EP1204621A1 - Procede de traitement de materiau architectural - Google Patents

Procede de traitement de materiau architectural

Info

Publication number
EP1204621A1
EP1204621A1 EP00956628A EP00956628A EP1204621A1 EP 1204621 A1 EP1204621 A1 EP 1204621A1 EP 00956628 A EP00956628 A EP 00956628A EP 00956628 A EP00956628 A EP 00956628A EP 1204621 A1 EP1204621 A1 EP 1204621A1
Authority
EP
European Patent Office
Prior art keywords
type
compounds
family
photocatalytic
dispersions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00956628A
Other languages
German (de)
English (en)
Inventor
Christian Marzolin
Roman Gerusz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Materiaux de Construction SAS
Original Assignee
Saint Gobain Materiaux de Construction SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Materiaux de Construction SAS filed Critical Saint Gobain Materiaux de Construction SAS
Publication of EP1204621A1 publication Critical patent/EP1204621A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/4935Impregnated naturally solid product [e.g., leather, stone, etc.]

Definitions

  • the present invention relates to a method of processing architectural materials, aiming to give them a new functionality.
  • the materials more particularly targeted are those used in building as a facade material, cladding, roofing or soil and capable of offering a certain porosity / permeability vis-à-vis relatively fluid liquids, such as water, to a detectable depth, for example at least one to a few microns.
  • These include materials of the type coated with facades, concrete slabs and pavers, architectural concrete, tiles, slates and all materials of various shapes based on cement composition, concrete, terracotta, or stone of the granite type. or marble.
  • the new functionality that the invention seeks to confer on them relates to anti-fouling, anti-fungal and / or bactericidal properties, obtained using semiconductor materials based on sulphide or metal oxide, in particular based on titanium oxide crystallized in anatase form, exhibiting photocatalytic activity: these materials are in fact capable, in known manner, of initiating radical reactions causing the oxidation and degradation of organic products under the effect of long radiation adequate wave, ultraviolet for titanium oxide.
  • these materials used in construction tend to quickly lose their new appearance due on the one hand to their presence in dirty environments and on the other hand to their porosity and / or surface roughness which facilitate the attachment of the soiling.
  • the dirt frequently encountered is for example microorganisms which affect not only the appearance, but also, ultimately, the structural properties of the material.
  • the tiles are covered with algae, lichens or moss in a humid environment.
  • facade plasters also constitute a substrate conducive to the development of plants of this type.
  • Dirt also comes from fouling generated by urban organic pollution, consisting in particular of automobile or industrial soot, soot which also tends to favor the attachment of mineral dust to the material, creating dark crusts on its surface.
  • patent application WO97 / 10185 describes the deposition of photocatalytic coatings on glass substrates, coatings comprising particles of photocatalytic TiO 2 and an inorganic binder resulting from the thermal decomposition at high temperature of organometallic precursors.
  • the object of the invention is therefore to improve the treatment of architectural substrates of the "permeable" type, (this term having been explained above), by photocatalytic compounds, an improvement aimed in particular at greater simplicity and / or greater flexibility. in its implementation, as well as greater resistance of these compounds to said substrates.
  • the invention firstly relates to a method of treatment by impregnation of "permeable" architectural material, method comprising the projection onto the material of one or more dispersions in liquid phase of at least one type of photocatalytic compounds and d at least one type of compound promoting adhesion of said photocatalytic compounds to said architectural material.
  • Permeable material is understood to mean any material used in construction which is capable of allowing liquid phases of the aqueous type to penetrate over a certain thickness, for example over at least 20 nm up to in particular 100 or 50 ⁇ m, in particular over at least 1 to 10 ⁇ m, or in particular all the types of materials mentioned in the preamble to the present application. It is understood by “impregnation” the fact that the main part of the treatment leads not only to a coating containing the photocatalytic compounds and situated only on the surface of the material, but also to an introduction of these compounds into the very thickness of the material thanks to the vector liquid phase and its natural porosity.
  • the photocatalytic compounds (hereinafter called “active” for the sake of brevity) will diffuse over a certain thickness in a surface area of the material, by being flush with its surface, this impregnation possibly being “completed” by the formation of a coating on top of the material, coating which is preferably thin or even discontinuous
  • the concentration of active elements in the material decreases as one moves away from its external surface: a concentration gradient is established with the highest concentration in the zone flush with the external surface of the material .
  • the compounds "active" with respect to photocatalysis are based on metal oxide (s) optionally doped, for example zinc oxide, tungsten oxide or l 'tin oxide.
  • metal oxide s
  • the preferred example according to the invention relates to titanium oxide at least partially crystallized in anatase form, which is the crystallized phase which gives TiO2 its photocatalytic properties.
  • They may also be semiconductors belonging to the family of sulfides, also at least partially crystallized, such as zinc or boron sulfide. (In the following text, for simplicity, we will rather mention the oxide of titanium, it being understood that the indications given are equally valid for the other semiconductor materials mentioned above).
  • these “active” compounds of the TiO 2 type are used in the form of particles with an average diameter of at most 150 or 100 nm, in particular between 20 and 60 nm, particles preferably being in colloidal suspension in a liquid phase, especially essentially aqueous. This avoids at best that the particles do not agglomerate, which would significantly reduce their effectiveness. This facilitates their homogeneous dispersion on the material, while avoiding modification of its appearance.
  • the adhesion promoter is an important characteristic of the invention: preferably, it is soluble / dispersible in essentially aqueous phase, like the "active" compounds.
  • the choice of water mainly, even if it can be added with miscible organic solvents in small quantities, is particularly advantageous in view of the materials to be treated: indeed, its cost, its availability, its absence of polluting elements are very interesting when it comes to using it in large quantities both in the factory for manufacturing architectural material (tiles, slabs), and directly on site when the material is laid (facade plasters), or , alternatively, after a cleaning or cleaning operation, in the context of building renovations for example.
  • the adhesion promoter is preferably chosen so as to be chemically compatible with both the "active" compounds and the architectural material, to best ensure the homogeneous distribution and permanent fixation of the compounds on the material.
  • it is chosen in particular so that it is capable, once projected onto the material, of fixing itself to it by hardening, caused by a chemical and / or physical modification depending on its nature.
  • This modification can be done in a relatively short time after spraying or more gradually, without there being any need to cause this hardening by a specific treatment of the heating type. Indeed, especially if the treatment is done on site, when laying or renovating construction materials, it is important that the implementation of the treatment is as simple as possible, (besides the fact that some of the materials may not be able to withstand treatments individuals).
  • this spontaneous chemical and / or physical modification upon exposure to the ambient atmosphere, can be carbonation, a crosslinking type reaction and / or hydrolysis.
  • a physical change can be a coalescence.
  • adhesion promoters are interesting. It is possible to choose only one type of adhesion promoter or to combine several of them, in one or more liquid dispersions.
  • a first family is that of organometallic compounds, in particular the tetraalkoxides of form M (OR) 4, with M the metal of the Ti or Zr type and R a carbon radical of the linear or branched alkyl type, all identical or different, having in particular from 1 to 6 C. Mention may in particular be made of titanium or zirconium tetrabutoxide or tetrapropoxide. It can also be trialkoxides of the MR '(OR) 3 type with R and R' of the same or different radicals of the type of the radicals described above. It may also be a metal halide, in particular chloride such as TiC14.
  • All these compounds are highly hydrolyzable and it is therefore preferable, for them to remain stable until they are used, to combine them in their liquid phase with at least one chelating / stabilizing agent, for example of the ⁇ -diketone type such as acetylacetone (2,4-pentanedione), benzoylacetone (1-phenyl-1, 3 butanedione), disopropylacetylacetone, acetic acid, diethanolamine or compounds of the glycol family such as ethylene glycol or tetraoctylene glycol.
  • ⁇ -diketone type such as acetylacetone (2,4-pentanedione), benzoylacetone (1-phenyl-1, 3 butanedione), disopropylacetylacetone, acetic acid, diethanolamine or compounds of the glycol family such as ethylene glycol or tetraoctylene glycol.
  • All these metal compounds will tend, once projected onto the material to be hydrolyzed gradually, to degrade by condensation / crosslinking to form a network having metal-oxygen bonds having a particularly high affinity with the active elements in the form of particles of metal oxides of the TiO2 type and being insoluble in water.
  • a second family is that of silicon alkoxides (silanes), for example of the general formula Si (OR) 3R ', with R and R' having the same type of radical as in the case of the first family. It has proven to be advantageous to associate an adhesion promoter of the first family with an adhesion promoter of the second, given the similarity of their reactivity / behavior and their good compatibility.
  • a third family of adhesion promoter is the family of alkali and / or alkaline earth silicates or aluminosilicates, such as sodium, potassium or lithium silicate.
  • alkali and / or alkaline earth silicates or aluminosilicates such as sodium, potassium or lithium silicate.
  • mineral type this type of compound will also harden by a polycondensation type reaction, crosslinking leading to the formation of a mineral network with silicon-oxygen bonds insoluble in water and chemically close to architectural materials of the tile, earth type. particularly cooked.
  • a fourth family of adhesion promoter is that of polysiloxanes, silicon compounds such as silicates but already under a polymeric form. Their progressive hardening is a reaction similar to crosslinking of the polymers in question. They can be in the form of micro-emulsions of siloxanes or of a mixture of silane (s) and siloxane (s). It can be seen that the choice of the type of adhesion promoter can be made from a wide variety of materials, which can be of the hydrolysable metal compound, silicon or organo-silicon compound type, in polymer form or not, depending in particular on the type of material to be treated. and the type of active elements.
  • the first variant consists in projecting onto the architectural material a single dispersion in the liquid phase, comprising both the photocatalytic "active" compounds and the adhesion promoter (s).
  • This variant has the advantage of simplicity, by using a single product, a single liquid dispersion minimizing any risk of error on the part of the manipulator.
