EP1226617A2 - Fuel cell facility and operating method for the same - Google Patents

Fuel cell facility and operating method for the same

Info

Publication number
EP1226617A2
EP1226617A2 EP00978943A EP00978943A EP1226617A2 EP 1226617 A2 EP1226617 A2 EP 1226617A2 EP 00978943 A EP00978943 A EP 00978943A EP 00978943 A EP00978943 A EP 00978943A EP 1226617 A2 EP1226617 A2 EP 1226617A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
cell stack
cell system
stack
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00978943A
Other languages
German (de)
French (fr)
Inventor
Manfred Baldauf
Joachim Grosse
Günter Luft
Kurt Pantel
Walter Preidel
Manfred Waidhas
Ulrich Gebhardt
Rolf BRÜCK
Jörg-Roman KONIECZNY
Meike Reizig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH, Siemens AG filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1226617A2 publication Critical patent/EP1226617A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system and an operating method for such a fuel cell system.
  • the invention is advantageously applied to a direct methanol fuel cell.
  • DMFC direct methanol fuel cell
  • PEM Proton Exchange Membrane or Polymer Electrolyte Membrane
  • a direct methanol fuel cell system which is operated with gaseous fuel.
  • an evaporator is connected upstream of the cell and / or the stack.
  • the system also provides a condenser downstream of the stack, in which the carbon dioxide formed is separated from the anode exhaust gas before it is returned to the evaporator.
  • a disadvantage of the system is that the energy for the evaporator must be supplied externally.
  • the object of the invention is to improve the efficiency of known fuel line systems.
  • the object is achieved by the features of claim 1.
  • An associated operating method is specified in claim 11.
  • Advantageous refinements of the invention result from the dependent claims.
  • the invention relates to a fuel cell system with at least one fuel cell stack, process medium supply lines, electrical lines and upstream evaporator, in which at least one line is provided through which the heat from at least part of the stack can be used in at least one other device.
  • the waste heat of at least part of the fuel stack is used in various ways.
  • the invention can be implemented in particular on a direct methanol fuel cell.
  • the fuel is an alcohol, preferably methanol, which is directly in the Brerx.
  • - Substance cell is implemented.
  • the line is not only a pipe, a hose or some other objective connection between two elements of the system, but any other connection, that is to say a thermal contact, can also be so called.
  • the "device” that is heated is primarily an element of the fuel cell system such as the evaporator, the condenser, the preheating for the fuel, the device for preheating the process medium, the gas cleaning system and / or the compressor.
  • the heating of a device or room located outside the system and / or any further use of the first waste heat as well as the use of the second waste heat from the fuel cell stack, namely the waste heat of one of the aforementioned rates, also encompassed by the invention eg the use of waste heat from the evaporator to heat a living space or passenger depending on the application of the fuel cell system in the mobile or stationary area.
  • the above-mentioned elements or devices are all heat exchangers and cool the introduced warm gases and / or liquids.
  • waste heat from a fuel cell stack which in technical terminology is referred to briefly as a stack, is firstly via at least one exhaust gas and / or a heated cooling medium, which e.g. is passed from the stack into the evaporator and secondly via a thermal contact in which, for example, the evaporator is integrated in the stack.
  • the evaporator is arranged with the stack in a housing and / or is integrated in the end plates of the stack.
  • the integration of the evaporator in the stack also means, for example, that the process medium to be heated is carried out between the fuel cell units to cool them.
  • the fuel cell stack is operated at temperatures above 80 ° C. and below 300 ° C., preferably between 100 ° C. and 220 ° C. and in particular at a temperature of approx. 160 ° C.
  • a DMFC system according to the invention can also be referred to as a high-temperature polymer electrolyte membrane fuel cell (HTM fuel cell).
  • the system is preferably operated in such a way that recyclable components of the anode and / or cathode exhaust gas, such as water and / or methanol, are recovered and / or circulated.
  • the system thus comprises a condenser through which the anode exhaust gas is passed.
  • the mixture of methanol and water contained in the anode exhaust gas is condensed out and separated from the carbon dioxide.
  • the gas mixture is passed through the adsorber / catalyst, which e.g. consists of soda lime, zeolites and / or a membrane.
  • the gas cleaning is controlled with the aid of sensors, for example a sensor being attached to each gas outlet, which measures the temperature, composition and / or quantity of the gas released into the environment and passes it on to a control device.
  • sensors for example a sensor being attached to each gas outlet, which measures the temperature, composition and / or quantity of the gas released into the environment and passes it on to a control device.
  • Gas cleaning can e.g. can also be combined with the condenser and / or a device for preheating the process medium to form a catalytically coated heat exchanger into which the exhaust gas containing methanol is introduced.
  • electrical heating is advantageous for the cold start in order to ensure that the working temperature of the catalytic coating is reached quickly.
  • the waste heat from gas cleaning e.g. be made usable via another heat exchanger.
  • the cooling capacity of the evaporator is used to condense the exhaust gas, so that the evaporator and the condenser form an aggregate or a heat exchanger.
  • insulation of at least part of a stack may be preferred over maintaining the operating temperature through part-load operation. This insulation is realized, for example, by means of a double-walled housing, which may be filled with latent heat storage materials.
