EP1192352B1 - Kraftstoffeinspritzsystem für eine brennkraftmaschine - Google Patents

Kraftstoffeinspritzsystem für eine brennkraftmaschine Download PDF

Info

Publication number
EP1192352B1
EP1192352B1 EP00953005A EP00953005A EP1192352B1 EP 1192352 B1 EP1192352 B1 EP 1192352B1 EP 00953005 A EP00953005 A EP 00953005A EP 00953005 A EP00953005 A EP 00953005A EP 1192352 B1 EP1192352 B1 EP 1192352B1
Authority
EP
European Patent Office
Prior art keywords
fuel
line
pressure
leakage
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00953005A
Other languages
English (en)
French (fr)
Other versions
EP1192352A1 (de
Inventor
Ronald Hegner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1192352A1 publication Critical patent/EP1192352A1/de
Application granted granted Critical
Publication of EP1192352B1 publication Critical patent/EP1192352B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/004Joints; Sealings
    • F02M55/005Joints; Sealings for high pressure conduits, e.g. connected to pump outlet or to injector inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Definitions

  • the invention relates to a fuel injection system for an internal combustion engine according to the preamble of claim 1.
  • Fuel injection systems for internal combustion engines in particular diesel engines, which have a high-pressure pump for delivering the fuel from a fuel supply, a number of fuel injectors for injecting the fuel into the combustion chamber of the internal combustion engine, and a high-pressure reservoir for connecting the high-pressure pump to the fuel injectors and a high-pressure reservoir for holding the high-pressure pump
  • High-pressure fuel line containing pressure-fed fuel to be injected are becoming increasingly widespread.
  • a major advantage of fuel injection systems of this type is that the injection process can be adapted very precisely to the respective speed and load condition of the internal combustion engine with respect to the start of injection, injection duration and mass flow rate of the injected fuel per unit of time.
  • these fuel injection systems In addition to the high-pressure fuel line that conveys the fuel from the high-pressure pump to the fuel injectors and maintains the fuel under high pressure, these fuel injection systems also provide a fuel return line and a leakage line for returning any leakage quantities that occur at the fuel injectors or due to leaks in the sealing points , Providing these additional fuel lines is in itself associated with a great deal of effort and, in particular in the case of large-volume diesel engines, significant vibration problems arise in relation to the attachment of the lines to the engine.
  • a solution for reducing the effort is known from EP 0 786 593 A1.
  • a leakage line surrounds the high-pressure fuel line.
  • the leakage line is designed as an elastomeric sleeve, which is pulled over the corresponding sealing points during assembly.
  • the object of the present invention is to further simplify the connection of the high-pressure fuel line to the fuel injector in a common rail injection system.
  • connection element is provided according to the invention, which has a screw-on sleeve, an internal connection channel and an external connection channel.
  • a major advantage of the fuel system according to the invention is that the fastening parts, sealing and connecting elements required for separate attachment of the fuel return line and the leakage line are eliminated. On the one hand, this avoids the risk of a functional failure of such elements and, on the other hand, there are no difficulties with regard to vibration problems of such lines.
  • a connection is established from the leakage line to a leakage channel mouth of the fuel injector via the internal connecting channel in the connecting element, or a connection is established from the fuel return line to a return channel mouth of the fuel injector via the outer connecting channel.
  • the fuel injectors of the injection system each have a common high-pressure connection provided with a high-pressure channel opening for connecting the high-pressure fuel line, a leakage channel opening for connecting the leakage line, and a return-channel opening for connecting the fuel return line.
  • the advantage of this is that the high-pressure fuel line, the leakage line and the fuel return line are all connected to a common connection directly on the Fuel injector are connected, so that in the cylinder head of the internal combustion engine no channels for discharging return or leakage quantities from the fuel injector must be provided.
  • a particularly preferred embodiment of the invention provides that the common high-pressure connection has on its front side a centrally arranged high-pressure channel opening for connecting the high-pressure fuel line and on its circumference spaced apart from one another in the axial direction, the leakage channel opening for connecting the leakage line and the return channel opening for connecting the return line the individual mouths are each sealed by sealing elements and separated from the other mouths.
  • the sealing element of the high-pressure channel opening is formed by a conical seal which cooperates with a sealing cone formed at the end of the high-pressure fuel line, and that the sealing elements sealing the leakage channel opening and the return channel opening are formed by O-rings which have the inner peripheral surface a screw-on sleeve associated with the leakage line and the fuel return line and having flow cross sections spaced apart from one another in the axial direction interact.
  • the common fuel line is formed by three coaxially arranged, surrounding line pipes, the inner of which forms the high-pressure fuel line, and the high-pressure fuel line is surrounded by an inner and an outer jacket pipe, each of which enclose a flow cross-section and form the fuel return line and the leakage line.
  • the high-pressure fuel line which is very solid due to the required high-pressure strength, forms a stable support for the surrounding jacket pipes. This alleviates the vibration problems.
  • the jacket pipes surrounding the high-pressure fuel line are co-located on their inner surface Channels extending in the longitudinal direction are provided, which form the flow cross sections of the fuel return line or leakage line.
  • the jacket pipes surrounding the high-pressure fuel line have webs on their inner surface between the channels forming the flow cross sections of the fuel return line or leakage line, which webs rest on the outer circumference of the respective inner line surrounded by the relevant jacket pipe.
  • a fuel injection system for an internal combustion engine with a high-pressure accumulator (common rail system) charged with fuel by a high-pressure pump
  • a fuel injection system contains a high-pressure pump 1, which delivers fuel from a Fuel supply 2 to a high pressure accumulator 3 promotes.
  • the high-pressure accumulator 3 is contained in a high-pressure fuel line 4 connecting the high-pressure pump 1 to fuel injectors 5 and operates in the manner of an oil-elastic one High-pressure accumulator.
  • the fuel injectors 5 are intended to inject fuel into the combustion chamber of the internal combustion engine during an injection process that is precisely defined after the start of injection, the end of injection and the course of the injection, and are controlled by a control unit (not shown in the figure) depending on the operating state of the internal combustion engine, in particular the speed, load, temperature and others Parameters controlled.
