters, compressors and / or preheating units, on the one hand, which all require heat and stack, condenser, any cooling system and / or water separator, on the other hand, all are cooled , combined with optimal use of energy.
  • Figures 1 and 2 each show the block diagrams of a direct methanol fuel cell system.
  • the reference numbers of both block diagrams are identical for the same elements, lines are named in such a way that the reference number of the upstream element is placed in front of the reference number of the downstream element (e.g. line 1311 is the line in which the fluid flows from element 13 to element 11) ):
  • stack 1 can be seen, which is connected to the evaporator 2 once via the process medium supply line 21 and on the other hand via the process medium discharge line 12.
  • process medium supply line 21 and on the other hand via the process medium discharge line 12.
  • process medium discharge line 12 For reasons of clarity, only one stack 1 of the direct methanol fuel cell system is shown, although one system with several stacks, among other things with low-voltage units for on-board power supply, may be advantageous.
  • a process medium supply line 31 leads from the compressor 3 to the stack 1.
  • the compressor 3, which is regulated in a load-dependent manner via the control unit 6, is preceded by a heat exchanger or condenser 4, which in turn is connected to the stack 1 via the process medium discharge line 14 in such a way that the waste heat from the anode compartment of the stack 1 is used to preheat the oxidant air, because the spent fuel is introduced into the heat exchanger 4 through the line 14 at a temperature of approximately 160 ° C.
  • water and / or unused methanol is separated from the carbon dioxide and other gaseous impurities by condensation.
  • the liquid phase obtained in the heat exchanger 4 is fed into the mixer 5 via the line 45.
  • a sensor in line 48 is advantageous for analyzing the composition.
  • the line 45 has a sensor 46 which supplies information about the amount, pressure, temperature and / or composition of the mixture carried in the line 45 to the control device 6.
  • further sensors are not shown, which are attached in the lines 12 and / or 14 and which provide the control device with information about the quantity, pressure, temperature and / or composition of the mixture carried in the line.
  • the separated gas phase of the anode exhaust gas is introduced via line 411 into the gas cleaning system 11, where it is freed of undesirable emissions before it leaves the system as exhaust gas containing carbon dioxide.
  • the mixer 5 is connected via lines 85 and 95 to the two fuel tanks, the methanol tank 8 and the water tank 9.
  • Lines 85 and 95 each have a metering valve that is controlled by control unit 6. So only a load-dependent passes through the lines 85 and 95 IO ⁇ to to H -> in o in o in O in
  • the fuel lines are shown with a short dash and the oxide lines are shown with a long dash.
  • the cooling circuit in the use of the stack waste heat has been omitted in the two embodiments shown.
  • the cooling circuit if present, is preferably also passed through the evaporator or a device for preheating the process media.
  • a “fuel cell system” is a system that has at least one stack with at least one fuel cell unit, the corresponding process medium supply and discharge channels, electrical lines and end plates, possibly a cooling system with cooling medium and the entire fuel cell stack periphery (reformer, compressor, preheater , Blower, heating for process medium preheating, etc.).
  • a stack is a stack with at least one fuel cell unit with the associated lines and, if available, at least part of the cooling system.
  • An antifreeze that is not electrically conductive can be contained in the cooling system.
  • Other units are either isolated by the insulation methods (So) and / or local heating devices at temperatures above freezing, which may vary depending on the unit concerned (e.g. if a water pipe is affected, the freezing point is different from that of a water / Methanol mixture line) is held.
  • the invention discloses a DMFC system which, at high operating temperatures (HTM fuel cell), optimizes the energy and fuel-related efficiency by utilizing the waste heat from the stack.
  • HTM fuel cell high operating temperatures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne un dispositif à piles à combustibles et un procédé de fonctionnement correspondant. Le dispositif fonctionne à des températures comprises entre 80 DEG C et 300 DEG C et permet une optimisation de rendement grâce à la réutilisation de la chaleur dégagée par l'ensemble de piles à combustibles.
EP00978943A 1999-09-23 2000-09-18 Dispositif a piles a combustibles et procede de fonctionnement correspondant Withdrawn EP1226617A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19945715A DE19945715A1 (de) 1999-09-23 1999-09-23 Direkt-Methanol-Brennstoffzellenanlage und Betriebsverfahren dazu
DE19945715 1999-09-23
PCT/DE2000/003238 WO2001022512A2 (fr) 1999-09-23 2000-09-18 Dispositif a piles a combustibles et procede de fonctionnement correspondant