  • the formulation of the dispersion can prove to be more complex to ensure the compatibility of the active elements and of the adhesion promoters, without sedimentation. Additives make it possible to obtain stable dispersions, but sometimes, depending on the case, with a storage time once conditioned which may prove to be insufficient.
  • the second variant makes it possible to overcome this constraint: it consists in using several dispersions in liquid phases, one or more of the dispersions containing active elements and one or more others containing the adhesion promoters, plurality of dispersions that can be projected jointly or one after the other against the material to be treated.
  • the particularly preferred embodiment of this variant consists in first projecting a dispersion containing the active elements of the TiO2 particle type and, secondly, a dispersion containing the adhesion promoter which acts as a fixer. -vis particles already lodged in the pores of the material. Between the two projections, it is preferable to allow a sufficient time to pass for the material to dry (that is to say that a substantial part of the water of the first dispersion has evaporated).
  • an impregnation of the material with the dispersion (s) up to at most 400 ⁇ m, in particular up to at most 100 or 200 ⁇ m is sufficient to obtain a notable anti-fouling effect.
  • This impregnation depth will correspond to the penetration depth of the active elements in the material, once fixed permanently after drying and hardening of the adhesion promoter.
  • An advantageous implementation of the method according to the invention consists in preparing and conditioning the liquid phase dispersion (s) in concentrated form, the dilution and / or mixing of the dispersions being carried out just before use. This is particularly recommended when treating building materials during installation or their renovation on site, to avoid the storage of dispersions with high dilution therefore bulky and / or to allow adjustment of the dilution according to the material to be treat from standardized concentrated dispersions.
  • suitable additives in particular organic compounds such as ⁇ -diketones, acids or bases to control their pH such as acetic acid or nitric acid, polycarboxylates, stabilizers such as compounds of the glycol family or compounds known to be coupling agents such as silanes.
  • ⁇ -diketones are capable of stabilizing organo-metallic compounds of type M (OR) 4 or MR '(OR) 3 in the form of a complex which can serve as adhesion promoters.
  • polycarboxylates are capable of stabilizing the colloidal dispersion of photocalytic particles.
  • the glycol derivatives and the acids have a favorable stabilizing effect with respect to some of the adhesion promoters and / or certain of the active compounds of the invention.
  • the concentrations of active compounds and of adhesion promoter in the dispersions are appropriately adjusted.
  • the values of dry extract indicated in the present text are those of the "ready to projection" dispersions mentioned above. It is customary, to do this, to choose as characteristic the dry extract of these dispersions, measured in a known manner by heat treatment of the order of 100 ° C, for example according to standard NF-T30-011.
  • the dry extract of the dispersions corresponding to the photocatalytic compounds is at most 30%, in particular at most 20, 15 or 10%, and preferably at least 0.5%. The preferred range is for example of the order of 1 to 5%.
  • the dry extract of the "ready-to-spray" dispersions corresponding to the adhesion promoter (s) is preferably adjusted to a value of at most 20% or at most 15%, or at most 10 or 5%, in particular at least 0.2%, for example between 0.25 and 2%.
  • the material can be treated with a single dispersion containing all the compounds, or with several dispersions, in particular one containing the active elements and the other the adhesion promoter.
  • dispersion should in fact be understood by any predominantly liquid phase which contains solid and / or liquid compounds which may be in suspension (solid particles) or in dispersion, for example a dispersion colloidal, or which create emulsions or which are dissolved, dissolved, for example, a dispersion within the meaning of the invention may relate to a liquid phase comprising only the adhesion promoter completely dissolved in the liquid.
  • the parameters of these dispersions and the quantities projected are preferably chosen so that the quantity of "solid" material (essentially the “active" compounds and the adhesion promoters, and possibly all the other additives) actually fixed by the architectural material is at most 10 g / m 2 and for example at least 0.5 g / m 2 , preferably between 1 g / m 2 and 8 g / m 2 , again with the double objective of anti-fouling performance and minimization of appearance modification linked to treatment. It is a "theoretical" quantity calculated according to the quantity of dispersion projected and the concentration of compounds of interest to the invention in the projected dispersion (s) (after evaporation of the water).
  • a big advantage of the invention lies in the fact that the elimination of the liquid phase of the dispersions and the hardening of the adhesion promoter (s) after spraying onto the material can be done in an ambient atmosphere. , spontaneously, without requiring post-treatment of the heat treatment type.
  • dispersions themselves, in particular those combining in the same liquid phase the "active" compounds and the adhesion promoter (s), with a dry extract of all of these compounds.
  • dispersions “ready for projection” generally between 0.5 and 25%, especially between 1 and 5%, decomposing in about 50 to 80% of this dry extract into “active” compounds and in about 20 to 50% of this dry extract in adhesion promoter (s).
  • the subject of the invention is also the architectural material described above once treated, namely having the anti-fouling, anti-fungal and / or bactericidal properties by impregnation over a thickness of in particular 400 ⁇ m at most, in particular of the order at most 100 ⁇ m, and preferably at least 20 nm, by photocatalytic metal oxide or sulphide particles, associated with one or more "fixers” resulting from the curing of compounds which are the adhesion promoters described above and possibly one or more additives.
  • the impregnation depth of the material depends on a certain number of parameters including the porosity of the material. Porosity, however, can be defined according to different criteria and can be measured by different methods.
  • An interesting criterion is the diameter of the pores, in particular of the open pores, those which are accessible to the impregnation. To give an order of magnitude no limiting, it is generally considered that the pores in the coatings have a diameter which can range from a few tens of nanometers to one or a few millimeters, which can be measured for example by the known method of mercury porosity. For tiles, the diameter is around 15 nanometers to 15 ⁇ m. Concrete slabs or pavers have a diameter of pores substantially identical to that of plasters.
  • porosity rate of the material is the accessible porosity rate of the material, which can vary widely depending on the material. Thus, for tiles in particular, this rate is around 10 to 40%, especially around 20 to 25%.
  • porosity is measured by water absorption tests, by mass (standardized tests for slabs and pavers) which can be converted into volume: schematically, a part of the material is immersed to saturate it in water, then it is dried in an oven and the masses of the product are compared before and after drying (standard NF-P-31 301).
  • the first variant consists in treating the materials from an aqueous dispersion containing both the active compounds and the adhesion promoter.
  • the materials necessary for the treatment according to the invention are the following:
  • the photocatalytic compound used is in the form of particles P of titanium dioxide at least partially crystallized in anatase form, with a diameter of about 40 nm, in colloidal suspension in water,
  • a first series of tests was carried out on facade plasters, consisting of hydraulic plasters marketed by the company Weber and Broutin and composed, in a known manner, of cement, of fillers (fibers, limestone of dimensions of the from 20 to 100 ⁇ m), aggregates (quartz, mica, sand of the order of 100 ⁇ m to 4 mm), additives and pigments.
  • the coating treated here is a white coating, scraped and washed, dried before treatment: the dispersions are sprayed towards the coating, in an amount making it possible to fix approximately 0.5 g / m 2 of the compounds contained in the dispersions (after evaporation of the water).
  • the second variant consists in treating the materials with two dispersions, by first spraying the material with a solution containing the Ti02 particles, then a second containing the adhesion promoters, this second spraying being carried out in a sufficient time after the first for the material to be substantially dry to the touch.
  • the second dispersion thus comes to play the role of fixator compared to the particles of Ti02 already introduced on and in the architectural material.
  • a series of tests was carried out on the slabs described above, using a first solution S5 of TiO2 particles at 1.25% in water then two types of solutions containing the adhesion promoter:
  • the S5 solution is sprayed so as to leave 2 g of material per m 2 treated.
  • the soil degradation properties by photocatalysis of all these treated materials were tested as follows: ** • the measurement of the photocatalytic activity of a material consists in depositing a model soiling and in determining its disappearance during irradiation with ultraviolet. As the materials treated here are opaque, the optical measure chosen is colorimetry.
  • the model soiling is a black organic ink, ** • the procedure is as follows: the ink used is the Pébéo 8050 photographic retouching ink. After dilution to 20% in water, the ink is sprayed onto the sample using an air pistol.
  • a Minolta CR-200 colorimeter is used to measure the color (L, a, b).
  • the presence of ink induces a variation of L of the order of 20 units.
  • the sample is exposed to UV in a light box comprising 5 Philips Cleo Performance tubes, generating a dose of 5 W / m 2 .
  • the variation of L is a function of time, averaged over 3 measurement points.
  • the measured value is subtracted from that of a reference sample not containing T1O2.
  • this value is translated as a percentage of degradation.
  • the variation in L for the reference sample is of the order of 10% after 18 hours of lighting. It can reach 100% for a very active sample. The results obtained can be summarized as follows:
  • the slab treated with SI degraded 22% of the soiling, that treated with S2 14% of the fouling, that treated with S3 about 33% of the fouling, and that treated with S4 about 8% of the dirt.
  • the slab treated with S3 is the best performing, having degraded 30% of the dirt (25% for the slab treated by SI, 23% for the slab treated by S2, 13% for the slab treated with S4),
  • the degradations are at least 35% (treatment with SI), in particular from 57% for the tiles treated with S4 and S3, up to 70% for the tiles processed by S2. After 10 hours, the degradation is at least 40%
  • Dispersions associating TiO2 particles and mono-component adhesion promoters titanium dioxide (titanates hydrolyzing and crosslinking progressively at least in part into TiO2) or bi-component (with in addition a silane transforming in the same way at least in part, in SiO2) are therefore effective.
  • the method according to the invention provides various embodiments which can be adjusted as a function of the material to be treated, of the place of treatment, which are generally easy to implement (a simple water sprayer was used) with anti- light soiling.
  • the invention can also include steps before or after the treatment, making it possible in particular to confer additional functionalities on the material (water-repellent treatment for example) or to improve the effectiveness of the anti-fouling treatment (primer pretreatment ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