  • the system is started up with a liquid fuel during a cold start according to one embodiment of the method, the minimum stacking temperature for starting being predetermined by the freezing point of the electrolyte.
  • hydrogen is fed into the stack to start up the DMFC system because starting the stack with hydrogen is possible at much lower temperatures than when using the methanol / water mixture.
  • a corresponding hydrogen store such as a palladium sponge, a pressure vessel and / or a hydride store, is carried along.
  • the hydrogen storage is refilled electrolytically from the water and / or water-methanol tank, for example during operation of the system.
  • the electrolysis is carried out with an extra electrolysis device and / or a stack or part of a stack is used for the electrolysis.
  • the energy required for the electrolysis can be made available directly from a partial stack of the system and / or from an energy store such as a battery or a capacitor.
  • the hydrogen that is still unused after the system has been started can be used to heat a device such as the evaporator or can simply be introduced into the gas cleaning system. ) to t HH in O in o in O in
  • the control unit is generally used to optimize the efficiency and / or to optimally adapt to the power required by the system (for example via the accelerator pedal pressure).
  • a stack voltage-dependent power control driving the system with optimal load utilization
  • water management which e.g. together with a starter cartridge, which eliminates the need to carry a water tank and the optimal use of energy by the control unit.
  • control and construction of the system is carried out in such a way that heating and cooling of the individual components such as evaporators, preheaters, compressors and / or preheating units, on the one hand, which all require heat and stack, condenser, any cooling system and / or water separator, on the other hand, all are cooled , combined with optimal use of energy.
  • Figures 1 and 2 each show the block diagrams of a direct methanol fuel cell system.
  • the reference numbers of both block diagrams are identical for the same elements, lines are named in such a way that the reference number of the upstream element is placed in front of the reference number of the downstream element (e.g. line 1311 is the line in which the fluid flows from element 13 to element 11) ):
  • stack 1 can be seen, which is connected to the evaporator 2 once via the process medium supply line 21 and on the other hand via the process medium discharge line 12.
  • process medium supply line 21 and on the other hand via the process medium discharge line 12.
  • process medium discharge line 12 For reasons of clarity, only one stack 1 of the direct methanol fuel cell system is shown, although one system with several stacks, among other things with low-voltage units for on-board power supply, may be advantageous.
  • a process medium supply line 31 leads from the compressor 3 to the stack 1.
  • the compressor 3, which is regulated in a load-dependent manner via the control unit 6, is preceded by a heat exchanger or condenser 4, which in turn is connected to the stack 1 via the process medium discharge line 14 in such a way that the waste heat from the anode compartment of the stack 1 is used to preheat the oxidant air, because the spent fuel is introduced into the heat exchanger 4 through the line 14 at a temperature of approximately 160 ° C.
  • water and / or unused methanol is separated from the carbon dioxide and other gaseous impurities by condensation.
  • the liquid phase obtained in the heat exchanger 4 is fed into the mixer 5 via the line 45.
  • a sensor in line 48 is advantageous for analyzing the composition.
  • the line 45 has a sensor 46 which supplies information about the amount, pressure, temperature and / or composition of the mixture carried in the line 45 to the control device 6.
  • further sensors are not shown, which are attached in the lines 12 and / or 14 and which provide the control device with information about the quantity, pressure, temperature and / or composition of the mixture carried in the line.
  • the separated gas phase of the anode exhaust gas is introduced via line 411 into the gas cleaning system 11, where it is freed of undesirable emissions before it leaves the system as exhaust gas containing carbon dioxide.
  • the mixer 5 is connected via lines 85 and 95 to the two fuel tanks, the methanol tank 8 and the water tank 9.
  • Lines 85 and 95 each have a metering valve that is controlled by control unit 6. So only a load-dependent passes through the lines 85 and 95 IO ⁇ to to H -> in o in o in O in
  • the fuel lines are shown with a short dash and the oxide lines are shown with a long dash.
  • the cooling circuit in the use of the stack waste heat has been omitted in the two embodiments shown.
  • the cooling circuit if present, is preferably also passed through the evaporator or a device for preheating the process media.
  • a “fuel cell system” is a system that has at least one stack with at least one fuel cell unit, the corresponding process medium supply and discharge channels, electrical lines and end plates, possibly a cooling system with cooling medium and the entire fuel cell stack periphery (reformer, compressor, preheater , Blower, heating for process medium preheating, etc.).
  • a stack is a stack with at least one fuel cell unit with the associated lines and, if available, at least part of the cooling system.
  • An antifreeze that is not electrically conductive can be contained in the cooling system.
  • Other units are either isolated by the insulation methods (So) and / or local heating devices at temperatures above freezing, which may vary depending on the unit concerned (e.g. if a water pipe is affected, the freezing point is different from that of a water / Methanol mixture line) is held.
  • the invention discloses a DMFC system which, at high operating temperatures (HTM fuel cell), optimizes the energy and fuel-related efficiency by utilizing the waste heat from the stack.
  • HTM fuel cell high operating temperatures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a fuel cell facility and an operating method for the same. The facility is operated at temperatures between 80 DEG C and 300 DEG C and guarantees optimum effectiveness because the waste heat from the fuel cell stack is used in at least another way.