Publications (1)

Publication Number Publication Date
EP1226617A2 true EP1226617A2 (fr) 2002-07-31

Family

ID=7923103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00978943A Withdrawn EP1226617A2 (fr) 1999-09-23 2000-09-18 Dispositif a piles a combustibles et procede de fonctionnement correspondant

Country Status (7)

Country Link
US (1) US20020119352A1 (fr)
EP (1) EP1226617A2 (fr)
JP (1) JP2003520392A (fr)
CN (1) CN1421052A (fr)
CA (1) CA2385632A1 (fr)
DE (1) DE19945715A1 (fr)
WO (1) WO2001022512A2 (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075833A2 (fr) 2001-03-17 2002-09-26 Bayerische Motoren Werke Aktiengesellschaft Pile a combustible equipee d'un echangeur thermique integre
DE10121666A1 (de) * 2001-05-04 2002-11-07 Bayerische Motoren Werke Ag System aus Brennstoffzelle und Wärmetauscher
JP4867094B2 (ja) * 2001-07-19 2012-02-01 トヨタ自動車株式会社 燃料電池システム
FR2842355B1 (fr) * 2002-07-09 2008-04-04 Renault Sa Systeme de generation d'electricite au moyen d'une pile a combustible et procede de mise en oeuvre d'une pile a combustible
DE10237154A1 (de) * 2002-08-14 2004-03-11 Daimlerchrysler Ag Brennstoffzellensystem mit wenigstens einer Brennstoffzelle und mit einer Gaserzeugungseinrichtung
DE10247710A1 (de) * 2002-10-12 2004-05-13 Volkswagen Ag Brennstoffzellensystem, insbesondere eines Kraftfahrzeugs
JP3742053B2 (ja) * 2002-11-22 2006-02-01 株式会社東芝 燃料電池システム
DE10314483B4 (de) * 2003-03-31 2010-02-25 Forschungszentrum Jülich GmbH Niedertemperatur-Brennstoffzelle sowie Verfahren zum Betreiben derselben
JP4550385B2 (ja) * 2003-08-11 2010-09-22 Jx日鉱日石エネルギー株式会社 水素製造装置および燃料電池システム
US7255947B2 (en) 2003-10-17 2007-08-14 The Gillette Company Fuel substance and associated cartridge for fuel cell
JP4508622B2 (ja) * 2003-12-12 2010-07-21 株式会社ティラド 燃料電池システム
KR100560488B1 (ko) 2004-01-28 2006-03-13 삼성에스디아이 주식회사 연료 전지 시스템
JP2006019106A (ja) * 2004-06-30 2006-01-19 Toshiba Corp 燃料電池ユニットおよび濃度値補正方法
DE102004052806B4 (de) * 2004-10-26 2012-03-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direktmethanolbrennstoffzellensystem und Verfahren zu dessen Betrieb
CN100369305C (zh) * 2004-12-30 2008-02-13 比亚迪股份有限公司 一种燃料电池
JP4696580B2 (ja) * 2005-02-10 2011-06-08 ソニー株式会社 電気化学エネルギー生成装置及びこの装置の駆動方法
DE102005007180B4 (de) * 2005-02-14 2011-11-17 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. Ein begrenzt wärmebelastbares System mit einem Brennstofffzellenstapel und Verfahren zum Betreiben eines begrenzt wärmebelastbaren Systems mit einem Brennstoffzellenstapel