L'invention a pour objet un procédé de traitement par imprégnation d'un matériau architectural 'perméable' comportant la projection sur le matériau architectural à traiter d'une ou plusieurs dispersions en phase liquide d'au moins un type de composése photocatalytiques à base d'oxyde ou de sulfure métallique et d'au moins un type de composé promoteur d'adhérence desdits composés photocatalytiques audit matériau architectural. L'invention concerne également les dispersions liquides utilisées et les matériaux architecturaux ainsi traités.

Description

PROCEDE DE TRAITEMENT DE MATERIAU ARCHITECTURAL
La présente invention concerne un procédé de traitement de matériaux architecturaux, visant à leur conférer une nouvelle fonctionnalité . Les matériaux plus particulièrement visés sont ceux utilisés dans le bâtiment en tant que matériau de façade, de bardage, de toiture ou de sol et susceptibles d'offrir une certaine porosité /perméabilité vis-à-vis de liquides relativement fluides, tels que l'eau, sur une profondeur décelable, par exemple d'au moins un à quelques microns. Il s'agit notamment de matériaux du type enduits de façade, dalles et pavés de béton, béton architectonique, tuiles, ardoises et tous matériaux de formes variées à base de composition cimentaire, de béton, de terre cuite, ou de pierre du type granit ou marbre.
La nouvelle fonctionnalité que l'invention cherche à leur conférer concerne des propriétés anti-salissures, anti-fongiques et/ou bactéricides, obtenues à l'aide de matériaux semi-conducteurs à base de sulfure ou d'oxyde métallique, notamment à base d'oxyde de titane cristallisé sous forme anatase, présentant une activité photocatalytique : ces matériaux sont en effet aptes, de manière connue, à initier des réactions radicalaires provoquant l'oxydation et la dégradation de produits organiques sous l'effet d'un rayonnement de longueur d'onde adéquate, des ultraviolets en ce qui concerne l'oxyde de titane.
Il y a actuellement une réelle demande pour ce nouveau type de fonctionnalité : ces matériaux utilisés dans la construction ont en effet tendance à perdre très vite leur aspect neuf en raison d'une part de leur présence dans des environnements salissants et d'autre part de leur porosité et/ ou rugosité de surface qui facilitent l'accrochage de la salissure. Les salissures fréquemment rencontrées sont par exemple les micro-organismes qui affectent non seulement l'aspect, mais aussi, à terme, les propriétés structurelles du matériau. Ainsi, les tuiles se recouvrent d'algues, de lichens ou de mousse en environnement humide. II en est de même pour les dalles ou pavés de béton quand ils sont utilisés pour faire des terrasses ou dans l'aménagement des jardins, et les enduits de façade constituent aussi un substrat propice au développement de végétaux de ce type.
Des salissures proviennent également de l'encrassement généré par la pollution organique urbaine, constituée notamment de suies automobiles ou industrielles, suies qui tendent en outre à favoriser l'accrochage de poussières minérales sur le matériau, créant à sa surface des croûtes sombres.
On peut aussi mentionner les salissures affectant les dalles de sol du type huile de vidange, graisse, et les façades, comme les graffitis.
Apporter à tous ces matériaux une fonction " auto-nettoyante " par des éléments actifs photocatalytique apparaît donc donner une réponse au moins partielle à ce problème, en permettant à tout le moins d'espacer les opérations de nettoyage, ces éléments actifs favorisant la dégradation d'espèces organiques en présence d'oxygène, d'eau et d'un rayonnement approprié de type U.V., c'est-à-dire généralement dans les conditions d'exposition à l'atmosphère ambiante naturelle.
Des publications font déjà état de l'utilisation de particules d'oxyde de titane photocatalytique pour traiter des matériaux architecturaux en vue d'obtenir un effet anti-salissures.
Ainsi, la demande de brevet WO97/ 10185 décrit le dépôt de revêtements photocatalytiques sur des substrats verriers, revêtements comprenant des particules de Ti02 photocatalytique et un liant minéral issu de la décomposition thermique à haute température de précurseurs organo-métalliques.
On peut également citer la demande de brevet WO98/05601 décrivant l'incorporation de particules de TiO2 photocatalytique directement dans un liant hydraulique pour composition cimentaire pour faire des enduits de façade, et la demande de brevet EP-0 633 064 Al décrivant des revêtements associant des particules de Ti02 photocatalytique et un adhésif peu susceptible de dégradation photocatalytique du type polymère fluoré, pour traiter des substrats en verre ou en métal notamment.
L'invention a alors pour but d'améliorer le traitement de substrats architecturaux du type " perméable ", (ce terme ayant été explicité plus haut), par des composés photocatalytiques, amélioration visant notamment une plus grande simplicité et/ ou une plus grande souplesse dans sa mise en œuvre, ainsi qu'une plus grande tenue de ces composés auxdits substrats.
L'invention a tout d'abord pour objet un procédé de traitement par imprégnation de matériau architectural " perméable ", procédé comportant la projection sur le matériau d'une ou plusieurs dispersions en phase liquide d'au moins un type de composés photocatalytiques et d'au moins un type de composés promoteur d'adhérence desdits composés photocatalytiques audit matériau architectural.
On comprend par matériau " perméable " tout matériau utilisé dans la construction qui est susceptible de laisser pénétrer sur une certaine épaisseur des phases liquides du type aqueux, par exemple sur au moins 20 nm jusqu'à notamment 100 ou 50 μm, notamment sur au moins 1 à lOμ, soit notamment tous les types de matériaux cités dans le préambule de la présente demande. On comprend par " imprégnation " le fait que l'essentiel du traitement conduit non seulement à un revêtement contenant les composés photocatalytiques et situé uniquement en surface du matériau, mais aussi à une introduction de ces composés dans l'épaisseur même du matériau grâce à la phase liquide vecteur et à sa porosité naturelle. Une fois le matériau traité, de la façon détaillée ci-dessous, les composés photocatalytiques (dits ci-après " actifs " par souci de concision) vont diffuser sur une certaine épaisseur dans une zone superficielle du matériau, en affleurant à sa surface, cette imprégnation étant éventuellement " complétée " par la formation d'un revêtement au dessus du matériau, revêtement qui est préférentiellement mince voire discontinu
(ou inexistant). En général, la concentration en éléments actifs dans le matériau diminue au fur et à mesure qu'on s'éloigne de sa surface extérieure : un gradient de concentration s'établit avec la concentration la plus élevée dans la zone affleurant la surface extérieure du matériau.
Cette imprégnation qui tire partie des caractéristiques intrinsèques de porosité des matériaux traités est particulièrement avantageuse : en effet, d'une part on a observé une plus grande pérennité dans le temps de l'effet anti-salissures quand les éléments actifs diffusaient dans le matériau plutôt que lorsqu'ils restaient en surface, une telle diffusion rendant leur " accrochage " au substrat plus aisé et donc leur donnant une plus grande durabilité. D'autre part, même s'il y a une usure progressive du matériau, l'effet anti-salissures va perdurer du fait de cette diffusion, l'usure découvrant progressivement une nouvelle zone active. Enfin, il s'est avéré plus facile de conserver l'aspect visuel du matériau en évitant de former véritablement une couche en surface. Il est en effet généralement requis dans le domaine des matériaux de construction que tout traitement postérieur à la fabrication de ceux-ci, n'entraîne pas, ou le moins possible, de modification d'aspect, notamment de teinte, d'intensité de couleur, de brillance ou d'aspect mat.
De préférence, les composés " actifs " vis-à-vis de la photocatalyse sont à base d'oxyde (s) métallique (s) éventuellement dopé, par exemple de l'oxyde de zinc, de l'oxyde de tungstène ou de l'oxyde d'étain. L'exemple préféré selon l'invention concerne l'oxyde de titane au moins partiellement cristallisé sous forme anatase, qui est la phase cristallisée qui confère au Ti02 ses propriétés photocatalytiques. Il peut aussi s'agir de semi- conducteurs appartenant à la famille des sulfures, également au moins partiellement cristallisés comme le sulfure de zinc ou de bore. (Dans la suite du texte, pour plus de simplicité, on mentionnera plutôt l'oxyde de titane, étant entendu que les indications données sont tout aussi valables pour les autres matériaux semi- conducteurs cités plus haut).
Avantageusement, ces composés " actifs " du type TiO2 sont utilisés sous forme de particules de diamètre moyen d'au plus de 150 ou 100 nm, notamment compris entre 20 et 60 nm, particules se trouvant de préférence en suspension colloïdale dans une phase liquide, notamment essentiellement aqueuse. On évite ainsi au mieux que les particules ne s'agglomèrent, ce qui dirninuerait notablement leur efficacité. On facilite ainsi leur dispersion homogène sur le matériau, tout en évitant la modification de son aspect.