  • Each fuel injector 5 contains an injection nozzle 7, which is supplied with the fuel to be injected via a fuel channel 6 provided in the fuel injectors 5.
  • the fuel injector 5 is controlled via a control valve 9, which is designed as a 3/2-way valve known per se in the prior art or as a 2/2-way servo valve.
  • FIG. 1 shows a schematic block diagram of a fuel injection system with a high-pressure pump acted upon by a high-pressure pump (common rail system) according to an embodiment of the present invention.
  • a high-pressure pump 1 is provided, which delivers fuel from a fuel supply 2 to a high-pressure accumulator 3, which works in the manner of an oil-elastic high-pressure accumulator and in a high-pressure pump 1 with fuel injectors 5 for injecting the fuel into the combustion chamber the internal combustion engine provided fuel high pressure line 4 is included.
  • the fuel injectors 5 each contain an injection nozzle 7, which is supplied with the fuel to be injected in the high-pressure accumulator 3 via a fuel channel 6, the control of the injection being controlled by a control valve 9 provided in the fuel injector 5.
  • a fuel return line 11 for returning fuel quantities not injected by the fuel injectors 5 and a leakage line 12 for returning leakage quantities occurring in the fuel injectors 5 are combined in a common fuel line 13 together with the high-pressure fuel line 4 containing the high-pressure accumulator 3, as shown in FIG dashed circumferential lines shown.
  • the high-pressure fuel line 4, the fuel return line 11 and the leakage line 12 are formed by separate flow cross sections provided in the common fuel line 13. The structure of the common fuel line 13 will be described in more detail later.
  • FIG. 2 shows a somewhat schematic longitudinal section through a fuel injector, as used in the described embodiment of the fuel injection system according to the invention.
  • the fuel injector designated as a whole by reference number 5, comprises an injector housing 10, in which a nozzle needle 18 is mounted in a longitudinally displaceable manner in a guide sleeve 25 formed in the injector housing 10.
  • the tip of the nozzle needle 18 interacts with an injection nozzle 7 formed at the lower end of the injector housing 10 in the sense of opening and closing an injection opening cross section.
  • a high-pressure duct 19 is formed in the injector housing 10, which leads from a high-pressure connection 26 arranged on the side of the fuel injector 5 to a nozzle antechamber 22 surrounding the nozzle needle 18.
  • the fuel to be injected is fed from the high-pressure fuel line 4 shown in FIG. 1 to the nozzle chamber 22 under high pressure.
  • the fuel injector 5 is controlled by means of a solenoid 15 arranged at the rear end thereof, which cooperates with a control valve formed by a closing body 16 and a valve body 17.
  • the control valve 16, 17 optionally applies or relieves pressure to fuel supplied under high pressure, which is formed on the back of a needle wedge 23 acting on the nozzle needle 18.
  • a return channel 21 is provided to discharge the control quantities occurring at the control valve 16, 17.
  • a leakage channel 20 serves to discharge any leakage quantities occurring in the fuel injector 5.
  • the structure of the fuel injector 5 shown in FIG. 2 corresponds to a fuel injector as is currently used by the applicant.
  • the high-pressure connection 26, which serves to connect the high-pressure fuel line 4 shown in FIG. 1, is designed as a common connection which, in addition to a high-pressure channel opening 19a for connecting the high-pressure fuel line 4, has a leakage channel opening 20a for connection of the leakage line 12 shown in Figure 1 and a return channel mouth 21a for connecting the fuel return line 11 shown in Figure 1.
  • the high-pressure channel mouth 19a for connecting the high-pressure fuel line 4 is provided centrally arranged on the front side of the common high-pressure connection 26, the leakage channel mouth 20a for connecting the leakage line 12 and the return channel mouth 21a for connecting the return line 11, return connection 27, are spaced apart from one another in the axial direction on the circumference of the common high-pressure connection 26 is provided.
  • the mentioned mouths 19a, 20a, 21a of the high-pressure duct, leakage duct and return duct are each sealed and separated from one another by associated sealing elements.
  • the common fuel line 13 (see FIG. 1) is formed by three coaxially arranged, surrounding line pipes 30, 31, 32.
  • the inner line pipe 30 forms the high-pressure fuel line 4.
  • the inner line pipe 30 is surrounded by an inner and an outer jacket pipe 31, 32, which each include a flow cross section 31a, 32a and form the fuel line 11 and the leakage line 12 (see FIG. 1).
  • the inner jacket pipe 31 surrounding the high-pressure fuel line 30 forms the leakage line 12
  • the outer jacket pipe 32 surrounding the inner jacket pipe 31 forms the fuel return line 11.
  • the jacket pipes 31, 32 are provided on their inner surface with longitudinal channels 31a, 32a, each of which Form flow cross sections for the fuel return line 11 and the leakage line 12. Between these channels 31a, 32a, which form the flow cross sections, webs 31b, 32b are formed which rest on the outer circumference of the inner tube surrounding the respective jacket tube 31, 32, that is to say the webs 31b of the inner tube Jacket tube 31 on the outer circumference of the high-pressure tube 30 and the webs 32b of the outer jacket tube 32 on the outer circumference of the inner jacket tube 31.
  • connection element 28 which connects the flow cross-sections 30a of the high-pressure pipe 30, 31a of the leakage line 12 manufactures the inner casing tube 31 and 32a of the outer casing pipe 32 forming the return line with the associated orifices 19a, 20a and 21a of the high-pressure duct, leakage duct and return duct formed on the common high-pressure connection 26.
  • a sealing cone 37 is formed at the end of the central high-pressure pipe 30, which cooperates with a sealing element in the form of a sealing cone 37 formed on the end face of the common high-pressure connection 26, as is conventional in the field of fuel injectors.
  • the orifices 21a of the return channel 21 and 20a of the leakage channel 20 formed on the circumference of the common high-pressure connection 26 are each sealed by sealing elements 34, 35, 36 in the form of O-rings and separated from one another.