DE102005033821B4 (de) * 2005-07-11 2011-03-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direktoxidations-Brennstoffzellensystem und Verfahren zur Steuerung/Regelung des Wasserhaushalts eines Direktoxidations-Brennstoffzellensystems
JP4870980B2 (ja) * 2005-12-14 2012-02-08 株式会社東芝 燃料電池システム及びその制御方法
US20070190378A1 (en) 2006-02-16 2007-08-16 Masahiro Takada Direct oxidation fuel cell systems with regulated fuel concentration and oxidant flow
JP2007282449A (ja) * 2006-04-11 2007-10-25 Honda Motor Co Ltd 熱電変換装置
DE102006047493B4 (de) * 2006-10-05 2010-01-07 Ws Reformer Gmbh Brennstoffzellensystem und Verfahren zur Erzeugung von Strom und Wärme aus flüssigen und gasförmigen Brennstoffen
JP5221863B2 (ja) * 2006-10-06 2013-06-26 株式会社日立製作所 燃料電池システム
DE102006048825B4 (de) * 2006-10-09 2017-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direktoxidations-Brennstoffzellensystem und Verfahren zum Betrieb eines Direktoxidations-Brennstoffzellensystems
JP2007180051A (ja) * 2007-03-08 2007-07-12 Hitachi Maxell Ltd 燃料電池
JP2008310996A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 燃料電池システム及びその制御方法
US20090169983A1 (en) * 2007-12-27 2009-07-02 Ajith Kuttannair Kumar Battery with a phase-changing material
US8835067B2 (en) * 2008-09-25 2014-09-16 Ballard Power Systems Inc. Saturated vapor block for frozen fuel cell power plant
US8735008B2 (en) 2009-02-17 2014-05-27 Samsung Sdi Co., Ltd. Fuel cell system
TW201137295A (en) * 2010-04-28 2011-11-01 Chung Hsin Elec & Mach Mfg System for recycling the thermal energy generated from a fuel cell module
KR101458619B1 (ko) * 2012-05-21 2014-11-10 대우조선해양 주식회사 연료전지탑재 선박의 열 순환 시스템
CN103066310B (zh) * 2012-12-20 2015-04-22 华南理工大学 用于被动式直接甲醇燃料电池的热/流管理系统
KR101673360B1 (ko) * 2015-07-09 2016-11-07 현대자동차 주식회사 냉각 시스템 및 이의 운전 방법
DE102015114613A1 (de) * 2015-09-01 2017-03-02 Siqens Gmbh Verfahren und Vorrichtung zum parallelen Kondensieren und Verdampfen für ein Brennstoffzellensystem mit einer Kondensations-/Verdampfungs-Vorrichtung sowie ein Brennstoffzellensystem mit einer solchen Kondensations-/Verdampfungs-Vorrichtung
CN106410302A (zh) * 2016-12-02 2017-02-15 天津四洋新能源科技有限公司 一种高低温可控的动力锂离子电池装置
DE102017107003A1 (de) 2017-03-31 2018-10-04 Brandenburgische Technische Universität Cottbus-Senftenberg Behältnis zum Betrieb von Hochtemperaturbrennstoffzellen
JP2019106306A (ja) * 2017-12-13 2019-06-27 トヨタ自動車株式会社 燃料電池車両用エアクリーナ
DE102018212937A1 (de) 2018-08-02 2020-02-06 Robert Bosch Gmbh Verfahren zum Betreiben eines Brennstoffzellensystems
US20240092498A1 (en) * 2022-09-15 2024-03-21 Lockheed Martin Corporation Wing tank vaporizer for solid oxide fuel cell on unmanned aircraft