Description

Beschreibungdescription
Brennstoffzellenanlage und zugehöriges BetriebsverfahrenFuel cell system and associated operating method
Die Erfindung bezieht sich auf eine Brennstoffzellenanlage und ein Betriebsverfahren für eine solche Brennstoffzellenanlage. Die Erfindung wird vorteilhafterweise bei einer Direkt- Methanol-Brennstoffzelle angewandt .The invention relates to a fuel cell system and an operating method for such a fuel cell system. The invention is advantageously applied to a direct methanol fuel cell.
Für den Einsatz in Kraftfahrzeugen werden derzeit sog. DMFC- Brennstoffzellen einerseits und sog. PEM-Brennstoffzellen erprobt. Das Konzept der Direkt-Methanol -Brennstoffzelle (DMFC = Direct Methanol Fuel Cell) unterscheidet sich von der Wasserstoff-Polymer-Elektrolyt-Membran (PEM = Proton Exchange Membrane bzw. Polymer Electrolyte Membrane) -Brennstoffzelle im Wesentlichen dadurch, dass der Brennstoff Methanol direkt, also ohne zwischengeschalteten Reformer, an der Anode umgesetzt wird. Dazu wird in die Brennstoffzelle als Brennstoff entweder reines Methanol oder ein Methanol-/Wassergemisch eingeleitet, das sich an der Anode gemäß der Gleichung CH30H + H20 --> C02 + 6 H+ + 6 e" umsetzt.So-called DMFC fuel cells and so-called PEM fuel cells are currently being tested for use in motor vehicles. The concept of the direct methanol fuel cell (DMFC) differs from the hydrogen polymer electrolyte membrane (PEM = Proton Exchange Membrane or Polymer Electrolyte Membrane) fuel cell essentially in that the fuel methanol is direct , i.e. without an interposed reformer, is implemented at the anode. For this purpose, either pure methanol or a methanol / water mixture is introduced into the fuel cell as fuel, which is converted at the anode according to the equation CH 3 0H + H 2 0 -> C0 2 + 6 H + + 6 e " .
Aus der DE 196 256 21 AI ist eine Direkt-Methanol-Brenn- Stoffzellenanlage bekannt, die mit gasförmigem Brennstoff betrieben wird. Dazu ist der Zelle und/oder dem Stack ein Verdampfer vorgeschaltet. Die Anlage sieht außerdem einen dem Stack nachgeschalteten Kondensator vor, in dem das entstandene Kohlendioxid aus dem Anodenabgas abgetrennt wird, bevor dieses wieder in den Verdampfer geleitet wird. Nachteilig an der Anlage ist, dass die Energie für den Verdampfer extern geliefert werden muss.From DE 196 256 21 AI a direct methanol fuel cell system is known, which is operated with gaseous fuel. For this purpose, an evaporator is connected upstream of the cell and / or the stack. The system also provides a condenser downstream of the stack, in which the carbon dioxide formed is separated from the anode exhaust gas before it is returned to the evaporator. A disadvantage of the system is that the energy for the evaporator must be supplied externally.
Aufgabe der Erfindung ist es, den Wirkungsgrad von bekannten BrennstoffZeilenanlagen zu verbessern. Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst . Ein zugehöriges Betriebsverfahren ist im Patentanspruch 11 angegeben. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprü- chen.The object of the invention is to improve the efficiency of known fuel line systems. The object is achieved by the features of claim 1. An associated operating method is specified in claim 11. Advantageous refinements of the invention result from the dependent claims.
Bei der Erfindung ist eine Brennstoffzellenanlage mit zumindest einem Brennstoffzellenstack, Prozessmediumversorgungsleitungen, elektrischen Leitungen und vorgeschaltetem Ver- dampfer, bei der zumindest eine Leitung vorgesehen ist, durch die die Wärme von zumindest einem Teil des Stacks in zumindest einem anderen Gerät nutzbar ist. Beim erfindungsgemäßen Verfahren zum Betrieb einer Brennstoffzellenanlage wird die Abwärme zumindest eines Teils des Brennstoffstapeis in ver- schiedener Weise genutzt.The invention relates to a fuel cell system with at least one fuel cell stack, process medium supply lines, electrical lines and upstream evaporator, in which at least one line is provided through which the heat from at least part of the stack can be used in at least one other device. In the method according to the invention for operating a fuel cell system, the waste heat of at least part of the fuel stack is used in various ways.
Die Erfindung kann insbesondere an einer Direkt-Methanol- Brennstoffzelle realisiert werden. Dabei ist der Brennstoff ein Alkohol, vorzugsweise Methanol, der direkt in der Brerx. - Stoffzelle umgesetzt wird.The invention can be implemented in particular on a direct methanol fuel cell. The fuel is an alcohol, preferably methanol, which is directly in the Brerx. - Substance cell is implemented.
Bei der Erfindung wird als Leitung nicht nur ein Rohr, ein Schlauch oder eine sonstige gegenständliche Verbindung zwischen zwei Elementen der Anlage bezeichnet, sondern es kann auch jede sonstige Verbindung, also auch ein thermischer Kontakt so bezeichnet sein. Als „Gerät", das beheizt wird, wird in erster Linie ein Element der Brennstoffzellenanlage wie der Verdampfer, der Kondensator, die Vorheizung für den Brennstoff, das Gerät zur Vorwärmung des Prozessmediums, die Gasreinigungsanlage und/oder der Verdichter bezeichnet. Jedoch ist die Heizung eines außerhalb der Anlage liegenden Gerätes oder Raumes und/oder jede weitere Nutzung der ersten Abwärme sowie die Nutzung der zweiten Abwärme des Brennstoff- zellenstapels, nämlich der Abwärme einer der vorgenannten Ge- rate, auch von der Erfindung mitumfasst . Die Nutzung der zweiten Abwärme beinhaltet z.B. die Nutzung der Abwärme des Verdampfers zur Beheizung eines Wohnraumes oder Fahrgastin- nenraumes, je nach Anwendung der Brennstoffzellenanlage im mobilen oder stationären Bereich. Die oben genannten Elemente oder Geräte sind alle Wärmetauscher und kühlen die eingeleiteten warmen Gase und/oder Flüssigkeiten ab.In the invention, the line is not only a pipe, a hose or some other objective connection between two elements of the system, but any other connection, that is to say a thermal contact, can also be so called. The "device" that is heated is primarily an element of the fuel cell system such as the evaporator, the condenser, the preheating for the fuel, the device for preheating the process medium, the gas cleaning system and / or the compressor. However, the heating of a device or room located outside the system and / or any further use of the first waste heat as well as the use of the second waste heat from the fuel cell stack, namely the waste heat of one of the aforementioned rates, also encompassed by the invention eg the use of waste heat from the evaporator to heat a living space or passenger depending on the application of the fuel cell system in the mobile or stationary area. The above-mentioned elements or devices are all heat exchangers and cool the introduced warm gases and / or liquids.