  • a screw-on sleeve 38 which is an essential part of the connection element 28, contains connecting channels 39 and 40, of which an internal connecting channel 39 connects to the flow cross-section 31a of the inner jacket tube 31 and an outer connecting channel 40 connects to the flow cross-section 32a of the produces outer jacket tube 32.
  • the connecting channels 39 and 40 each open in the vicinity of the mouths 20a and 21a of the leakage channel and the return channel, and the sealing elements 33, 34, 35 interact with the inner circumferential surface of the screw-on sleeve 38 such that a flow path from the connecting channel 40 to the return channel mouth 21a and from the connecting channel 39 a flow path to the leakage channel mouth 20a is created.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine beschrieben, das eine Hochdruckpumpe (1) zur Förderung des Kraftstoffs aus einem Kraftstoffvorrat (2), eine Anzahl von Kraftstoffinjektoren (5) zum Einspritzen des Kraftstoffs in den Brennraum der Brennkraftmaschine und eine die Hochdruckpumpe (1) mit den Kraftstoffinjektoren (5) verbindende und einen Hochdruckspeicher (3) enthaltende Kraftstoffhochdruckleitung (4) aufweist. Weiterhin sind eine Kraftstoffrücklaufleitung (11) zur Rückführung von durch die Kraftstoffinjektoren (5) nicht eingespritzten Kraftstoff und eine Leckageleitung (12) zur Rückführung von an den Kraftstoffinjektoren (5) anfallenden Leckagemengen vorgesehen. Erfindungsgemäß sind die Kraftstoffhochdruckleitung (4), die Kraftstoffrücklaufleitung (11) und die Leckageleitung (12) in einer gemeinsamen Kraftstoffleitung (13) zusammengefasst, welche jeweilige voneinander durch Wandungen getrennte Strömungsquerschnitte für jede der Leitungen (4, 11, 12) aufweist.

Description

  • Die Erfindung betrifft ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1.
  • Kraftstoffeinspritzsysteme für Brennkraftmaschinen, insbesondere Dieselmotoren, die eine Hochdruckpumpe zur Förderung des Kraftstoffs aus einem Kraftstoffvorrat, eine Anzahl von Kraftstoffinjektoren zum Einspritzen des Kraftstoffs in den Brennraum der Brennkraftmaschine und eine die Hochdruckpumpe mit den Kraftstoffinjektoren verbindende und einen Hochdruckspeicher zum Vorhalten des von der Hochdruckpumpe unter hohem Druck geförderten einzuspritzenden Kraftstoffs enthaltende Kraftstoffhochdruckleitung enthalten (Common-Rail-Systeme), finden zunehmend Verbreitung. Ein wesentlicher Vorteil derartiger Kraftstoffeinspritzsysteme ist es, dass der Einspritzvorgang in Bezug auf Einspritzbeginn, Einspritzdauer und Massendurchsatz des eingespritzten Kraftstoffs pro Zeiteinheit sehr genau an den jeweiligen Drehzahl- und Lastzustand der Brennkraftmaschine angepasst werden kann. Zusätzlich zu der den Kraftstoff von der Hochdruckpumpe zu den Kraftstoffinjektoren fördernden und den Kraftstoff unter hohem Druck vorhaltenden Kraftstoffhochdruckleitung ist bei diesen Kraftstoffeinspritzsystemen noch eine Kraftstoffrücklaufleitung sowie eine Leckageleitung zur Rückführung von anfallenden Leckagemengen, welche an den Kraftstoffinjektoren bzw. aufgrund von Undichtigkeiten der Dichtstellen anfallen, vorgesehen. Diese zusätzlichen Kraftstoffleitungen vorzusehen ist an sich schon mit einem hohen Aufwand verbunden und insbesondere bei großvolumigen Dieselmotoren treten in Bezug auf die Anbringung der Leitungen am Motor wesentliche schwingungstechnische Probleme auf.
  • Eine Lösung zur Verringerung des Aufwands ist aus der EP 0 786 593 A 1 bekannt. Bei dem dargestellten Common-Rail-Einspritzsystem umgibt eine Leckageleitung die Kraftstoffhochdruckleitung. Die Leckageleitung ist als elastomere Muffe ausgeführt, welche bei der Montage über die entsprechenden Dichtstellen darübergezogen wird.
  • Aufgabe der vorliegenden Erfindung ist es, bei einem Common-Rail-Einspritzsystem die Verbindung der Kraftstoffhochdruckleitung mit dem Kraftstoffinjektor weiter zu vereinfachen.
  • Diese Aufgabe wird durch ein Kraftstoffeinspritzsystem mit den Merkmalen des Anspruchs 1 eingelöst.
  • Erfindungsgemäß ist es vorgesehen, dass die Kraftstoffhochdruckleitung, die Kraftstoffrücklaufleitung und die Leckageleitung in einer gemeinsamen Kraftstoffleitung mit jeweiligen voneinander durch Wandungen getrennten Strömungsquerschnitten für jede der Leitungen zusammengefasst sind. Zur Verbindung der gemeinsamen Kraftstoffleitung mit dem Kraftstoffinjektor ist gemäß der Erfindung ein Anschlusselement vorgesehen, welches eine Überschraubhülse, einen innenliegenden Verbindungskanal und einen äußeren Verbindungskanal aufweist.
  • Ein wesentlicher Vorteil des erfindungsgemäßen Kraftstoffsystems ist es, dass zur separaten Anbringung der Kraftstoffrücklaufleitung und der Leckageleitung erforderliche Befestigungsteile, Dichtungs- und Verbindungselemente entfallen. Damit wird einerseits das Risiko eines funktionellen Ausfalls von solchen Elementen vermieden und andererseits treten keine Schwierigkeiten in Bezug auf Schwingungsprobleme solcher Leitungen auf.