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530886A (en) * 1984-12-06 1985-07-23 United Technologies Corporation Process for humidifying a gaseous fuel stream
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell
DE19608738C1 (de) * 1996-03-06 1997-06-26 Siemens Ag Verfahren zur Nutzung der in den Abgasen einer Niedertemperatur-Brennstoffzelle enthaltenen Enthalpie und Anlage zur Durchführung des Verfahrens
ATE190756T1 (de) * 1996-06-26 2000-04-15 Siemens Ag Direkt-methanol-brennstoffzelle (dmfc)
DE19802038A1 (de) * 1998-01-21 1999-07-22 Forschungszentrum Juelich Gmbh Verfahren und Vorrichtung zum Betreiben einer Direkt-Methanol-Brennstoffzelle mit gasförmigem Brennstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0122512A2 *

Also Published As

Publication number Publication date
WO2001022512A3 (fr) 2002-04-25
DE19945715A1 (de) 2001-04-05
CN1421052A (zh) 2003-05-28
CA2385632A1 (fr) 2001-03-29
US20020119352A1 (en) 2002-08-29
WO2001022512A2 (fr) 2001-03-29
JP2003520392A (ja) 2003-07-02

Similar Documents

Publication Publication Date Title
EP1226617A2 (fr) Dispositif a piles a combustibles et procede de fonctionnement correspondant
EP0859421B1 (fr) Système de piles à combustible liquide
DE19608738C1 (de) Verfahren zur Nutzung der in den Abgasen einer Niedertemperatur-Brennstoffzelle enthaltenen Enthalpie und Anlage zur Durchführung des Verfahrens
DE60132987T2 (de) Festpolymer-brennstoffzelle
DE10055291A1 (de) Spannungsüberwachung und Systemsteuerung für Brennstoffzellen
DE60222712T2 (de) Wasser-Rückgewinnung für eine Brennstoffzellenanlage
DE10219333A1 (de) Brennstoffzellensystem und Verfahren zum Betrieb desselben
EP3111499A1 (fr) Système de piles à combustible
DE19982376B4 (de) Polymer-Elektrolyt-Brennstoffzellensystem
DE10359952B4 (de) Brennstoffzellensystem
EP1194966A2 (fr) Pile a combustible a membrane electrolytique polymere haute temperature (htm), centrale a piles a combustible htm, et procede pour faire fonctionner une pile a combustible htm et/ou une centrale a piles a combustible htm
DE112006002047B4 (de) Stromversorgungssystem und Verfahren zu dessen Steuerung
WO2000054356A1 (fr) Batterie de cellules electrochimiques a performance amelioree au demarrage a froid et procede pour demarrer une batterie de cellules electrochimiques a froid
DE10297048B4 (de) Übertragungsvorrichtung für Wasserdampf für einen Reformer einer Brennstoffzelle
WO2001003223A1 (fr) Systeme de pile a combustible et procede permettant de faire fonctionner un tel systeme
DE10317123B4 (de) Vorrichtung und Verfahren zum Brennstoffzellenkaltstart mit Metallhydriden und deren Verwendung
DE102004038633B4 (de) Brennstoffzellensystem mit Ladeluftbefeuchtung
WO2003021696A2 (fr) Systeme de production d'energie electrique et son mode de fonctionnement
DE19962679A1 (de) Hochtemperatur-Polymer-Elektrolyt-Membran (HTM) -Brennstoffzelle, HTM-Brennstoffzellenanlage, Verfahren zum Betreiben einer HTM-Brennstoffzelle und/oder einer HTM-Brennstoffzellenanlage
DE19962681A1 (de) Brennstoffzellenanlage und Verfahren zum Betreiben einer Brennstoffzellenanlage
WO2011020560A1 (fr) Procédé et dispositif pour produire de l'énergie électrique
DE19930875B4 (de) Hochtemperatur-Polymer-Elektrolyt-Membran (HTM)-Brennstoffzellenanlage
DE19930877A1 (de) Brennstoffzellenanlage und Verfahren zum Betreiben einer Brennstoffzellenanlage
DE102019211876B4 (de) Leistungsanordnung und Verfahren zu deren Betrieb
DE102006057198A1 (de) Verfahren zur Temperierung einer Brennstoffzelle und eine Brennstoffzelle mit einer Temperiereinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020307

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021011

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031010