Die Nutzung der Abwärme eines Brennstoffzellenstapels, der in der Fachterminologie kurz als Stack bezeichnet wird, ist zum einen über zumindest ein Abgas und/oder ein erwärmtes Kühlmedium, das z.B. aus dem Stack in den Verdampfer geleitet wird und zum anderen über einen thermischen Kontakt, in dem beispielsweise der Verdampfer im Stack integriert ist, möglich.The use of the waste heat from a fuel cell stack, which in technical terminology is referred to briefly as a stack, is firstly via at least one exhaust gas and / or a heated cooling medium, which e.g. is passed from the stack into the evaporator and secondly via a thermal contact in which, for example, the evaporator is integrated in the stack.
Der Verdampfer ist nach einer Ausführungsform mit dem Stack in einem Gehäuse angeordnet und/oder er ist in die Endplatten des Stacks integriert.According to one embodiment, the evaporator is arranged with the stack in a housing and / or is integrated in the end plates of the stack.
Die Integration des Verdampfers im Stack bedeutet beispielsweise auch, dass das zu erwärmende Prozessmedium zwischen den Brennstoffzelleneinheiten zu deren Kühlung durchgeführt wird.The integration of the evaporator in the stack also means, for example, that the process medium to be heated is carried out between the fuel cell units to cool them.
Nach einer Ausführung des Verfahrens wird der Brennstoffzel- lenstack bei Temperaturen über 80°C und unter 300°C, bevorzugt zwischen 100°C und 220°C und insbesondere bei einer Temperatur von ca. 160°C betrieben. Entsprechend der hohen Be- triebstemperatur kann eine DMFC-Anlage nach der Erfindung auch als Hochtemperatur-Polymer-Elektrolyt-Membran-Brennstoffzelle (HTM-Brennstoffzelle) bezeichnet werden.After carrying out the method, the fuel cell stack is operated at temperatures above 80 ° C. and below 300 ° C., preferably between 100 ° C. and 220 ° C. and in particular at a temperature of approx. 160 ° C. According to the high operating temperature, a DMFC system according to the invention can also be referred to as a high-temperature polymer electrolyte membrane fuel cell (HTM fuel cell).
Bevorzugt wird die Anlage so betrieben, dass wiederverwertba- re Bestandteile des Anoden- und/oder Kathodenabgases wie Wasser und/oder Methanol rückgewonnen und/oder im Kreis geführt werden.The system is preferably operated in such a way that recyclable components of the anode and / or cathode exhaust gas, such as water and / or methanol, are recovered and / or circulated.
So umfasst die Anlage nach einer Ausführungsform einen Kon- densator, durch den das Anodenabgas geleitet wird. Dabei wird das im Anodenabgas enthaltene Gemisch aus Methanol und Wasser auskondensiert und vom Kohlendioxid abgetrennt. Die auskon- J ÜJ t t H MAccording to one embodiment, the system thus comprises a condenser through which the anode exhaust gas is passed. The mixture of methanol and water contained in the anode exhaust gas is condensed out and separated from the carbon dioxide. The fully J ÜJ dt HM
LΠ O Ul o UI O ( lLΠ O Ul o UI O (l
densator oder für sich zur Abtrennung des Methanols, des Wassers, eines Inertgases wie dem Kohlendioxid und/oder eines unerwünschten Nebenprodukts wie Kohlenmonoxid, Aldehyd, Carbonsäure etc. eingesetzt werden kann. Dabei wird das Gasge- misch durch den Adsorber/Katalysator geleitet, der z.B. aus Natronkalk, Zeolithe und/oder einer Membran besteht.can be used for the separation of methanol, water, an inert gas such as carbon dioxide and / or an undesirable by-product such as carbon monoxide, aldehyde, carboxylic acid, etc. The gas mixture is passed through the adsorber / catalyst, which e.g. consists of soda lime, zeolites and / or a membrane.
Nach einer bevorzugten Ausführungsform wird die Gasreinigung mit Hilfe von Sensoren gesteuert, wobei beispielsweise an je- dem Gasauslass ein Sensor angebracht ist, der Temperatur, Zusammensetzung und/oder Menge des in die Umgebung abgelassenen Gases misst und an ein Steuergerät weitergibt.According to a preferred embodiment, the gas cleaning is controlled with the aid of sensors, for example a sensor being attached to each gas outlet, which measures the temperature, composition and / or quantity of the gas released into the environment and passes it on to a control device.
Die Gasreinigung kann z.B. auch mit dem Kondensator und/oder einem Gerät zur Vorwärmung des Prozessmediums zu einem kata- lytisch beschichtetem Wärmetauscher, in den das methanolhal- tige Abgas eingeleitet wird, kombiniert werden. Für den Kaltstart ist bei dieser Variante eine elektrische Beheizung vorteilhaft, um ein schnelles Erreichen der Arbeitstemperatur der katalytischen Beschichtung zu gewährleisten. Zudem kann die Abwärme aus der Gasreinigung z.B. über einen weiteren Wärmetauscher nutzbar gemacht werden.Gas cleaning can e.g. can also be combined with the condenser and / or a device for preheating the process medium to form a catalytically coated heat exchanger into which the exhaust gas containing methanol is introduced. In this variant, electrical heating is advantageous for the cold start in order to ensure that the working temperature of the catalytic coating is reached quickly. In addition, the waste heat from gas cleaning e.g. be made usable via another heat exchanger.
Nach einer bevorzugten Ausführung wird die Kühlleistung des Verdampfers zur Kondensation des Abgases genutzt, so dass der Verdampfer und der Kondensator ein Aggregat bzw. einen Wärmetauscher bilden.According to a preferred embodiment, the cooling capacity of the evaporator is used to condense the exhaust gas, so that the evaporator and the condenser form an aggregate or a heat exchanger.
Beim Kaltstart ist zur Erzielung eines besseren Anfahrverhai - tens ein Schutz vor Einfrieren des Stacks und/oder die Erhaltung der Betriebstemperatur in zumindest einem Teil eines Stacks der Anlage vorteilhaft. Dazu ist eine Isolation zumindest eines Teils eines Stacks unter Umständen bevorzugt gegenüber der Erhaltung der Betriebstemperatur durch Teillast- betrieb. Diese Isolation wird beispielsweise durch ein dop- pelwandiges Gehäuse, das unter Umständen mit Latentwärmespeichermaterialien gefüllt sein kann, realisiert. Bei der Isola- w 10 to t H H in o cn o in O inIn the event of a cold start, protection against freezing of the stack and / or maintenance of the operating temperature in at least part of a stack of the system is advantageous in order to achieve a better start-up behavior. For this purpose, insulation of at least part of a stack may be preferred over maintaining the operating temperature through part-load operation. This insulation is realized, for example, by means of a double-walled housing, which may be filled with latent heat storage materials. At the Isola w 10 to t HH in o cn o in O in
rrrr
P> rrP> rr
Φ pΦ p
P-P-
ΦΦ
HH
££
PJ Q φPJ Q φ
H-H-
H.H.
P.P.
Pipi
PJPJ
PP
P αP α
PJ cnPJ cn
OO
HH
0 .0.
C rrC rr
££
PJ cn cn φPJ cn cn φ
HH
CDCD
00
H-H-
33
H φH φ
H-H-
CD CD
gefahren, dass es die zur Umsetzung an der Anode erforderliche Wassermenge für das Wasser-/Methanolgemisch liefert. Durch Tanken von reinem Methanol wird beispielsweise bei der mobilen Anwendung der Anlage der größte Energieinhalt pro Vo- lumenteil realisiert.driven that it delivers the amount of water required for the reaction at the anode for the water / methanol mixture. By filling up with pure methanol, for example, the greatest energy content per volume part is realized in the mobile application of the system.