  • Über den innenliegenden Verbindungskanal im Anschlusselement entsteht eine Verbindung von der Leckageleitung zu einer Leckagekanalmündung des Kraftstoffinjektors, beziehungsweise entsteht über den äußeren Verbindungskanal eine Verbindung von der Kraftstoffrücklaufleitung zu einer Rücklaufkanalmündung des Kraftstoffinjektors.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist es vorgesehen, dass die Kraftstoffinjektoren des Einspritzsystems jeweils einen mit einer Hochdruckkanalmündung zum Anschluss der Kraftstoffhochdruckleitung, einer Leckagekanalmündung zum Anschluss der Leckageleitung und einer Rücklaufkanalmündung zum Anschluss der Kraftstoffrücklaufleitung versehenen gemeinsamen Hochdruckanschluss aufweisen. Der Vorteil hiervon ist es, dass die Kraftstoffhochdruckleitung, die Leckageleitung und die Kraftstoffrücklaufleitung alle an einem gemeinsamen Anschluss unmittelbar am Kraftstoffinjektor angeschlossen sind, so dass im Zylinderkopf der Brennkraftmaschine keinerlei Kanäle zur Abführung von Rücklauf- oder Leckagemengen vom Kraftstoffinjektor vorgesehen werden müssen.
  • Eine besonders bevorzugte Ausführungsform der Erfindung sieht es vor, dass der gemeinsame Hochdruckanschluss an seiner Stirnseite eine zentral angeordnete Hochdruckkanalmündung zum Anschluss der Kraftstoffhochdruckleitung und an seinem Umfang in axialer Richtung voneinander beabstandet die Leckagekanalmündung zum Anschluss der Leckageleitung und die Rücklaufkanalmündung zum Anschluss der Rücklaufleitung aufweist, wobei die einzelnen Mündungen jeweils durch Dichtungselemente abgedichtet und von den anderen Mündungen getrennt sind.
  • Gemäß einer Weiterbildung hiervon ist es vorgesehen, dass das Dichtungselement der Hochdruckkanalmündung durch eine mit einem am Ende der Kraftstoffhochdruckleitung ausgebildeten Dichtungskonus zusammenwirkende Konusdichtung gebildet ist, und dass die die Leckagekanalmündung und die Rücklaufkanalmündung abdichtenden Dichtungselemente durch O-Ringe gebildet sind, welche mit der inneren Umfangsfläche einer der Leckageleitung und der Kraftstoffrücklaufleitung zugeordnete, in Axialrichtung voneinander beabstandete Strömungsquerschnitte aufweisenden Überschraubhülse zusammenwirken.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Kraftstoffeinspritzsystems ist es vorgesehen, dass die gemeinsame Kraftstoffleitung durch drei koaxial angeordnete, einander umgebende Leitungsrohre gebildet ist, von denen das innere die Kraftstoffhochdruckleitung bildet, und wobei die Kraftstoffhochdruckleitung von einem inneren und einem äußeren Mantelrohr umgeben ist, welche jeweils einen Strömungsquerschnitt einschließen und die Kraftstoffrückleitung und die Leckageleitung bilden. Ein Vorteil hiervon ist es, dass die aufgrund der geforderten Hochdruckfestigkeit sehr massiv ausgeführte Kraftstoffhochdruckleitung einen stabilen Träger für die umgebenden Mantelrohre bildet. Hierdurch werden die Schwingungsprobleme entschärft.
  • Gemäß einer bevorzugten Ausführungsform ist es vorgesehen, dass die die Kraftstoffhochdruckleitung umgebenden Mantelrohre an ihrer inneren Oberfläche mit in Längsrichtung verlaufenden, die Strömungsquerschnitte von Kraftstoffrückleitung bzw. Leckageleitung bildenden Kanälen versehen sind.
  • Vorzugsweise ist es dabei vorgesehen, dass die die Kraftstoffhochdruckleitung umgebenden Mantelrohre an ihrer inneren Oberfläche zwischen den die Strömungsquerschnitte von Kraftstoffrückleitung bzw. Leckageleitung bildenden Kanälen Stege aufweisen, welche am Außenumfang der von dem betreffenden Mantelrohr umgebenen jeweiligen innen liegenden Leitung anliegen.
  • Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert.
  • Es zeigen:
  • Figur 1
    eine schematische Blockdarstellung eines Kraftstoffeinspritzsystems für eine Brennkraftmaschine nach einem Ausführungsbeispiel der Erfindung;
    Figur 2
    einen etwas schematisierten Längsschnitt durch einen Kraftstoffinjektor, wie er bei dem beschriebenen Ausführungsbeispiel der Erfindung zur Anwendung kommen kann;
    Figur 3
    eine Querschnittsansicht, welche den Anschluss einer die Kraftstoffhochdruckleitung, die Kraftstoffrücklaufleitung und die Leckageleitung zusammenfassenden gemeinsamen Kraftstoffleitung an einem Kraftstoffinjektor bei dem beschriebenen Ausführungsbeispiel zeigt;
    Figur 4
    eine schematische Blockdarstellung eines Kraftstoffeinspritzsystems für eine Brennkraftmaschine mit einem Hochdruckspeicher nach dem Stand der Technik.