Le promoteur d'adhérence est une caractéristique importante de l'invention : de préférence, il est soluble/dispersable en phase essentiellement aqueuse, tout comme les composés " actifs ". Le choix de l'eau (majoritairement, même s'il peut être additionné de solvants organiques miscibles en petite quantité), est particulièrement avantageux au vu des matériaux à traiter : en effet, son coût, sa disponibilité, son absence d'éléments polluant sont très intéressants quand il s'agit de l'utiliser en quantité importante aussi bien dans l'usine de fabrication du matériau architectural (tuiles, dalles), que directement sur chantier lors de la pose même du matériau (enduits de façade), ou, alternativement, après une opération de nettoyage ou de ravalement, dans un contexte de rénovation de bâtiments par exemple.
Le promoteur d'adhérence est choisi préférentiellement de manière à être compatible chimiquement à la fois avec les composés " actifs " et le matériau architectural, pour assurer au mieux la répartition homogène et la fixation permanente des composés sur le matériau. Pour ce faire, on le choisit notamment de façon à ce qu'il soit apte, une fois projeté sur le matériau, à s'y fixer par durcissement, provoqué par une modification chimique et/ ou physique dépendant de sa nature. Cette modification peut se faire dans un temps relativement court après projection ou plus progressivement, sans qu'il y ait nécessité de provoquer ce durcissement par un traitement spécifique du type chauffage. En effet, notamment si le traitement se fait sur chantier, lors de la pose ou de la rénovation de matériaux de construction, il est important que la mise en œuvre du traitement soit la plus simple possible, (outre le fait que certains des matériaux peuvent ne pas pouvoir supporter des traitements particuliers). Avantageusement, cette modification chimique et/ ou physique spontanée, à l'exposition à l'atmosphère ambiante, peut être une carbonatation, une réaction de type réticulation et/ ou une hydrolyse. Une modification de type physique peut être une coalescence.
Il est avantageux que cette transformation chimique les rende essentiellement insolubles en phase aqueuse, notamment dans une large gamme de pH (3-12). En effet, sans promoteur d'adhérence, les éléments " actifs " sous forme de particules ne parviennent pas à se fixer et sont lessivés par exemple par l'eau de pluie, dans un temps très court. Le rôle du promoteur d'adhérence est donc d'abord, en étant soluble/dispersable dans une phase liquide comme les composés " actifs ", de bien se mélanger, s'associer à eux. Puis le promoteur d'adhérence va les fixer définitivement au substrat en servant de liant, de matrice, du fait de son durcissement. S'il restait très soluble dans l'eau, le simple ruissellement d'eau de pluie entraînerait très vite les éléments actifs hors du matériau. Il est également important que le promoteur d'adhérence une fois durci résiste lui-même au mieux à l'effet de dégradation photocatalytique induite par son contact étroit avec les éléments " actifs ".
Plusieurs familles de promoteur d'adhérence sont intéressantes. On peut choisir qu'un seul type de promoteur d'adhérence ou en associer plusieurs, en une ou plusieurs dispersions liquides.
Une première famille est celle des composés organo-métalliques, notamment les tétraalkoxydes de forme M(OR)4, avec M le métal du type Ti ou Zr et R un radical carboné du type alkyl linéaire ou ramifié, tous identiques ou différents, ayant notamment de 1 à 6 C. On peut citer notamment le tétrabutoxyde ou tétrapropoxyde de titane ou de zirconium. Il peut aussi s'agir de trialkoxydes du type MR'(OR)3 avec R et R' des radicaux identiques ou différents du type des radicaux décrits plus haut. Il peut également s'agir d'halogénure métallique, notamment de chlorure comme TiC14.
Tous ces composés sont hautement hydrolysables et il est donc préférable, pour qu'ils restent stables jusqu'à leur utilisation, de les associer dans leur phase liquide avec au moins un agent chélatant/ stabilisant, par exemple du type β-dicétone comme l'acétylacétone (2,4-pentanedione), le benzoylacétone (l-phényl-1 ,3 butanedione), le disopropylacétylacétone, l'acide acétique, la diéthanolamine ou des composés de la famille des glycols comme l'éthylène glycol ou le tétraoctylèneglycol.
Tous ces composés métalliques vont tendre, une fois projetés sur le matériau à s'hydrolyser progressivement, se dégrader par condensation/réticulation pour faire un réseau présentant des liaisons métal-oxygène ayant une affinité particulièrement élevée avec les éléments actifs sous forme de particules d'oxydes métalliques du type TiO2 et étant insoluble dans l'eau.
Une seconde famille est celles des alkoxydes de silicium (silanes), par exemple de formule générale Si(OR)3R', avec R et R' présentant le même type de radical que dans le cas de la première famille. II s'est révélé intéressant d'associer un promoteur d'adhérence de la première famille à un promoteur d'adhérence de la seconde, vu la similitude de leur réactivité /comportement et leur bonne compatibilité.
Une troisième famille de promoteur d'adhérence est la famille des silicates ou aluminosilicates d'alcalins et/ou d'alcalino-terreux, comme le silicate de sodium, de potassium ou de lithium. De type minéral, ce type de composé va durcir également par une réaction de type polycondensation, réticulation conduisant à la formation d'un réseau minéral avec des liaisons silicium-oxygène insoluble à l'eau et proche chimiquement des matériaux architecturaux du type tuile, terre cuite tout particulièrement.
Une quatrième famille de promoteur d'adhérence est celle des polysiloxanes, composés siliciés comme les silicates mais déjà sous une forme polymère. Leur durcissement progressif est une réaction assimilable à une réticulation des polymères en question. Ils peuvent se présenter sous forme de micro-émulsions de siloxanes ou d'un mélange de silane(s) et de siloxane(s). On voit que le choix du type de promoteur d'adhérence peut se faire parmi des matériaux très variés pouvant être de type composés métalliques hydrolysables, composés siliciés ou organo-siliciés, sous forme polymère ou non, en fonction notamment du type de matériau à traiter et du type d'éléments actifs. Tous ont le point commun d'être aptes, par durcissement progressif, à créer une matrice venant piéger et fixer les particules photocatalytiques au matériau architectural, durcissement pouvant se faire sans aucun traitement postérieur à la projection et " démarrant " conjointement avec l'évaporation de la phase liquide choisie pour faire les dispersions, généralement majoritairement de l'eau. Deux variantes sont possibles concernant la mise en œuvre du procédé de traitement, la façon de projeter les dispersions sur le matériau à traiter.
La première variante consiste à projeter sur le matériau architectural une seule dispersion en phase liquide, comprenant à la fois les composés " actifs " photocatalytiques et le(s) promoteur(s) d'adhérence.
Cette variante a l'avantage de la simplicité, en ayant recours à un seul produit, une seule dispersion liquide minimisant tout risque d'erreur de la part du manipulateur. En revanche, la formulation de la dispersion peut s'avérer plus complexe pour assurer la compatibilité des éléments actifs et des promoteurs d'adhérence, sans sédimentation. Des additifs permettent l'obtention de dispersions stables, mais parfois, selon les cas, avec une durée de stockage une fois conditionnée qui peut s'avérer insuffisante.
La seconde variante permet de s'affranchir de cette contrainte : elle consiste à utiliser plusieurs dispersions en phases liquides, une ou plusieurs des dispersions contenant des éléments actifs et une ou plusieurs autres contenant les promoteurs d'adhérence, pluralité de dispersions que l'on peut projeter conjointement ou l'une après l'autre contre le matériau à traiter. Le mode de réalisation particulièrement préféré de cette variante consiste à projeter dans un premier temps une dispersion contenant les éléments actifs du type particules de TiO2 et dans un second temps une dispersion contenant le promoteur d'adhérence qui vient jouer le rôle de fixateur vis-à-vis des particules déjà logées dans les pores du matériau. Entre les deux projections, il est préférable de laisser s'écouler un laps de temps suffisant pour que le matériau sèche (c'est-à-dire qu'une partie substantielle de l'eau de la première dispersion se soit évaporée).
Dans les deux variantes, il est bon d'ajuster la quantité de liquide projetée de façon à ne pas avoir un phénomène de ruissellement de liquide sur le matériau, mais plutôt d'imprégnation complète bien répartie sur toute la surface du matériau, quantité dépendant du niveau de perméabilité du matériau.
Avantageusement, on considère qu'une imprégnation du matériau par la ou les dispersions jusqu'au plus 400 μm, notamment jusqu'au plus 100 ou 200 μm est suffisante pour obtenir un effet anti-salissures notable. Cette profondeur d'imprégnation va correspondre à la profondeur de pénétration des éléments actifs dans le matériau, une fois fixés de manière permanente après séchage et durcissement du promoteur d'adhérence.