Ein Anfahren der Anlage beim Kaltstart mit flüssigem Brennstoff ist nach einer Ausgestaltung des Verfahrens vorgesehen, wobei die minimale Stacktemperatur zum Starten durch den Ge- frierpunkt des Elektrolyten vorgegeben ist.The system is started up with a liquid fuel during a cold start according to one embodiment of the method, the minimum stacking temperature for starting being predetermined by the freezing point of the electrolyte.
Nach einer Ausführungsform wird zum Anfahren der DMFC-Anlage Wasserstoff in den Stack geleitet, weil ein Starten des Stacks mit Wasserstoff bei viel niedrigeren Temperaturen als bei Verwendung des Methanol-/Wassergemisches möglich ist.According to one embodiment, hydrogen is fed into the stack to start up the DMFC system because starting the stack with hydrogen is possible at much lower temperatures than when using the methanol / water mixture.
Bei dieser Ausführungsform wird ein entsprechender WasserstoffSpeicher, wie ein Palladiumschwamm, ein Druckbehälter und/oder ein Hydridspeicher mitgeführt .In this embodiment, a corresponding hydrogen store, such as a palladium sponge, a pressure vessel and / or a hydride store, is carried along.
Nach einer Ausführungsform wird der WasserstoffSpeicher, beispielsweise während des Betriebs der Anlage, elektrolytisch aus dem Wasser- und/oder Wasser-Methanoltank wieder aufgefüllt. Die Elektrolyse wird mit einem extra Elektrolysegerät durchgeführt und/oder es wird ein Stack oder ein Teil eines Stacks zur Elektrolyse benutzt.According to one embodiment, the hydrogen storage is refilled electrolytically from the water and / or water-methanol tank, for example during operation of the system. The electrolysis is carried out with an extra electrolysis device and / or a stack or part of a stack is used for the electrolysis.
Bei dieser Ausführungsform kann die für die Elektrolyse erforderliche Energie von einem Teilstack der Anlage direkt und/oder von einem Energiespeicher wie einer Batterie oder einem Kondensator zur Verfügung gestellt werden.In this embodiment, the energy required for the electrolysis can be made available directly from a partial stack of the system and / or from an energy store such as a battery or a capacitor.
Der nach erfolgtem Starten der Anlage noch unverbrauchte Wasserstoff kann zum Beheizen eines Geräts wie dem Verdampfer benutzt oder einfach in die Gasreinigungsanlage eingeleitet werden. ) to t H H in O in o in O inThe hydrogen that is still unused after the system has been started can be used to heat a device such as the evaporator or can simply be introduced into the gas cleaning system. ) to t HH in O in o in O in
3 Φ3 Φ
PJ F- & rr p cnPJ F- & rr p cn
F- φ Ω cn 3 trF- φ Ω cn 3 tr
Ω φ tr Ω F-Ω φ tr Ω F-
Φ α d er ΦΦ α d er Φ
P FP F
P):P):
CDCD
0 φ Φ0 φ Φ
P* - F-P * - F-
Φ P ii φ ΦΦ P ii φ Φ
F- 3F- 3
3 P J Φ <3 P J Φ <
P 3 Φ d F φ ö h-1 F, F- d ΩP 3 Φ d F φ ö h- 1 F, F- d Ω
Ω tr cn ? rrΩ tr cn? rr
0 H Φ0 H Φ
~ Φ F, iQ -~ Φ F, iQ -
ΦΦ
PJ -> Φ ω < F- D Φ PPJ -> Φ ω <F- D Φ P
P Φ φ rr F,P Φ φ rr F,
F- F-F- F-
P h-1 K φ - ΦP h- 1 K φ - Φ
F-F-
Φ N σ rr CΦ N σ rr C
Φ Ω PΦ Ω P
LQLQ
Φ -Φ -
F- P,F- P,
P F- φ ω Φ F- rr PP F- φ ω Φ F- rr P
F s φF s φ
3 F,3 F,
3 d J3 d J
P LQ 5 d5= Q φ trP LQ 5 d5 = Q φ tr
P* PJ dP * PJ d
Φ d PΦ d P
F et LQF et LQ
O " O "
Istwerte mit den Sollwerten erreicht wird. Das Steuergerät dient generell zur Optimierung des Wirkungsgrads und/oder zur optimalen Anpassung an die von der Anlage (beispielsweise über den Gaspedaldruck) geforderte Leistung. Insbesondere eine stackspannungsabhängige Leistungsregelung (Fahren der Anlage bei optimaler Lastausnutzung) , ein Wassermanagement, das z.B. zusammen mit einer Starterpatrone, das Mitführen eines Wasserstanks überflüssig macht und die optimale Energienutzung der Anlage werden durch das Steuergerät ermöglicht.Actual values are reached with the target values. The control unit is generally used to optimize the efficiency and / or to optimally adapt to the power required by the system (for example via the accelerator pedal pressure). In particular, a stack voltage-dependent power control (driving the system with optimal load utilization), water management, which e.g. together with a starter cartridge, which eliminates the need to carry a water tank and the optimal use of energy by the control unit.
Die Steuerung und Konstruktion der Anlage erfolgt so, dass Heizen und Kühlen der Einzelkomponenten wie Verdampfer, Vorheizung, Verdichter und/oder Vorwärmungsaggregat einerseits, die alle Wärme benötigen und Stack, Kondensator, eventuell vorhandenes Kühlsystem und/oder Wasserabscheider, andererseits, die alle gekühlt werden, unter optimaler Ausnutzung der Energie kombiniert sind.The control and construction of the system is carried out in such a way that heating and cooling of the individual components such as evaporators, preheaters, compressors and / or preheating units, on the one hand, which all require heat and stack, condenser, any cooling system and / or water separator, on the other hand, all are cooled , combined with optimal use of energy.
Im Folgenden wird die Erfindung anhand von zwei bevorzugten Ausführungsbeispielen, die in Blockschaltbildern dargestellt sind, weiter erläutert.The invention is explained in more detail below on the basis of two preferred exemplary embodiments, which are shown in block diagrams.
Figuren 1 und 2 zeigen die Blockschaltbilder jeweils einer Direkt-Methanol-Brennstoffzellenanlage . Die Bezugszeichen beider Blockschaltbilder sind für die gleichen Elemente identisch, Leitungen werden so benannt, dass das Bezugszeichen des vorgeschalteten Elements vor das Bezugszeichen des nachgeschalteten Elements gesetzt wird (z.B. ist die Leitung 1311 die Leitung, in der das Fluid vom Element 13 zum Element 11 strömt) :Figures 1 and 2 each show the block diagrams of a direct methanol fuel cell system. The reference numbers of both block diagrams are identical for the same elements, lines are named in such a way that the reference number of the upstream element is placed in front of the reference number of the downstream element (e.g. line 1311 is the line in which the fluid flows from element 13 to element 11) ):
In Figur 1 ist Stack 1 zu sehen, der mit dem Verdampfer 2 einmal über die Prozessmediumszuführungsleitung 21 und zum anderen über die Prozessmediumsabführungsleitung 12 verbunden ist. Gezeigt ist wegen der Übersichtlichkeit nur ein Stack 1 der Direkt-Methanol-Brennstoffzellenanlage, obwohl ein Anlage mit mehreren Stacks unter anderem mit Niedervoltaggregaten zur Bordstromversorgung unter Umständen vorteilhaft ist.In FIG. 1, stack 1 can be seen, which is connected to the evaporator 2 once via the process medium supply line 21 and on the other hand via the process medium discharge line 12. For reasons of clarity, only one stack 1 of the direct methanol fuel cell system is shown, although one system with several stacks, among other things with low-voltage units for on-board power supply, may be advantageous.