  • Zunächst soll anhand der Figur 4 ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine mit einem von einer Hochdruckpumpe mit Kraftstoff beaufschlagten Hochdruckspeicher (Common-Rail-System) beschrieben werden. Ein solches Kraftstoffeinspritzsystem, wie es insbesondere für einen großvolumigen Dieselmotor Anwendung findet, enthält eine Hochdruckpumpe 1, welche Kraftstoff aus einem Kraftstoffvorrat 2 zu einem Hochdruckspeicher 3 fördert. Der Hochdruckspeicher 3 ist in einer die Hochdruckpumpe 1 mit Kraftstoffinjektoren 5 verbindenden Kraftstoffhochdruckleitung 4 enthalten und arbeitet nach Art eines ölelastischen Hochdruckspeichers. Die Kraftstoffinjektoren 5 sind dazu vorgesehen, während eines nach Einspritzbeginn, Einspritzende und Einspritzverlauf genau definierten Einspritzvorgangs Kraftstoff in den Brennraum der Brennkraftmaschine einzuspritzen und werden durch eine in der Figur nicht gezeigte Steuereinheit in Abhängigkeit vom Betriebszustand der Brennkraftmaschine, insbesondere Drehzahl, Belastung, Temperatur und anderen Parametern gesteuert. Jeder Kraftstoffinjektor 5 enthält eine Einspritzdüse 7, die über einen in den Kraftstoffinjektoren 5 vorgesehenen Kraftstoffkanal 6 mit dem einzuspritzenden Kraftstoff beaufschlagt wird. Die Steuerung des Kraftstoffinjektors 5 erfolgt über ein Steuerventil 9, welches als an sich im Stande der Technik bekanntes 3/2-Wegeventil oder als 2/2-Wege-Servoventil ausgebildet ist. Zur Rückführung von über die Kraftstoffhochdruckleitung 4 gefördertem, jedoch von den Kraftstoffinjektoren 5 nicht eingespritztem Kraftstoff in Form etwa von Steuermengen ist eine Kraftstoffrücklaufleitung 11 vorgesehen, welche jeweils an einen entsprechenden Anschluss eines jeden der Kraftstoffinjektoren 5 angeschlossen ist. Weiterhin ist mit jedem Kraftstoffinjektor 5 eine Leckageleitung 12 verbunden, welche zur Rückführung von Leckagemengen dient, wie z. B. bei Leitungsbruch und nicht funktionstüchtigen Hochdruck-Dichtstellen. Bei einem herkömmlichen Kraftstoffeinspritzsystem, wie es in Figur 4 gezeigt ist, sind die Kraftstoffrücklaufleitung 11 und die Leckageleitung 12 jeweils als eigenständige Leitungen vorgesehen.
  • Figur 1 zeigt eine schematische Blockdarstellung eines Kraftstoffeinspritzsystems mit einem von einer Hochdruckpumpe beaufschlagten Hochdruckspeicher (Common-Rail-System) nach einem Ausführungsbeispiel der vorliegenden Erfindung. Wie bei dem in Figur 4 beschriebenen herkömmlichen Kraftstoffeinspritzsystem ist eine Hochdruckpumpe 1 vorgesehen, welche Kraftstoff aus einem Kraftstoffvorrat 2 zu einem Hochdruckspeicher 3 fördert, der nach Art eines ölelastischen Hochdruckspeichers arbeitet und in einer die Hochdruckpumpe 1 mit Kraftstoffinjektoren 5 zum Einspritzen des Kraftstoffs in den Brennraum der Brennkraftmaschine vorgesehenen Kraftstoffhochdruckleitung 4 enthalten ist. Die Kraftstoffinjektoren 5 enthalten wiederum jeweils eine Einspritzdüse 7, die über einen Kraftstoffkanal 6 mit dem im Hochdruckspeicher 3 vorgehaltenen einzuspritzenden Kraftstoff beaufschlagt wird, wobei die Steuerung der Einspritzung durch ein im Kraftstoffinjektor 5 vorgesehenes Steuerventil 9 gesteuert wird.
  • Erfindungsgemäß sind eine Kraftstoffrücklaufleitung 11 zur Rückführung von durch die Kraftstoffinjektoren 5 nicht eingespritzten Kraftstoffmengen und eine Leckageleitung 12 zur Rückführung von an den Kraftstoffinjektoren 5 anfallenden Leckagemengen zusammen mit der den Hochdruckspeicher 3 enthaltenden Kraftstoffhochdruckleitung 4 in einer gemeinsamen Kraftstoffleitung 13 zusammengefasst, wie durch die in Figur 1 gestrichelten Umfangslinien dargestellt. Allgemein ausgedrückt sind die Kraftstoffhochdruckleitung 4, die Kraftstoffrücklaufleitung 11 und die Leckageleitung 12 durch in der gemeinsamen Kraftstoffleitung 13 vorgesehene getrennte Strömungsquerschnitte gebildet. Der Aufbau der gemeinsamen Kraftstoffleitung 13 soll später näher beschrieben werden.
  • Figur 2 zeigt einen etwas schematisierten Längsschnitt durch einen Kraftstoffinjektor, wie er bei dem beschriebenen Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzsystems Verwendung findet. Der insgesamt mit dem Bezugszeichen 5 versehene Kraftstoffinjektor umfasst ein Injektorgehäuse 10, in welchem eine Düsennadel 18 in einer in dem Injektorgehäuse 10 ausgebildeten Führungshülse 25 längsverschieblich gelagert ist. Die Spitze der Düsennadel 18 wirkt mit einer am unteren Ende des Injektorgehäuses 10 ausgebildeten Einspritzdüse 7 im Sinne eines Öffnens und Schließens eines Einspritzöffnungsquerschnitts zusammen. In dem Injektorgehäuse 10 ist ein Hochdruckkanal 19 ausgebildet, welcher von einem seitlich an dem Kraftstoffinjektor 5 angeordneten Hochdruckanschluss 26 zu einem die Düsennadel 18 umgebenden Düsenvorraum 22 führt. Über den Hochdruckkanal 19 wird der einzuspritzende Kraftstoff von der in Figur 1 gezeigten Kraftstoffhochdruckleitung 4 unter hohem Druck dem Düsenraum 22 zugeführt. Die Steuerung des Kraftstoffinjektors 5 erfolgt mittels eines am rückwärtigen Ende desselben angeordneten Solenoids 15, welches mit einem durch einen Schließkörper 16 und einen Ventilkörper 17 gebildeten Steuerventil zusammenwirkt. Durch das Steuerventil 16, 17 wird ein Steuerraum 24 wahlweise mit unter hohem Druck zugeführtem Kraftstoff beaufschlagt bzw. druckentlastet, der an der Rückseite einer auf die Düsennadel 18 einwirkenden Nadelstelze 23 ausgebildet ist. Zur Abführung der am Steuerventil 16, 17 auftretenden Steuermengen ist ein Rücklaufkanal 21 vorgesehen. Ein Leckagekanal 20 dient dazu, in dem Kraftstoffinjektor 5 anfallende Leckagemengen abzuführen. Insoweit entspricht der Aufbau des in Figur 2 gezeigten Kraftstoffinjektors 5 einem Kraftstoffinjektor, wie er von der Anmelderin derzeit eingesetzt wird.