Une mise en œuvre avantageuse du procédé selon l'invention consiste à préparer et à conditionner la ou les dispersions en phase liquide sous forme concentrée, la dilution et/ou le mélange des dispersions se faisant juste avant emploi. Cela est tout particulièrement recommandé quand on traite des matériaux de construction lors de la pose ou de leur rénovation sur chantier, pour éviter le stockage de dispersions à forte dilution donc encombrantes et/ ou pour permettre l'ajustement de la dilution en fonction du matériau à traiter à partir de dispersions concentrées standardisées. On peut en effet commercialiser la dispersion " prête à l'emploi ", où l'utilisateur utilise la dispersion telle quelle, ou une dispersion " concentrée ", que l'utilisateur aura à diluer de façon appropriée. L'important est d'avoir les concentrations adéquates, dans les dispersions " prêtes à la projection ".
Comme mentionné plus haut, notamment pour stabiliser le promoteur d'adhérence mais aussi éventuellement pour stabiliser les éléments actifs en suspension colloïdale, il est préférable d'ajouter aux dispersions des additifs appropriés, notamment des composés organiques comme des β-dicétones, des acides ou des bases pour contrôler leur pH comme l'acide acétique ou l'acide nitrique, des polycarboxylates, des stabilisants comme les composés de la famille du glycol ou des composés connus pour être des agents de couplage comme des silanes.
Il est ainsi connu que les β-dicétones sont capables de stabiliser sous forme de complexe des composés organo-métalliques du type M(OR)4 ou MR'(OR)3 pouvant servir de promoteurs d'adhérence.
De même, les polycarboxylates sont aptes à stabiliser la dispersion colloïdale de particules photocalytiques. Les dérivés du glycol et les acides ont un effet favorable de stabilisation vis-à-vis de certains des promoteurs d'adhérence et/ ou de certains des composés actifs de l'invention.
On règle de façon appropriée les concentrations en composés actifs et en promoteur d'adhérence dans les dispersions. Par convention, les valeurs d'extrait sec indiquées dans le présent texte sont celles des dispersions " prêtes à la projection " évoquées plus haut. On a coutume, pour ce faire, de choisir comme caractéristique l'extrait sec de ces dispersions, mesuré de façon connue par traitement thermique de l'ordre de 100°C, par exemple selon la norme NF-T30-011. De préférence, l'extrait sec des dispersions correspondant aux composés photocatalytiques est d'au plus 30%, notamment d'au plus 20, 15 ou 10%, et de préférence d'au moins 0,5%. La gamme préférée est par exemple de l'ordre de 1 à 5%.
De même, l'extrait sec des dispersions " prêtes à la projection " correspondant au(x) promoteur(s) d'adhérence est de préférence ajusté à une valeur d'au plus 20% ou au plus 15%, ou au plus 10 ou 5%, notamment d'au moins 0,2%, par exemple entre 0,25 et 2%. Comme on l'a vu plus haut, on peut traiter le matériau avec une seule dispersion contenant tous les composés, ou avec plusieurs dispersions, notamment une contenant les éléments actifs et l'autre le promoteur d'adhérence. Tout au long du présent brevet, il faut en fait comprendre le terme de " dispersion " par toute phase majoritairement liquide qui contient des composés solides et/ ou liquides qui peuvent se trouver en suspension (particules solides) ou en dispersion, par exemple une dispersion colloïdale, ou qui créent des émulsions ou qui se trouvent solubilisés, dissous, par exemple, une dispersion au sens de l'invention peut concerner une phase liquide ne comprenant que le promoteur d'adhérence complètement solubilisé dans le liquide.
Ces sélections de taux d'extrait sec résultent d'un compromis optimal entre différents critères à respecter. En effet, la concentration en composés actifs doit être suffisante pour obtenir la fonctionnalité recherchée, cependant une concentration trop importante n'est pas dénuée d'inconvénients, notamment en ce qui concerne l'aspect du matériau. Ainsi, les particules d'oxydes de titane projetées en trop grande quantité et/ ou si elles s'amalgament sur le matériau architectural tendent à le blanchir et à le rendre plus brillant, ce qui n'est pas jugé souhaitable en général. La sélection du taux de promoteur d'adhérence tient compte du taux de composés actifs à fixer. On voit qu'un rapport de là 10, notamment de 3 à 5 entre les deux extraits secs (composés actifs par rapport au promoteur d'adhérence) est souhaitable.
De manière générale, on choisit de préférence les paramètres de ces dispersions et les quantités projetées de façon à ce que la quantité de matériau " solide " (essentiellement les composés " actifs " et les promoteurs d'adhérence, et éventuellement tous les autres additifs) effectivement fixée par le matériau architectural soit d'au plus 10 g/m2 et par exemple d'au moins 0,5 g/m2, de préférence entre 1 g/m2 et 8 g/m2, là encore avec le double objectif de performance anti-salissures et de minimisation de modification d'aspect lié au traitement. Il s'agit d'une quantité " théorique " calculée en fonction de la quantité de dispersion projetée et de la concentration en composés intéressant l'invention dans la ou les dispersions projetées (après évaporation de l'eau).
Comme mentionné plus haut, un gros avantage de l'invention réside dans le fait que l'élimination de la phase liquide des dispersions et le durcissement du ou des promoteur(s) d'adhérence après projection sur le matériau peut se faire en atmosphère ambiante, spontanément, sans nécessiter de post-traitement de type traitement thermique.
Généralement, on projette de l'ordre de 100ml à 10 litres de dispersion par m2 de matériau à traiter. L'invention a également pour objet les dispersions elles-mêmes, notamment celles associant dans une même phase liquide les composés " actifs " et le(s) promoteur(s) d'adhérence, avec un extrait sec de l'ensemble de ces composés dans les dispersions " prêtes à la projection " généralement compris entre 0,5 et 25%, notamment entre 1 et 5%, se décomposant en environ 50 à 80% de cet extrait sec en composés " actifs " et en environ 20 à 50% de cet extrait sec en promoteur(s) d'adhérence.
L'invention a également pour objet le matériau architectural décrit plus haut une fois traité, à savoir présentant les propriétés anti- salissures, anti-fongiques et/ou bactéricides par imprégnation sur une épaisseur de notamment 400 μm au plus, notamment de l'ordre d'au plus 100 μm, et de préférence au moins 20 nm, par des particules d'oxyde ou de sulfure métalliques photocatalytiques, associées à un ou plusieurs " fixateurs " issus du durcissement de composés qui sont les promoteurs d'adhérence décrits plus haut et éventuellement à un ou plusieurs additifs.
Comme évoqué plus haut, la profondeur d'imprégnation du matériau dépend d'un certain nombre de paramètres dont la porosité du matériau. La porosité, cependant, peut se définir selon différents critères et être mesurée par différentes méthodes. Un critère intéressant est le diamètre des pores, notamment des pores ouverts, ceux qui sont accessibles à l'imprégnation. Pour donner un ordre de grandeur non limitatif, on considère généralement que les pores dans les enduits ont un diamètre pouvant aller de quelques dizaines de nanomètres à un ou quelques millimètres, ce que l'on peut mesurer par exemple par la méthode connue de porosité au mercure. Pour les tuiles, le diamètre est de l'ordre de 15 nanomètres à 15 μm. Les dalles ou pavés de béton ont un diamètre de pores sensiblement identique à celui des enduits.
Un autre critère est le taux de porosité accessible du matériau, qui peut largement varier selon le matériau. Ainsi, par les tuiles notamment, ce taux est d'environ 10 à 40%, notamment autour de 20 à 25%. Pour les bétons, la porosité est mesurée par des essais d'absorption d'eau, en masse (essais normalisés pour les dalles et les pavés) que l'on peut convertir en volume : schématiquement, on immerge une partie du matériau pour le saturer en eau, puis on le dessèche en étuve et on compare les masses du produit avant et après dessèchement (norme NF- P-31 301).
D'autres détails et caractéristiques avantageuses de l'invention ressortent de la description ci-après d'exemples de réalisation non limitatifs :
*- la première variante consiste à traiter les matériaux à partir d'une dispersion aqueuse contenant à la fois les composés actifs et le promoteur d'adhérence.
Dans tous les exemples, les matières nécessaires au traitement selon l'invention sont les suivantes :
**• le composé photocatalytique utilisé se présente sous la forme de particules P de dioxyde de titane au moins partiellement cristallisées sous forme anatase, de diamètre environ 40 nm, en suspension colloïdale dans l'eau,
*+- un premier promoteur d'adhérence est le tétrabutoxyde de titane r TBT "), **• un second promoteur d'adhérence est le glycidoxypropyle- triméthoxysilane (" glymo "), »* différents additifs sont utilisés : l'acide nitrique (HNO3), l'acétylacétone (" acac "), le polyéthylèneglycol (" PEG ") notamment de faible masse moléculaire (200), agissant comme dispersants ou stabilisants. > Deux solutions SI et S2 d'imprégnation ont été préparées ainsi :
® - 25 g de PEG, 25 g d'eau à 0,7% volumique d'HNO3 sont ajoutés à 19 g d'acac et 31 g de TBT, on obtient une solution " A ",