Eine Prozessmediumszuführungsleitung 31 führt vom Verdichter 3 zum Stack 1. Dem über das Steuergerät 6 lastabhängig geregelten Verdichter 3 ist ein Wärmetauscher oder Kondensator 4 vorgeschaltet, der seinerseits über die Prozessmediumsabfüh- rungsleitung 14 mit dem Stack 1 so verbunden ist, dass die Abwärme aus dem Anodenraum des Stacks 1 zur Vorwärmung des Oxidans Luft genutzt wird, weil der verbrauchte Brennstoff durch die Leitung 14 mit einer Temperatur von ca. 160°C in den Wärmetauscher 4 eingeleitet wird. Im Wärmetauscher 4 wird Wasser und/oder unverbrauchtes Methanol vom Kohlendioxid und anderen gasförmigen Verunreinigungen durch Kondensation abge- trennt. Die im Wärmetauscher 4 erhaltene flüssige Phase wird über die Leitung 45 in den Mischer 5 eingespeist. Möglich ist auch eine direkte Einspeisung in den Methanoltank 8 (über eine nicht gezeigte Leitung 48) , wobei dann ein Sensor in der Leitung 48 zur Analyse der Zusammensetzung vorteilhaft ist. Die Leitung 45 verfügt über einen Sensor 46, der Informationen über Menge, Druck, Temperatur und/oder Zusammensetzung des in der Leitung 45 geführten Gemisches an das Steuergerät 6 liefert. Wegen der Übersichtlichkeit nicht gezeigt sind weitere, je nach Ausführungsform vorhandene, Sensoren, die in den Leitungen 12 und/oder 14 angebracht sind und die dem Steuergerät Informationen über Menge, Druck, Temperatur und/oder Zusammensetzung des in der Leitung geführten Gemisches liefern. Über die Leitung 411 wird die abgetrennte Gasphase des Anodenabgases in die Gasreinigungsanlage 11 einge- leitet, wo sie von unerwünschten Emissionen befreit wird, bevor sie als Kohlendioxid-haltiges Abgas die Anlage verlässt.A process medium supply line 31 leads from the compressor 3 to the stack 1. The compressor 3, which is regulated in a load-dependent manner via the control unit 6, is preceded by a heat exchanger or condenser 4, which in turn is connected to the stack 1 via the process medium discharge line 14 in such a way that the waste heat from the anode compartment of the stack 1 is used to preheat the oxidant air, because the spent fuel is introduced into the heat exchanger 4 through the line 14 at a temperature of approximately 160 ° C. In the heat exchanger 4, water and / or unused methanol is separated from the carbon dioxide and other gaseous impurities by condensation. The liquid phase obtained in the heat exchanger 4 is fed into the mixer 5 via the line 45. Direct feeding into the methanol tank 8 (via a line 48, not shown) is also possible, in which case a sensor in line 48 is advantageous for analyzing the composition. The line 45 has a sensor 46 which supplies information about the amount, pressure, temperature and / or composition of the mixture carried in the line 45 to the control device 6. For reasons of clarity, further sensors, depending on the embodiment, are not shown, which are attached in the lines 12 and / or 14 and which provide the control device with information about the quantity, pressure, temperature and / or composition of the mixture carried in the line. The separated gas phase of the anode exhaust gas is introduced via line 411 into the gas cleaning system 11, where it is freed of undesirable emissions before it leaves the system as exhaust gas containing carbon dioxide.
Der Mischer 5 ist über die Leitungen 85 und 95 mit den beiden Brennstofftanks, dem Methanoltank 8 und dem Wassertank 9 ver- bunden. Die Leitungen 85 und 95 haben jeweils ein Dosierventil, das über das Steuergerät 6 geregelt wird. So gelangt über die Leitungen 85 und 95 nur eine lastabhängige durch das IO ι to to H -> in o in o in O inThe mixer 5 is connected via lines 85 and 95 to the two fuel tanks, the methanol tank 8 and the water tank 9. Lines 85 and 95 each have a metering valve that is controlled by control unit 6. So only a load-dependent passes through the lines 85 and 95 IO ι to to H -> in o in o in O in
rrrr
F-F-
O pO p
Φ pΦ p
ΦΦ
F-F-
PP
) u> t to H M in o in O in O in) u> t to H M in o in O in O in
Übersichtlichkeit sind die Brennstoffleitungen kurz gestrichelt und die Oxidansleitungen lang gestrichelt gezeichnet.For clarity, the fuel lines are shown with a short dash and the oxide lines are shown with a long dash.
Bei beiden gezeigten Ausführungsformen wurde der Übersicht halber die Einbindung des Kühlkreislaufs in die Nutzung der Stackabwärme weggelassen. Der Kühlkreislauf wird, falls vorhanden, bevorzugt auch durch den Verdampfer oder ein Gerät zur Vorwärmung der Prozessmedia geleitet.For the sake of clarity, the integration of the cooling circuit in the use of the stack waste heat has been omitted in the two embodiments shown. The cooling circuit, if present, is preferably also passed through the evaporator or a device for preheating the process media.
Als „Brennstoffzellenanlage" wird ein System bezeichnet, das zumindest einen Stack mit zumindest einer Brennstoffzellen- einheit, die entsprechenden Prozessmediumszuführungs- und - ableitungskanäle, elektrische Leitungen und Endplatten, gegebenenfalls ein Kühlsystem mit Kühlmedium und die gesamte Brennstoffzellenstack-Peripherie (Reformer, Verdichter, Vorheizung, Gebläse, Heizung zur Prozessmediumvorwärmung, etc.) umfasst .A "fuel cell system" is a system that has at least one stack with at least one fuel cell unit, the corresponding process medium supply and discharge channels, electrical lines and end plates, possibly a cooling system with cooling medium and the entire fuel cell stack periphery (reformer, compressor, preheater , Blower, heating for process medium preheating, etc.).
Als Stack wird ein Stapel mit zumindest einer Brennstoffzel - leneinheit mit den dazugehörigen Leitungen und, falls vorhanden, zumindest einem Teil des Kühlsystems bezeichnet.A stack is a stack with at least one fuel cell unit with the associated lines and, if available, at least part of the cooling system.
Im Kühlsystem kann ein Frostschutzmittel, das nicht elektrisch leitfähig ist, enthalten sein. Andere Aggregate werden entweder durch die Isolationsmethoden (S.o.) und/oder lokale Heizgeräte auf der Temperaturen oberhalb des Gefrierpunktes, die je nach betroffenem Aggregat verschieden sein kann, (wenn z.B. eine Wasserleitung betroffen ist, so ist der Gefrierpunkt ein anderer als bei einer Wasser/Methanol-Gemisch- leitung) gehalten wird.An antifreeze that is not electrically conductive can be contained in the cooling system. Other units are either isolated by the insulation methods (So) and / or local heating devices at temperatures above freezing, which may vary depending on the unit concerned (e.g. if a water pipe is affected, the freezing point is different from that of a water / Methanol mixture line) is held.
Mit der Erfindung wird eine DMFC-Anlage offenbart, die bei hohen Betriebstemperaturen (HTM-Brennstoffzelle) eine Optimierung des energetischen und treibstoffbezogenen Wirkungs- grades durch Nutzung der Abwärme des Stacks realisiert. The invention discloses a DMFC system which, at high operating temperatures (HTM fuel cell), optimizes the energy and fuel-related efficiency by utilizing the waste heat from the stack.