  • Gemäß dem dargestellten Ausführungsbeispiel der Erfindung ist es vorgesehen, dass der Hochdruckanschluss 26, welcher dem Anschluss der in Figur 1 dargestellten Kraftstoffhochdruckleitung 4 dient, als ein gemeinsamer Anschluss ausgebildet ist, welcher zusätzlich zu einer Hochdruckkanalmündung 19a zum Anschluss der Kraftstoffhochdruckleitung 4 eine Leckagekanalmündung 20a zum Anschluss der in Figur 1 dargestellten Leckageleitung 12 und eine Rücklaufkanalmündung 21a zum Anschluss der in Figur 1 gezeigten Kraftstoffrücklaufleitung 11 aufweist. Die Hochdruckkanalmündung 19a zum Anschluss der Kraftstoffhochdruckleitung 4 ist an der Stirnseite des gemeinsamen Hochdruckanschlusses 26 zentral angeordnet vorgesehen, die Leckagekanalmündung 20a zum Anschluss der Leckageleitung 12 und die Rücklaufkanalmündung 21a zum Anschluss der Rücklaufleitung 11, Rücklaufanschluss 27, sind in axialer Richtung voneinander beabstandet am Umfang des gemeinsamen Hochdruckanschlusses 26 vorgesehen. Die genannten Mündungen 19a, 20a, 21a von Hochdruckkanal, Leckagekanal und Rücklaufkanal sind jeweils durch zugeordnete Dichtungselemente abgedichtet und voneinander getrennt.
  • Der Aufbau der gemeinsamen Kraftstoffleitung 13 und die Art und Weise von deren Anschluss an dem gemeinsamen Hochdruckanschluss 26 des Kraftstoffinjektors 5 soll nun im einzelnen anhand der Figuren 3a) und b) in Verbindung mit Figur 2 erläutert werden. Wie Figur 3b) zeigt, ist die gemeinsame Kraftstoffleitung 13 (vergleiche Figur 1) durch drei koaxial angeordnete, einander umgebende Leitungsrohre 30, 31, 32 gebildet. Von diesen bildet das innere Leitungsrohr 30 die Kraftstoffhochdruckleitung 4. Das innere Leitungsrohr 30 ist von einem inneren und einem äußeren Mantelrohr 31, 32 umgeben, welche jeweils einen Strömungsquerschnitt 31a, 32a einschließen und die Kraftstoffleitung 11 und die Leckageleitung 12 bilden (vergleiche Figur 1). Das die Kraftstoffhochdruckleitung 30 umgebende innere Mantelrohr 31 bildet die Leckageleitung 12, das das innere Mantelrohr 31 umgebende äußere Mantelrohr 32 bildet die Kraftstoffrücklaufleitung 11. Die Mantelrohre 31, 32 sind an ihrer inneren Oberfläche mit in Längsrichtung verlaufenden Kanälen 31a, 32a versehen, welche jeweils die Strömungsquerschnitte für die Kraftstoffrückleitung 11 und die Leckageleitung 12 bilden. Zwischen diesen die Strömungsquerschnitte bildenden Kanälen 31a, 32a sind Stege 31b, 32b ausgebildet, welche am Außenumfang des von dem betreffenden Mantelrohr 31, 32 umgebenden jeweils innenliegendenden Rohr anliegen, also die Stege 31b des inneren Mantelrohrs 31 am Außenumfang des Hochdruckrohrs 30 und die Stege 32b des äußeren Mantelrohrs 32 am Außenumfang des inneren Mantelrohrs 31.
  • Wie Figur 3a) zeigt, ist am injektorseitigen Ende der durch die drei Rohre 30, 31, 32 gebildeten gemeinsamen Kraftstoffleitung ein insgesamt mit dem Bezugszeichen 28 versehenes Anschlusselement vorgesehen, welches eine Verbindung zwischen den Strömungsquerschnitten 30a des Hochdruckrohrs 30, 31a des die Leckageleitung 12 bildenden inneren Mantelrohrs 31 und 32a des die Rücklaufleitung bildenden äußeren Mantelrohrs 32 mit den am gemeinsamen Hochdruckanschluss 26 ausgebildeten zugeordneten Mündungen 19a, 20a bzw. 21a von Hochdruckkanal, Leckagekanal bzw. Rücklaufkanal herstellt. Wie zu sehen ist, ist am Ende des zentralen Hochdruckrohrs 30 ein Dichtungskonus 37 ausgebildet, welcher mit einem an der Stirnseite des gemeinsamen Hochdruckanschlusses 26 ausgebildeten Dichtungselement in Form eines Dichtungskonus 37 zusammenwirkt, wie es an sich auf dem Gebiet der Kraftstoffinjektoren üblich ist. Die am Umfang des gemeinsamen Hochdruckanschlusses 26 ausgebildeten Mündungen 21a des Rücklaufkanals 21 und 20a des Leckagekanals 20 sind jeweils durch Dichtungselemente 34, 35, 36 in Form von O-Ringen abgedichtet und voneinander getrennt. Eine Überschraubhülse 38, welche ein wesentliches Teil des Anschlusselements 28 ist, enthält Verbindungskanäle 39 und 40, von denen ein innenliegender Verbindungskanal 39 eine Verbindung mit dem Strömungsquerschnitt 31a des inneren Mantelrohrs 31 herstellt und von denen ein äußerer Verbindungskanal 40 eine Verbindung mit dem Strömungsquerschnitt 32a des äußeren Mantelrohrs 32 herstellt. Die Verbindungskanäle 39 und 40 münden jeweils in der Nähe der Mündungen 20a und 21a von Leckagekanal und Rücklaufkanal und die Dichtungselemente 33, 34, 35 wirken mit der inneren Umfangsfläche der Überschraubhülse 38 so zusammen, dass vom Verbindungskanal 40 ein Strömungsweg zur Rücklaufkanalmündung 21a und vom Verbindungskanal 39 ein Strömungsweg zur Leckagekanalmündung 20a geschaffen wird.