® - puis on ajoute à 10 g de la solution " A " 80 g d'eau à 0,08% volumique d'HNO3, on obtient une solution " Bl ", (D - on ajoute à 20 g de la solution " Bl " 10 g de particules de TiO2 dans
170 g d'eau, on obtient la solution " SI ", ' - on ajoute à 40 g de la solution " Bl " 10 g de particules de TiO2 dans
150 g d'eau, on obtient la solution " S2 ". Deux solutions S3 et S4 ont été préparées ainsi : ® - 25 g de PEG, 25 g d'eau à 0,7% volumique d'HNO3 sont ajoutés à 19 g d'acac et 31 g de TBT, on obtient une solution " A ",
(D - puis on ajoute à 10 g de la solution " A " 80 g d'eau à 0,08% d'HNO3 et
2,5 g de glymo ", on obtient une solution " B2 ",
(D - on ajoute à 20 g de la solution " B2 " 10 g de particules de T1O2 dans 170 g d'eau, on obtient la solution " S3 ",
®' - on ajoute à 40 g de la solution " B2 " 10 g de particules de Ti02 dans
150 g d'eau, on obtient la solution " S4 ".
Le tableau ci-dessous résume la formulation de ces quatre solutions, avec l'extrait sec (global), celui correspondant au TiO2, celui correspondant à chacun des deux promoteurs, et, exprimés en pourcentages en poids par rapport à la phase aqueuse, les différents additifs.
Pour la mesure de l'extrait sec du TBT, on considère qu'il s'est transformé à 100% en TiO2, et par celle du " glymo ", on considère qu'il est transformé à 100% en Si02. TABLEAU 1
Ces solutions ont été appliquées par pulvérisation sur les matériaux pour atteindre une couverture de l'ordre de 0,3 à 1 g/m2 mesurée par pesée, (c'est-à-dire que 0,3 à 1 g de l'ensemble des composés figurant dans le tableau 1 sont fixés par m2 de matériau traité).
Z> Une première série d'essais a été effectuée sur des enduits de façade, constitués d'enduits hydrauliques commercialisés par la société Weber et Broutin et composés, de façon connue, de ciment, de charges (fibres, calcaire de dimensions de l'ordre de 20 à 100 μm), de granulats (quartz, mica, sable de l'ordre de 100 μm à 4 mm), d'additifs et de pigments. L'enduit traité ici est un enduit blanc de finition gratté et lavé, séché préalablement au traitement : les dispersions sont pulvérisées en direction de l'enduit, dans une quantité permettant de fixer environ 0,5 g/m2 des composés contenus dans les dispersions (après évaporation de l'eau).
Z> Une seconde série d'essais a été effectuée sur des dalles de béton commercialisées par la société Stradal, sous la référence " 6512 polie " : les solutions ont été pulvérisées en direction de ces dalles de façon à fixer environ 0,3 g de matière par m2. Z> Une troisième série d'essais a été effectuée sur des tuiles commercialisées par la Société Tuiles Briqueterie Française sous la dénomination commerciale " Romanée-Canal Rouge " : les solutions étant pulvérisées de façon à ce qu'environ 0,6 g de matière soit fixée par m2.
•*- La seconde variante consiste à traiter les matériaux avec deux dispersions, en pulvérisant d'abord sur le matériau une solution contenant les particules de Ti02, puis une seconde contenant le ou les promoteurs d'adhérence, cette seconde pulvérisation s'effectuant dans un laps de temps suffisant après la première pour que le matériau soit substantiellement sec au toucher. La seconde dispersion vient ainsi jouer le rôle de fixateur par rapport aux particules de Ti02 déjà introduites sur et dans le matériau architectural. Une série d'essais a été effectuée sur les dalles décrites plus haut, utilisant une première solution S5 de particules de TiO2 à 1,25 % dans l'eau puis deux types de solutions contenant le promoteur d'adhérence :
** soit une solution S6 sous forme d'une micro-émulsion de siloxane commercialisée par Wacker sous la dénomination " SMK 2100 ",
^ soit une solution S6' sous forme d'une solution à base de sel d'ammonium de lactate de titane hydrosoluble.
La pulvérisation de la solution S5 est réalisée de façon à laisser 2 g de matière par m2 traité. La pulvérisation des solutions S6 et S6' est réalisée de façon à laisser 0,3 et 0,6 g/m2 pour S6 (S6-1 et S6-2), 0,2 et 0,6 g/m2 pour S6' (S6'- l et S6'-2).
Les propriétés de dégradation des salissures par photocatalyse de tous ces matériaux traités ont été testées de la façon suivante : ** la mesure de l'activité photocatalytique d'un matériau consiste à déposer une salissure modèle et à doser sa disparition au cours d'une irradiation par des ultraviolets. Comme les matériaux traités ici sont opaques, la mesure optique retenue est la colorimétrie. La salissure modèle est une encre organique noire, ** le mode opératoire est le suivant : l'encre utilisée est l'encre de retouche photographique Pébéo 8050. Après dilution à 20% dans l'eau, l'encre est pulvérisée sur l'échantillon à l'aide d'un pistolet à air comprimé.
Un colorimètre Minolta CR-200 est employé pour mesurer la couleur (L, a, b). La présence d'encre induit une variation de L de l'ordre de 20 unités. Après séchage 2 heures, l'échantillon est exposé aux U.V. dans une boîte à lumière comportant 5 tubes Philips Cleo Performance, générant une dose de 5 W/m2. On note ainsi la variation de L en fonction du temps, moyennée sur 3 points de mesure. Pour chaque échantillon, on soustrait la valeur mesurée à celle d'un échantillon de référence ne contenant pas de T1O2. Enfin cette valeur est traduite en pourcentage de dégradation. La variation de L pour l'échantillon de référence est de l'ordre de 10% après 18 heures d'éclairage. Elle peut atteindre 100% pour un échantillon très actif Les résultats obtenus peuvent se résumer de la façon suivante :
Z> Pour les essais selon la première variante (pulvérisation à partir d'une seule dispersion),
*•* en ce qui concerne les enduits, tous les enduits traités quelle que soit la solution SI à S4 utilisées, montrent une capacité à dégrader au moins 20% de la salissure en 1 heure. Au bout de 5 heures, l'enduit traité par SI a dégradé environ 25% de la salissure, celui traité par S2 environ 28% de la salissure, celui traité par S3 environ 37% de la salissure et celui traité par S4 environ 43% de la salissure. Le témoin présente une activité photocatalytique nulle,
** en ce qui concerne les dalles, au bout de 5 heures, la dalle traitée par SI a dégradé 22% de la salissure, celle traitée par S2 14% de la salissure, celle traitée par S3 environ 33% de la salissure, et celle traitée par S4 environ 8% de la salissure. Au bout de 10 heures, c'est la dalle traitée par S3 qui est la plus performante, en ayant dégradé 30% de la salissure (25% pour la dalle traitée par SI , 23% pour la dalle traitée par S2, 13% pour la dalle traitée par S4),
^ en ce qui concerne les tuiles, au bout de 5 heures, les dégradations sont d'au moins 35% (traitement avec SI), notamment de 57% pour les tuiles traitées par S4 et S3, jusqu'à 70% pour les tuiles traitées par S2. Au bout de 10 heures, la dégradation est d'au moins 40%
(SI), notamment 65% (S3 et S4), jusqu'à 90% avec S2.
On constate donc que tous ces matériaux ont une activité photocatalytique notable, avec une activité particulièrement élevée pour les tuiles puisqu'elles peuvent dégrader jusqu'à 90% de la salissure modèle. C'est une preuve de l'importance de la nature du substrat choisi, aussi bien quant à sa nature chimique que quant à sa texture /porosité par exemple.
Des dispersions associant des particules de TiO2 et des promoteurs d'adhérence mono-composant (des titanates s'hydrolysant et réticulant progressivement au moins en partie en Ti02) ou bi-composant (avec en outre un silane se transformant de la même manière au moins en partie, en SiO2) sont donc efficaces.
D Pour les essais selon la deuxième variante (pulvérisation en deux étapes), au bout de 5 heures, les dalles traitées par S5 puis S6-1 dégradent environ 16% de la salissure et celles traitées par S5 puis S6-2 environ 25% de la salissure ; les dalles traitées par S5 puis S6'-l dégradent environ 34% de la salissure et celles traitées par S5 puis S6'-2 environ 42% de la salissure. Au bout de 10 heures, les résultats s'échelonnent de 26% (S5 + S6- 1), de 32% (S5 + S6-2), de 39% (S5 + S6'- l) jusqu'à 47% (S5 + S6'-2). Là encore, une activité anti- salissure notable a donc été observée pour les dalles, dépassant les 40% de dégradation contrairement aux dalles traitées en une fois.
On voit donc que le procédé selon l'invention propose différents modes de réalisation ajustables en fonction du matériau à traiter, du lieu de traitement, globalement faciles de mise en œuvre (un simple pulvérisateur d'eau a été utilisé) avec des performances anti-salissures claires.
Il va de soi que l'invention peut comprendre aussi des étapes avant ou après le traitement permettant notamment de conférer des fonctionnalités supplémentaires au matériau (traitement hydrofuge par exemple) ou d'améliorer l'efficacité du traitement anti-salissures (prétraitement d'apprêt).
Si une partie significative des composés actifs photocatalytiques par ce mode de dépôt par projection en phase liquide migre dans l'épaisseur même du matériau, il rentre aussi dans le cadre de l'invention qu'une partie reste en surface pour former un film continu ou discontinu, dont on peut ajuster les caractéristiques pour qu'il soit de préférence essentiellement " neutre " sur le plan visuel.