Claims

Patentansprüche claims
1. Brennstoffzellenanlage mit zumindest einem Brennstoffzel- lenstapel, Prozessmediumsversorgungsleitungen, elektrischen Leitungen und vorgeschaltetem Verdampfer, bei der zumindest eine Leitung vorgesehen ist, durch die die Wärme von zumindest einem Teil des Brennstoffzellenstapels in zumindest einem anderen Gerät nutzbar ist.1. Fuel cell system with at least one fuel cell stack, process medium supply lines, electrical lines and upstream evaporator, in which at least one line is provided through which the heat from at least part of the fuel cell stack can be used in at least one other device.
2. Brennstoffzellenanlage nach Anspruch 1, bei der der Verdampfer im Brennstoffzellenstapel integriert ist und/oder mit dem Brennstoffzellenstapel in einem Gehäuse untergebracht ist .2. The fuel cell system according to claim 1, wherein the evaporator is integrated in the fuel cell stack and / or is accommodated with the fuel cell stack in a housing.
3. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, die einen Wärmetauscher durch den zumindest das Anoden- und/oder das Kathodenabgas geleitet wird, umfasst.3. Fuel cell system according to one of the preceding claims, which comprises a heat exchanger through which at least the anode and / or the cathode exhaust gas is passed.
4. Brennstoffzellenanlage nach einem der vorstehenden Ansprü- ehe, bei der der Verdampfer und ein Kondensator ein Gerät sind.4. Fuel cell system according to one of the preceding claims, in which the evaporator and a condenser are one device.
5. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche bei der eine Gasreinigungsanlage vorgesehen ist .5. Fuel cell system according to one of the preceding claims, in which a gas cleaning system is provided.
6. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, bei der zumindest ein Teil eines Moduls, ein Tank und/ oder eine Leitung eine Isolation und/oder ein lokales Heizelement hat .6. Fuel cell system according to one of the preceding claims, in which at least part of a module, a tank and / or a line has an insulation and / or a local heating element.
7. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, bei der zumindest eine Zuführöffnung einer Prozessmedium- und/oder Kühlmittelzuführleitung verschließbar ist.7. Fuel cell system according to one of the preceding claims, in which at least one supply opening of a process medium and / or coolant supply line can be closed.
8. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, bei der dem Brennstoffzellenstapel ein Filter vorgeschaltet ist. 8. Fuel cell system according to one of the preceding claims, in which a filter is connected upstream of the fuel cell stack.
9. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche bei der ein Steuergerät und zumindest ein Analysengerät in der Anlage vorgesehen ist, in das Informationen über aktuelle Messwerte eingespeist werden und das anhand eines Vergleichs der vorgegebenen und/oder errechneten Sollwerte Regeleinrichtungen der Anlage so steuert, dass die gemessenen Istwerte in Übereinstimmung mit den Sollwerten gebracht werden.9. Fuel cell system according to one of the preceding claims, in which a control device and at least one analysis device is provided in the system, into which information about current measured values is fed and which controls the control devices of the system on the basis of a comparison of the predetermined and / or calculated target values measured actual values are brought into agreement with the target values.
10. Brennstoffzellenanlage bei der zum Starten der Anlage eine Starterpatrone vorgesehen ist, in der das zur Umsetzung an der Anode geeignete Methanol/Wassergemisch fertig vorliegt.10. Fuel cell system in which a starter cartridge is provided to start the system, in which the methanol / water mixture suitable for implementation at the anode is ready.
11. Brennstoffzellenanlage, die einen WasserstoffSpeicher hat.11. Fuel cell system that has a hydrogen storage.
12. Verfahren zum Betrieb einer Brennstoffzellenanlage, bei dem Abwärme zumindest eines Teils eines Brennstoffzellensta- pels genutzt wird.12. Method for operating a fuel cell system, in which waste heat from at least part of a fuel cell stack is used.
13. Verfahren nach Anspruch 12 , bei dem die Abwärme in einem zu beheizenden Gerät der Brennstoffzellenanlage genutzt wird.13. The method according to claim 12, wherein the waste heat is used in a device of the fuel cell system to be heated.
14. Verfahren nach einem der Ansprüche 12 oder 13, bei dem wiederverwertbaren Bestandteile des Brennstoffzellenstapelab- gases rückgewonnen und/oder im Kreis geführt werden.14. The method according to any one of claims 12 or 13, in which recyclable components of the fuel cell stack exhaust gas are recovered and / or recycled.
15. Verfahren nach einem der Ansprüche 12 bis 14, bei dem aus dem Abgas einer Direkt-Methanol-Brennstoffzelle durch Einleiten in einen Wärmetauscher, wie einen Verdampfer, ein Gerät zur Vorwärmung der Prozessmedia und/oder einen Kondensator Wasser und/oder Methanol rückgewonnen wird.15. The method according to any one of claims 12 to 14, in which water and / or methanol is recovered from the exhaust gas of a direct methanol fuel cell by introducing it into a heat exchanger, such as an evaporator, a device for preheating the process media and / or a condenser ,
16. Verfahren nach einem der Ansprüche 12 bis 15, bei dem das Abgas der Anlage durch eine Gasreinigungsanlage geführt wird. 16. The method according to any one of claims 12 to 15, wherein the exhaust gas of the system is passed through a gas cleaning system.
17. Verfahren nach einem der Ansprüche 12 bis 16, wobei der Brennstoffzellenstapel bei einer Betriebstemperatur zwischen 80°C und 300°C betrieben wird.17. The method according to any one of claims 12 to 16, wherein the fuel cell stack is operated at an operating temperature between 80 ° C and 300 ° C.
18. Verfahren nach einem der Ansprüche 12 bis 17, bei dem zumindest ein Teil eines Moduls, ein Tank und/oder eine Leitung der Anlage isoliert und/oder während der Ruhephase der Anlage beheizt wird.18. The method according to any one of claims 12 to 17, in which at least part of a module, a tank and / or a line of the system is isolated and / or heated during the rest phase of the system.
19. Verfahren zum Betrieb einer Direkt-Methanol-Brennstoff- zellenanlage, bei dem die Betriebstemperatur des Verdampfers geringer als die Temperatur des Brennstoffzellenstapelabgases ist.19. Method for operating a direct methanol fuel cell system in which the operating temperature of the evaporator is lower than the temperature of the fuel cell stack exhaust gas.
20. Verfahren nach einem der Ansprüche 12 bis 19, bei dem während des Kaltstartens als Brennstoff Wasserstoff in den Brennstoffzellenstapel eingeleitet wird.20. The method according to any one of claims 12 to 19, in which hydrogen is introduced into the fuel cell stack as a fuel during cold starting.
21. Verfahren nach Anspruch 20, bei dem Wasserstoff aus dem Brennstoffzellenstapelabgas während des Kaltstartens weiterverwertet und/oder in die Gasreinigungsanlage eingeleitet wird.21. The method according to claim 20, in which hydrogen from the fuel cell stack exhaust gas is further used during cold starting and / or is introduced into the gas cleaning system.
22. Verfahren nach einem der Ansprüche 12 bis 21, bei dem das Kühlmedium während des Kaltstartens der Anlage im Gleichstrom geführt wird.22. The method according to any one of claims 12 to 21, wherein the cooling medium is guided in direct current during the cold start of the system.
23. Verfahren nach Anspruch 22, bei dem nach erfolgtem Kaltstart durch ein Umschalten des Kühlmediums auf Gegenstrom ein möglichst gleichmäßiges Temperaturprofil erhalten wird.23. The method according to claim 22, in which a temperature profile which is as uniform as possible is obtained after a cold start by switching the cooling medium to counterflow.
24. Verfahren nach einem der Ansprüche 12 bis 23, bei dem das Prozessmedium und/oder das Kühlmedium vor der Einleitung in den Brennstoffzellenstapel gefiltert wird.24. The method according to any one of claims 12 to 23, wherein the process medium and / or the cooling medium is filtered before being introduced into the fuel cell stack.
25. Verfahren nach einem der Ansprüche 12 bis 24, bei dem ein Steuergerät eingesetzt wird, das zur Optimierung des Wir- kungsgrades der Anlage zumindest einen gemessenen Istwert zumindest eines Analysengeräts der Anlage aufnimmt, mit einem vorgegebenen oder errechneten Sollwert vergleicht und zumindest eine angeschlossene Regeleinrichtung so steuert, dass eine Übereinstimmung des Istwertes mit dem Sollwert erreicht wird.25. The method according to any one of claims 12 to 24, in which a control device is used which is used to optimize the efficiency. efficiency of the system records at least one measured actual value of at least one analysis device of the system, compares it with a predetermined or calculated target value and controls at least one connected control device in such a way that the actual value matches the target value.
26. Verfahren nach Anspruch 15, bei dem ein WasserstoffSpeicher durch Elektrolyse von Wasser und/oder einem Wasser- Methanolgemisch wiederaufgefüllt wird.26. The method according to claim 15, in which a hydrogen storage is replenished by electrolysis of water and / or a water-methanol mixture.
27. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die zweite Abwärme genutzt wird.27. The method according to any one of the preceding claims, in which the second waste heat is used.
28. Verfahren nach einem der vorhergehenden Ansprüche, bei dem während des Kaltstartens der Brennstoff dem Brennstoff- zellenstapel flüssig und/oder aus eine Starterpatrone zugeführt wird. 28. The method according to any one of the preceding claims, in which the fuel is supplied to the fuel cell stack in liquid form and / or from a starter cartridge during cold starting.
EP00978943A 1999-09-23 2000-09-18 Fuel cell facility and operating method for the same Withdrawn EP1226617A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19945715A DE19945715A1 (en) 1999-09-23 1999-09-23 Direct methanol fuel cell system and operating procedures
DE19945715 1999-09-23
PCT/DE2000/003238 WO2001022512A2 (en) 1999-09-23 2000-09-18 Fuel cell facility and operating method for the same

Publications (1)

Publication Number Publication Date
EP1226617A2 true EP1226617A2 (en) 2002-07-31

Family

ID=7923103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00978943A Withdrawn EP1226617A2 (en) 1999-09-23 2000-09-18 Fuel cell facility and operating method for the same

Country Status (7)