  • Bezugszeichenliste
  • 1
    Hochdruckpumpe
    2
    Kraftstoffvorrat
    3
    Hochdruckspeicher
    4
    Kraftstoffhochdruckleitung
    5
    Kraftstoffinjektor
    6
    Kraftstoffkanal
    7
    Einspritzdüse
    9
    Steuerventil
    10
    Injektorgehäuse
    11
    Kraftstoffrücklaufleitung
    12
    Leckageleitung
    13
    gemeinsame Kraftstoffleitung
    15
    Solenoid
    16
    Schließkörper des Steuerventils
    17
    Ventilkörper
    18
    Düsennadel
    19
    Hochdruckkanal
    19a
    Hochdruckkanalmündung
    20
    Leckagekanal
    20a
    Leckagekanalmündung
    21
    Rücklaufkanal
    21a
    Rücklaufkanalmündung
    22
    Düsenvorraum
    23
    Nadelstelze
    24
    Steuerraum
    25
    Hülse
    26
    Hochdruckanschluss
    27
    Rücklaufanschluss
    28
    Anschlusselement
    30
    Hochdruckrohr
    31
    inneres Mantelrohr
    32
    äußeres Mantelrohr
    30a
    Kanal
    31a
    Kanäle
    32a
    Kanäle
    31b
    Stege
    32b
    Stege
    33
    Dichtungselement
    34
    Dichtungselement
    35
    Dichtungselement
    36
    Dichtungselement
    37
    Dichtungskonus
    38
    Überschraubhülse
    39
    Verbindungskanal
    40
    Verbindungskanal

Claims (9)

  1. Kraftstoffeinspritzsystem für eine Brennkraftmaschine, mit einer Hochdruckpumpe (1) zur Förderung des Kraftstoffs aus einem Kraftstoffvorrat (2), mit Kraftstoffinjektoren (5) zum Einspritzen des Kraftstoffs in den Brennraum der Brennkraftmaschine, mit einer Kraftstoffhochdruckleitung (4), welche die Hochdruckpumpe (1) mit den Kraftstoffinjektoren (5) verbindet und einen Hochdruckspeicher (3) zum Verhalten des von der Hochdruckpumpe (1) unter hohem Druck geförderten einzuspritzenden Kraftstoffs enthält, mit einer Kraftstoffrücklaufleitung (11) zur Rückführung von durch die Kraftstoffinjektoren (5) nicht eingespritztem Kraftstoff und mit einer Leckageleitung (12) zur Rückführung von an den Kraftstoffinjektoren (5) anfallenden Leckagemengen, welche die Kraftstoffhochdruckleitung (4) umgibt, dadurch gekennzeichnet, dass ein Anschlusselement (28) zur Verbindung einer gemeinsamen Kraftstoffleitung (13) mit dem Kraftstoffinjektor (5) vorgesehen wird, wobei die Kraftstoffhochdruckleitung (4), die Kraftstoffrücklaufleltung (11) und die Leckageleitung (12) in der gemeinsamen Kraftstoffleitung (13) mit jeweils voneinander durch Wandungen (30, 31, 32) getrennten Strömungsquerschnitten (30a, 31a, 32a) für jede der Leitungen zusammengefasst werden, und das Anschlusselement (28) eine Überschraubhülse (38), einen innenliegenden Verbindungskanal (39) und einen äußeren Verbindungskanel (40) aufweist.
  2. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass mittels des innenliegenden Verbindungskanals (39) eine Verbindung von der Leckageleitung (12) zu einer Leckagekanalmündung (20a) des Kraftstoffinjektors (5) hergestellt wird.
  3. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass mittels des äußeren Verbindungskanals (40) eine Verbindung von der Kraftstoffrücklaufleitung (11) zu einer Rücklaufkanalmündung (21a) des Kraftstoffinjektors (5) hergestellt wird.
  4. Kraftstoffeinspritzsystem nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, dass die Kraftstoffinjektoren (5) des Einspritzsystems jeweils einen Hochdruckanschluss (26) aufweisen, in dem eine Hochdruckkanalmündung (19a) zum Anschluss der Kraftstoffhochdruckleitung (4), die Leckagekanalmündung (20a) und die Rücklaufkanalmündung (21a) gemeinsam angeordnet werden.
  5. Kraftstoffeinspritzsystem nach Anspruch 4, dadurch gekennzeichnet, dass beim Hochdruckanschluss (26) an seiner Stirnseite die Hochdruckkanalmündung (19a) zentral angeordnete wird, und an seinem Umfang in axialer Richtung voneinander beabstandet die Leckagekanalmündung (20a) und die Rücklaufkanalmündung (21a) angeordnet werden, wobei die einzelnen Mündungen (19a,20a,21a) jeweils durch Dichtungselemente (33,34,35,36) abgedichtet und von den anderen Mündungen (19a,20a,21a) getrennt sind.
  6. Kraftstoffeinspritzsystem nach Anspruch 5, dadurch gekennzeichnet, daß das Dichtungselement (33) der Hochdruckkanalmündung (19a) durch eine mit einem am Ende der Kraftstoffhochdruckleitung (4) ausgebildeten Dichtungskonus (37) zusammenwirkende Konusdichtung gebildet wird und dass die die Leckagekanalmündung (20a) und die Rücklaufkanalmündung (21a) abdichtenden Dichtungselemente (34,35,36) durch O-Ringe gebildet werden.
  7. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Kraftstoffhochdruckleitung (4) koaxial von einem inneren und einem äußeren Mantelrohr (31,32) umgeben wird, welche jeweils voneinander durch Wandungen getrennten Strömungsquerschnitten (31a,32a) einschließen und die Kraftstoffrücklaufleitung (11) und die Leckageleitung (12) bilden.