Claims

REVENDICATIONS
1. Procédé de traitement par imprégnation d'un matériau architectural " perméable " comportant la projection sur le matériau architectural à traiter d'une ou plusieurs dispersions en phase liquide d'au moins un type de composés photocatalytiques à base d'oxyde ou de sulfure métallique et d'au moins un type de composé promoteur d'adhérence desdits composés photocatalytiques audit matériau architectural.
2. Procédé selon la revendication 1 , caractérisé en ce que le matériau architectural " perméable " est un enduit de façade, des dalles ou des pavés de béton, du béton architectonique, des tuiles et tout matériau à base de composition cimentaire, de béton, de terre cuite, d'ardoise, de pierre du type granit ou marbre.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés photocatalytiques sont à base d'oxyde de titane au moins partiellement cristallisé sous forme anatase.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés photocatalytiques sont sous forme de particules de diamètre moyen d'au plus 150, notamment d'au plus 100 nm, de préférence compris entre 20 et 60 nm, notamment en suspension colloïdale dans la phase liquide du type phase aqueuse.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le(s) promoteur(s) d'adhérence est (sont) soluble(s)/dispersable(s) en phase aqueuse.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le(s) promoteur(s) d'adhérence est (sont) apte(s), une fois projeté(s) sur le matériau architectural, à s'y fixer par durcissement provoqué par une modification chimique et/ ou physique du type hydrolyse, carbonatation, réticulation, coalescence, durcissement le(s) rendant essentiellement insoluble(s) en phase aqueuse.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'un type de promoteur d'adhérence est la famille des composés organo-métalliques, notamment les tétralkoxydes de forme M(OR)4 ou des trialkoxydes de forme M(OR)3R\ avec M un métal du type Ti ou Zr et R, R' un radical carboné du type alkyl linéaire ou ramifié, tous identiques ou différents, ayant notamment 1 à 6 C, ou de la famille des halogénures métalliques comme T1C14 ou de la famille des alkoxydes de silicium.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'un type de promoteur d'adhérence est la famille des silicates ou aluminosilicates d'alcalins et/ ou d'alcalino-terreux, comme le silicate de potassium, de sodium ou de lithium.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'un type de promoteur d'adhérence est la famille des polysiloxanes.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la ou les phase(s) liquide(s) de la ou des dispersions est (sont) essentiellement aqueuse(s).
11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on projette sur le matériau architectural une seule dispersion en phase liquide comprenant à la fois le(s) composé(s) photocatalytique(s) et le (s) promoteur (s) d'adhérence.
12. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'on projette simultanément ou les unes après les autres une ou plusieurs dispersions contenant les composés photocatalytiques et une ou plusieurs dispersions contenant les promoteurs d'adhérence, en projetant de préférence d'abord une dispersion contenant des composés photocatalytiques puis une ou plusieurs dispersions contenant le ou les promoteur(s) d'adhérence.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'imprégnation du matériau architectural se fait sur une épaisseur allant jusqu'au plus 400 μm ou 100 μm.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on prépare et conditionne la ou les dispersions en phase liquide sous forme concentrée, la dilution et/ ou le mélange des dispersions se faisant juste avant emploi.
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que la ou les dispersions comprennent des additifs visant à stabiliser la ou les dispersions en phase liquide, notamment du type agent chélatant/stabilisant tels que des β-dicétones, des acides comme l'acide acétique ou l'acide nitrique, des composés de la famille du glycol, des polycarboxylates, des composés de la famille des silanes.
16. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'extrait sec en composés photocatalytiques des dispersions prêtes à la projection sur le matériau architectural est ajusté à une valeur d'au plus 30%>, notamment d'au plus 10% et d'au moins 0,5%, de préférence compris entre 1 et 5%.
17. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'extrait sec en promoteur(s) d'adhérence des dispersions prêtes à la projection sur le matériau architectural est ajusté à une valeur d'au plus 20%, notamment d'au moins 0,2%, de préférence entre 0,25 et 2%.
18. Procédé selon l'une des revendications précédentes, caractérisé en ce que la quantité de composés photocatalytiques et de promoteurs d'adhérence fixée au matériau architectural par projection de la ou des dispersions qui les contiennent est d'au plus 10 g/m2 de surface traitée, notamment d'au moins 0,5 g/m2, de préférence entre 1 g/m2 et 10 g/m2.
19. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élimination de la phase liquide des dispersions et le durcissement du ou des promoteurs d'adhérence après projection sur le matériau architectural se font en atmosphère ambiante, sans post- traitement du type traitement thermique.
20. Dispersion liquide en phase essentiellement aqueuse comprenant :
*•- des particules d'oxyde ou de sulfure métallique à propriétés photocatalytiques du type oxyde de titane au moins partiellement cristallisé sous forme anatase, notamment en suspension colloïdale,
**• un ou plusieurs types de promoteurs d'adhérence desdites particules appartenant à la famille des composés organo-métalliques et/ ou à la famille des silicates ou aluminosilicates d'alcalins ou d'alcalino-terreux et/ ou à la famille des polysiloxanes et/ ou celle des alkoxydes de silicium,
*• éventuellement un ou plusieurs additifs visant à stabiliser la dispersion tels que des β-dicétones, des acides, des composés de la famille des glycols.
21. Dispersion liquide selon la revendication 20, caractérisée en ce que son extrait sec est compris entre 0,5% et 2%, avec notamment entre 50% et 80% de cet extrait sec sous forme de particules photocatalytiques et entre 20 à 50% de cet extrait sec sous forme de promoteur(s) d'adhérence.
22. Utilisation du procédé selon les revendications 1 à 19 ou de la dispersion selon les revendications 20 ou 21 pour traiter des matériaux architecturaux " perméables " du type enduit de façade, dalles ou pavés de béton, béton architectonique, tuiles et tout matériau à base de composition cimentaire, béton, terre cuite, pierre comme le marbre ou le granit, afin de leur conférer des propriétés anti-salissures, anti-fongiques et/ou bactéricides.
23. Matériau architectural " perméable ", notamment sous forme d'enduit de façade, de dalles ou pavés de béton, de tuiles et tout matériau à base de composition cimentaire, béton, terre cuite ou pierre, caractérisé en ce qu'il présente des propriétés anti-salissures, anti-fongiques et/ou bactéricides par imprégnation, notamment sur une épaisseur d'au plus 400 μm, par des particules d'oxyde ou de sulfure métalliques photocatalytique du type TiO2 au moins partiellement cristallisé sous forme anatase, associés à un ou plusieurs fixateurs issus du durcissement de promoteurs d'adhérence appartenant à la famille des organo-métalliques et/ ou à la famille des silicates ou aluminosilicates d'alcalins ou d'alcalino-terreux et/ ou à la famille des polysiloxanes, et/ ou des alkoxydes de silicium et éventuellement des additifs.
24. Matériau architectural selon la revendication 23 caractérisé en ce que l'imprégnation se fait sur une épaisseur d'au moins 20 nm.
EP00956628A 1999-08-05 2000-08-04 Procede de traitement de materiau architectural Withdrawn EP1204621A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9910187 1999-08-05
FR9910187A FR2797262B1 (fr) 1999-08-05 1999-08-05 Procede de traitement de materiau architectural
PCT/FR2000/002255 WO2001010793A1 (fr) 1999-08-05 2000-08-04 Procede de traitement de materiau architectural

Publications (1)

Publication Number Publication Date
EP1204621A1 true EP1204621A1 (fr) 2002-05-15

Family

ID=9548926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00956628A Withdrawn EP1204621A1 (fr) 1999-08-05 2000-08-04 Procede de traitement de materiau architectural

Country Status (13)