Country Link
US (1) US20020119352A1 (en)
EP (1) EP1226617A2 (en)
JP (1) JP2003520392A (en)
CN (1) CN1421052A (en)
CA (1) CA2385632A1 (en)
DE (1) DE19945715A1 (en)
WO (1) WO2001022512A2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371104B1 (en) 2001-03-17 2005-11-02 Bayerische Motoren Werke Aktiengesellschaft Fuel cell with integrated heat exchanger
DE10121666A1 (en) * 2001-05-04 2002-11-07 Bayerische Motoren Werke Ag System of fuel cell and heat exchanger
JP4867094B2 (en) * 2001-07-19 2012-02-01 トヨタ自動車株式会社 Fuel cell system
FR2842355B1 (en) * 2002-07-09 2008-04-04 Renault Sa ELECTRICITY GENERATING SYSTEM USING A FUEL CELL AND METHOD OF OPERATING A FUEL CELL
DE10237154A1 (en) * 2002-08-14 2004-03-11 Daimlerchrysler Ag Fuel cell system with at least one fuel cell and with a gas generating device
DE10247710A1 (en) * 2002-10-12 2004-05-13 Volkswagen Ag Fuel cell system, in particular of a motor vehicle
JP3742053B2 (en) * 2002-11-22 2006-02-01 株式会社東芝 Fuel cell system
DE10314483B4 (en) * 2003-03-31 2010-02-25 Forschungszentrum Jülich GmbH Low-temperature fuel cell and method for operating the same
JP4550385B2 (en) * 2003-08-11 2010-09-22 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
US7255947B2 (en) 2003-10-17 2007-08-14 The Gillette Company Fuel substance and associated cartridge for fuel cell
JP4508622B2 (en) * 2003-12-12 2010-07-21 株式会社ティラド Fuel cell system
KR100560488B1 (en) 2004-01-28 2006-03-13 삼성에스디아이 주식회사 Fuel cell system
JP2006019106A (en) * 2004-06-30 2006-01-19 Toshiba Corp Fuel cell unit and concentration value correction method
DE102004052806B4 (en) * 2004-10-26 2012-03-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direct methanol fuel cell system and method of operation
CN100369305C (en) * 2004-12-30 2008-02-13 比亚迪股份有限公司 A kind of fuel cell
JP4696580B2 (en) 2005-02-10 2011-06-08 ソニー株式会社 Electrochemical energy generating apparatus and method for driving the apparatus
DE102005007180B4 (en) * 2005-02-14 2011-11-17 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. A limited heat loadable system having a fuel cell stack and method of operating a limited heat loadable system with a fuel cell stack
DE102005033821B4 (en) * 2005-07-11 2011-03-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direct oxidation fuel cell system and method for controlling the water balance of a direct oxidation fuel cell system
JP4870980B2 (en) * 2005-12-14 2012-02-08 株式会社東芝 Fuel cell system and control method thereof
US20070190378A1 (en) * 2006-02-16 2007-08-16 Masahiro Takada Direct oxidation fuel cell systems with regulated fuel concentration and oxidant flow
JP2007282449A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Thermoelectric converter
DE102006047493B4 (en) * 2006-10-05 2010-01-07 Ws Reformer Gmbh Fuel cell system and method for generating electricity and heat from liquid and gaseous fuels
JP5221863B2 (en) * 2006-10-06 2013-06-26 株式会社日立製作所 Fuel cell system
DE102006048825B4 (en) * 2006-10-09 2017-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. A direct oxidation fuel cell system and method of operating a direct oxidation fuel cell system
JP2007180051A (en) * 2007-03-08 2007-07-12 Hitachi Maxell Ltd Fuel cell
JP2008310996A (en) * 2007-06-12 2008-12-25 Toshiba Corp Fuel cell system and its control method
US20090169983A1 (en) * 2007-12-27 2009-07-02 Ajith Kuttannair Kumar Battery with a phase-changing material
US8835067B2 (en) * 2008-09-25 2014-09-16 Ballard Power Systems Inc. Saturated vapor block for frozen fuel cell power plant
US8735008B2 (en) 2009-02-17 2014-05-27 Samsung Sdi Co., Ltd. Fuel cell system
TW201137295A (en) * 2010-04-28 2011-11-01 Chung Hsin Elec & Mach Mfg System for recycling the thermal energy generated from a fuel cell module
KR101458619B1 (en) * 2012-05-21 2014-11-10 대우조선해양 주식회사 Heat Circulation System of Ship Loaded Fuel Cell
CN103066310B (en) * 2012-12-20 2015-04-22 华南理工大学 Heat or flow management system used for passive type direct methanol fuel cell
KR101673360B1 (en) * 2015-07-09 2016-11-07 현대자동차 주식회사 Cooling system and operating method thereof
DE102015114613A1 (en) 2015-09-01 2017-03-02 Siqens Gmbh Method and apparatus for parallel condensation and evaporation for a fuel cell system with a condensation / evaporation device and a fuel cell system with such a condensation / evaporation device
CN106410302A (en) * 2016-12-02 2017-02-15 天津四洋新能源科技有限公司 High-and-low-temperature-controllable power lithium ion battery device
DE102017107003A1 (en) 2017-03-31 2018-10-04 Brandenburgische Technische Universität Cottbus-Senftenberg Container for operating high temperature fuel cells
JP2019106306A (en) * 2017-12-13 2019-06-27 トヨタ自動車株式会社 Air cleaner for fuel cell vehicle
DE102018212937A1 (en) 2018-08-02 2020-02-06 Robert Bosch Gmbh Method for operating a fuel cell system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530886A (en) * 1984-12-06 1985-07-23 United Technologies Corporation Process for humidifying a gaseous fuel stream
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell
DE19608738C1 (en) * 1996-03-06 1997-06-26 Siemens Ag Method of utilising e.g. low temp. polymer membrane (PEM) fuel cell enthalpy
JP2000512797A (en) * 1996-06-26 2000-09-26 シーメンス アクチエンゲゼルシヤフト Direct-Methanol-Fuel Cell (DMFC)
DE19802038A1 (en) * 1998-01-21 1999-07-22 Forschungszentrum Juelich Gmbh Direct methanol fuel cell is operated with gaseous fuel for low power losses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0122512A2 *

Also Published As

Publication number Publication date
WO2001022512A2 (en) 2001-03-29
JP2003520392A (en) 2003-07-02
DE19945715A1 (en) 2001-04-05
CN1421052A (en) 2003-05-28
US20020119352A1 (en) 2002-08-29
WO2001022512A3 (en) 2002-04-25
CA2385632A1 (en) 2001-03-29

Similar Documents

Publication Publication Date Title
EP1226617A2 (en) Fuel cell facility and operating method for the same
EP0859421B1 (en) Fuel cell system with liquid fuel
DE19608738C1 (en) Method of utilising e.g. low temp. polymer membrane (PEM) fuel cell enthalpy
DE60132987T2 (en) SOLID POLYMER FUEL CELL
DE10055291A1 (en) Fuel cell system operation, e.g. for electric vehicle supply, involves generating load reduction signal if cell voltage less than first voltage, greater than or equal to smaller second value or second signal if less than second value
DE60222712T2 (en) Water recovery for a fuel cell plant
DE10219333A1 (en) Fuel cell system for electric vehicle, generates electricity in fuel cell by hydrogen gas generated by reforming device and supplied from hydrogen buffer
EP3111499A1 (en) Fuel cell system
DE19982376B4 (en) Polymer-electrolyte fuel cell system
DE10359952B4 (en) The fuel cell system
EP1194966A2 (en) High-temperature polymer electrolyte membrane (htm) fuel cell, htm fuel cell system, method for operating an htm fuel cell and/or an htm fuel cell system
EP1166381A1 (en) Fuel cell battery with improved cold-start performance and method of cold-starting a fuel cell battery
DE10297048B4 (en) Water vapor transmission device for a fuel cell reformer
WO2001003223A1 (en) Fuel cell facility and method for operating a fuel cell facility
DE10317123B4 (en) Apparatus and method for fuel cell cold start with metal hydrides and their use
DE102004038633B4 (en) Fuel cell system with charge air humidification
WO2003021696A2 (en) System for generating electrical energy and method for operating a system for generating electrical energy
DE19962679A1 (en) High-temperature-polymer electrolyte-membrane (HTM) fuel cell e.g. for vehicle drive unit
DE19962681A1 (en) Fuel-cell arrangement e.g for road vehicle
WO2011020560A1 (en) Method and device for generating electric energy
DE19930877C2 (en) Fuel cell system and method for operating this fuel cell system
DE19930875B4 (en) High temperature polymer electrolyte membrane (HTM) fuel cell system
DE10257212A1 (en) Operating method for fuel cell system e.g. for automobile, using exhaust gas from catalytic burner of fuel cell system as purging gas for fuel cell anode space
DE102020114746B4 (en) Method for shutting down a fuel cell device and fuel cell device and motor vehicle
DE20320913U1 (en) Reformer fuel cell system for a mobile device/space with a useful storage capacity has a fuel cell to generate electric current via a hydrogen-rich gas and a heating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020307

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021011

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031010