Country Link
US (1) US6919104B2 (fr)
EP (1) EP1204621A1 (fr)
JP (1) JP2003506307A (fr)
AR (1) AR025039A1 (fr)
AU (1) AU6850700A (fr)
BR (1) BR0012983B1 (fr)
CZ (1) CZ2002442A3 (fr)
FR (1) FR2797262B1 (fr)
HU (1) HUP0203085A2 (fr)
MY (1) MY131809A (fr)
PL (1) PL202747B1 (fr)
TW (1) TWI238153B (fr)
WO (1) WO2001010793A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569520B1 (en) * 2000-03-21 2003-05-27 3M Innovative Properties Company Photocatalytic composition and method for preventing algae growth on building materials
FR2824321B1 (fr) 2001-05-02 2004-04-16 Saint Gobain Mat Constr Sas Materiau architectural muni d'un revetement et son procede d'obtention
JP2002348183A (ja) * 2001-05-25 2002-12-04 Inax Corp 浄化機能を有する調湿建材及びその製造方法
BR0209708A (pt) * 2001-05-31 2004-07-27 Akzo Nobel Coatings Int Bv Revestimento de azulejos brutos com um revestimento resistente à abrasão e a arranhões
US7811630B2 (en) * 2003-06-20 2010-10-12 Certainteed Corporation Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles, and process for producing same
CN100487205C (zh) * 2004-06-15 2009-05-13 盛南工业株式会社 植物生长砌块和植物生长砌块用外层体
US20060137708A1 (en) * 2004-12-28 2006-06-29 Council Of Scientific And Industrial Research Photocatalytic auto-cleaning process of stains
JP2008525188A (ja) * 2004-12-28 2008-07-17 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 光触媒による汚れの自動洗浄工程
FR2884111B1 (fr) * 2005-04-07 2007-05-18 Saint Gobain Mat Constr Sas Granule biocide, notamment pour la fabrication de bardeau d'asphalte
US7358218B2 (en) * 2005-06-03 2008-04-15 Research Foundation Of The University Of Central Florida, Inc. Method for masking and removing stains from rugged solid surfaces
BRPI0600312A (pt) * 2006-01-20 2007-10-30 Opto Eletronica S A método e processo para produzir filme fino nanoestruturado e autolimpante sobre a superfìcie de lentes e dispositivos ópticos
US8012242B2 (en) * 2006-08-31 2011-09-06 The University Of North Dakota Adsorbent mediated reduction of organic chemicals from solid building materials
FR2910014B1 (fr) 2006-12-18 2009-10-02 Rhodia Recherches & Tech Traitement facilitant l'elimination d'un revetement et/ou d'une souillure sur un materiau de construction.
CA2671772C (fr) * 2006-12-22 2015-10-06 3M Innovative Properties Company Revetement photocatalytique
EP2106288B1 (fr) * 2006-12-22 2021-03-31 3M Innovative Properties Company Granule de toiture revêtu, procédé de preparation d`un granule de toiture revêtu et matériau de toiture de base, dans lequel le granule de toiture revêtu est partiellement incorporé
BRPI0719474A2 (pt) * 2006-12-22 2014-02-11 3M Innovative Propereties Company "artigo revestido, grânulo revestido para telhado, composição de revestimento e métodos para fabricação de um artigo revestido e de um grânulo revestido para telhado"
WO2009121395A1 (fr) * 2008-03-31 2009-10-08 Rockwood Italia Spa Granulat ayant une activité photocatalytique et ses procédés de fabrication
US8561862B2 (en) * 2008-05-15 2013-10-22 Jai Foggiato Personal securing apparatus for handheld devices
CN102153369B (zh) * 2010-12-09 2012-09-26 东南大学 一种用外用增强剂增强蒸压加气混凝土的方法
EP2950924A1 (fr) * 2013-02-03 2015-12-09 Joma International AS Surface de substrat catalytique contenant des particules
US10407351B2 (en) * 2013-03-13 2019-09-10 Pavement Technology, Inc. Method of dispersing anatase titanium dioxide for penetration in concrete structures to reduce pollutants
US9493378B2 (en) * 2013-03-13 2016-11-15 Pavement Technology, Inc. Method of embedding photocatalytic titanium dioxide in concrete structures to reduce pollutants via photocatalytic reactions
KR101337346B1 (ko) * 2013-07-03 2013-12-06 김영기 콘크리트 구조물의 바닥 마감재 조성물 및 그 제조방법과 이를 이용한 콘크리트 바닥마감 시공방법
US10730799B2 (en) 2016-12-31 2020-08-04 Certainteed Corporation Solar reflective composite granules and method of making solar reflective composite granules
CN112029563B (zh) * 2020-09-09 2022-08-02 中铁一局集团有限公司 一种高分子水溶性聚合物渣土分散剂

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676299B2 (en) 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JP3732247B2 (ja) * 1994-12-13 2006-01-05 コルコート株式会社 光触媒用酸化チタン塗膜形成性液状組成物及びその製法
WO1997010185A1 (fr) 1995-09-15 1997-03-20 Rhodia Chimie Substrat a revetement photocatalytique a base de dioxyde de titane et dispersions organiques a base de dioxyde de titane
JPH09263466A (ja) * 1996-03-27 1997-10-07 Sumitomo Osaka Cement Co Ltd コンクリート表面浸透性抗菌剤
NZ333743A (en) * 1996-07-19 2000-02-28 Toto Ltd Photocatalytic hydrophilic coating composition comprising a metal oxide and a silica/silicone compound
IT1286492B1 (it) 1996-08-07 1998-07-15 Italcementi Spa Legante idraulico con migliorate proprieta' di costanza di colore
JP3976851B2 (ja) * 1996-09-13 2007-09-19 古河機械金属株式会社 二酸化チタン微粒子の製造方法、nox浄化用光触媒粉末の製造方法、塗料の製造方法、建材の製造方法
JPH10102429A (ja) * 1996-09-24 1998-04-21 Toto Ltd 防汚性遮音壁
JPH10158079A (ja) * 1996-11-25 1998-06-16 Fujita Corp 空気浄化機能を備えたコンクリートブロック
JPH10212178A (ja) * 1997-01-24 1998-08-11 Dainippon Toryo Co Ltd 目地部塗装磁器タイルパネルの製造方法
JPH10212809A (ja) * 1997-01-30 1998-08-11 Toto Ltd 外壁用建材
DE69826342T2 (de) * 1997-02-06 2005-10-06 Shin-Etsu Chemical Co., Ltd. Beschichtungszusammensetzungen, hydrophiler Film und mit hydrophilem Film beschichtete Gegenstände
JPH10237354A (ja) * 1997-02-25 1998-09-08 Matsushita Electric Works Ltd コーティング剤及び建材
JPH1135383A (ja) * 1997-07-14 1999-02-09 Nippon Paint Co Ltd 無機塗料の塗装方法
JPH1133413A (ja) * 1997-07-18 1999-02-09 Mitsubishi Materials Corp 大気浄化用構造物の製造方法
JPH1149588A (ja) * 1997-07-31 1999-02-23 Kawai Musical Instr Mfg Co Ltd 光触媒付き天然石およびその製造方法
JP3800460B2 (ja) * 1997-11-20 2006-07-26 清水建設株式会社 コンクリートからのアウトガス抑制方法およびアウトガス抑制部材
JPH11197600A (ja) * 1998-01-13 1999-07-27 Kansai Paint Co Ltd 塗膜の汚染防止処理方法
JP3027739B2 (ja) * 1998-03-20 2000-04-04 石原産業株式会社 光触媒体およびその製造方法
FR2788707B1 (fr) * 1999-01-26 2001-03-09 Rhodia Chimie Sa Procede de traitement d'un substrat par des particules photocatalytiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0110793A1 *

Also Published As

Publication number Publication date
AU6850700A (en) 2001-03-05
JP2003506307A (ja) 2003-02-18
HUP0203085A2 (en) 2002-12-28
BR0012983A (pt) 2002-04-23
FR2797262A1 (fr) 2001-02-09
PL202747B1 (pl) 2009-07-31
FR2797262B1 (fr) 2001-12-07
TWI238153B (en) 2005-08-21
PL353136A1 (en) 2003-10-20
WO2001010793A1 (fr) 2001-02-15
US20020182334A1 (en) 2002-12-05
AR025039A1 (es) 2002-11-06
BR0012983B1 (pt) 2012-07-24
CZ2002442A3 (cs) 2003-01-15
US6919104B2 (en) 2005-07-19
MY131809A (en) 2007-09-28

Similar Documents

Publication Publication Date Title
EP1204621A1 (fr) Procede de traitement de materiau architectural
US20080107864A1 (en) Method of Making a Surface Hydrophobic
JP4718549B2 (ja) 自然石の封止法
WO1999044954A1 (fr) Substrat a revetement photocatalytique
Karapanagiotis et al. Superhydrophobic and superamphiphobic materials for the conservation of natural stone: An overview
CN87107834A (zh) 有机硅氧烷/金属氧化物涂料
EP0970025B1 (fr) Procede de preparation d'un materiau optique multicouches avec reticulation-densification par insolation aux rayons ultraviolets et materiau optique ainsi prepare
WO1995013326A1 (fr) Procede de preparation de compositions a base de silanes contenant des groupes epoxy
CN101525504A (zh) 具有自分层隔离作用的光催化自清洁涂膜剂及其制备方法
FR2968653A1 (fr) Element en beton recouvert d'un revetement photocatalytique
EP0963391B1 (fr) Revetement pour exterieur, composition utile pour ces revetements et procede d'obtention de ces revetements
JP2005138059A (ja) 速硬化性光触媒体
WO1994025406A1 (fr) Procede de fabrication de verres denses transparents obtenus a partir d'alcoxydes de silicium ou de metal par voie sol-gel, et verres obtenus selon ce procede
EP1153001B1 (fr) Procede de traitement d'un substrat par des particules photocatalytiques de maniere a rendre ledit substrat autonettoyant
KR20120115983A (ko) 수분산성 실리콘 수지
FR2891333A1 (fr) Garniture d'embrayage a coefficient de frottement ameliore
JP2006335969A (ja) 吸水防止材
JP3385159B2 (ja) ゾルゲル膜及びその形成法
WO2007012716A1 (fr) Procede pour hydrofuger et ameliorer l'effet perlant de materiaux de construction
WO2005044755A1 (fr) Procede de traitement de surface d'un support contenant de l'amiante et entrant dans la constitution d'un batiment, support ainsi obtenu
EP2984049B1 (fr) Procédé de fabrication d'un substrat transparent coloré
WO2022207939A1 (fr) Produit de traitement et de protection de surfaces minérales
JP2003048791A (ja) セメント構造体
JPH08325036A (ja) ゾルゲル膜およびその形成法
BE821648A (fr) Procede pour la preparation d'un materiau de construction impregne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020627

111L Licence recorded

Free format text: 0100 TERREAL

Effective date: 20041004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050302