  8. Kraftstoffeinspritzsystem nach Anspruch 7, dadurch gekennzeichnet, dass die Mantelrohre (31,32) an ihrer inneren Oberfläche mit in Längsrichtung verlaufenden, die Strömungsquerschnitte von der Kraftstoffrückleitung (11) bzw. Leckageleitung (12) bildenden Kanälen (32a,31a) versehen werden.
  9. Kraftstoffeinspritzsystem nach Anspruch 8, dadurch gekennzeichnet, dass die Mantelrohre (31,32) an ihrer inneren Oberfläche zwischen den die Strömungsquerschnitte von Kraftstoffrückleitung (11) bzw. Leckageleitung (12) bildenden Kanälen (31a,32a) Stege (31b,32b) aufweisen, welche am Außenumfang der von dem betreffenden Mantelrohr (31,32) umgebenen jeweiligen innen liegenden Leitung anliegen.
EP00953005A 1999-07-07 2000-07-05 Kraftstoffeinspritzsystem für eine brennkraftmaschine Expired - Lifetime EP1192352B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19931282 1999-07-07
DE19931282A DE19931282C1 (de) 1999-07-07 1999-07-07 Kraftstoffeinspritzsystem für eine Brennkraftmaschine
PCT/EP2000/006283 WO2001004488A1 (de) 1999-07-07 2000-07-05 Kraftstoffeinspritzsystem für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1192352A1 EP1192352A1 (de) 2002-04-03
EP1192352B1 true EP1192352B1 (de) 2004-12-29

Family

ID=7913900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00953005A Expired - Lifetime EP1192352B1 (de) 1999-07-07 2000-07-05 Kraftstoffeinspritzsystem für eine brennkraftmaschine

Country Status (5)

Country Link
US (1) US6604509B1 (de)
EP (1) EP1192352B1 (de)
JP (1) JP2003504552A (de)
DE (2) DE19931282C1 (de)
WO (1) WO2001004488A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020683A1 (de) * 2000-04-27 2001-10-31 Siemens Ag Einspritzsystem mit doppelwandiger Kraftstoffleitung
DE10105031A1 (de) * 2001-02-05 2002-08-14 Bosch Gmbh Robert Vorrichtung zur Dämpfung von Druckpulsationen in Hochdruckeinspritzsystemen
EP1793121B1 (de) 2002-07-01 2009-01-14 Mitsubishi Heavy Industries, Ltd. Kraftstoffeinspritzventil und Dieselmotor damit
US6840225B2 (en) * 2002-09-24 2005-01-11 Deere & Company Fuel injector assembly
JP3935829B2 (ja) * 2002-11-20 2007-06-27 三菱重工業株式会社 内燃機関のリーク燃料回収装置
DE10313133B3 (de) * 2003-03-24 2004-09-23 Robert Bosch Gmbh Anordnung zum Überwachen von Betriebsparametern in einem Verbrennungsmotor
US6827065B2 (en) * 2003-04-08 2004-12-07 General Motors Corporation Diesel injection system with dual flow fuel line
DE102005025873A1 (de) * 2005-06-06 2006-12-07 Robert Bosch Gmbh Injektor zur Verwendung in Hochdruck-Einspritzsystemen
DE102006049224B4 (de) * 2006-10-18 2018-08-02 Man Diesel & Turbo Se Kraftstoffversorgungsanlage einer Brennkraftmaschine
FI120886B (fi) * 2008-06-05 2010-04-15 Waertsilae Finland Oy Polttoaineen ruiskutusjärjestelmä mäntämoottorille
CA2635410C (en) * 2008-06-19 2010-08-17 Westport Power Inc. Dual fuel connector
US8079220B2 (en) * 2008-08-28 2011-12-20 Delavan Inc Fuel distribution manifold system for gas turbine engines
AT509177B1 (de) * 2009-11-23 2013-09-15 Bosch Gmbh Robert Druckrohrstutzen für common-rail-einspritzsystem
US8522752B2 (en) * 2010-09-03 2013-09-03 Caterpillar Inc. Co-axial quill assembly for dual fuel common rail system
FI124086B (fi) 2011-02-09 2014-03-14 Wärtsilä Finland Oy Putkiliitin ja polttoaineen ruiskutusjärjestelmä
FI20115126L (fi) * 2011-02-09 2012-08-10 Waertsilae Finland Oy Polttoaineen ruiskutusjärjestelmä
US8991360B2 (en) 2012-06-27 2015-03-31 Caterpillar Inc. Coaxial quill assembly retainer and common rail fuel system using same
US9181881B2 (en) 2012-08-03 2015-11-10 Caterpillar Inc. Co-axial quill assembly retainer and dual fuel common rail engine using same
EP3332110B1 (de) * 2015-08-04 2022-12-21 Westport Fuel Systems Canada Inc. Vielkraftstoffzuteilervorrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE462273C (de) * 1928-07-07 Deckel Friedrich Brennstoffdruckleitung fuer Einspritzvorrichtungen von Verbrennungskraftmaschinen
DE7638072U1 (de) * 1976-12-04 1977-03-17 Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg Brennkraftmaschine mit Kraftstoffeinspritzvorrichtung
DE7702791U1 (de) * 1977-02-01 1977-05-26 Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg Brennkraftmaschine mit kraftstoffeinspritzvorrichtung
US4149568A (en) * 1977-12-07 1979-04-17 Caterpillar Tractor Co. Double walled fuel line
DE8124604U1 (de) * 1981-08-22 1982-02-04 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg "kraftstoffdruckleitung"
JP2694276B2 (ja) * 1988-04-18 1997-12-24 スズキ株式会社 燃料供給装置
US5076242A (en) * 1990-07-18 1991-12-31 Illinois Tool Works Inc. Integral fuel line
US5239964A (en) * 1992-05-11 1993-08-31 Illinois Tool Works Inc. Concentric fuel line system
IT227559Y1 (it) * 1992-05-21 1997-12-15 Weber Srl Collettore per un dispositivo di alimentazione di carburante ad un mo- tore a combustione interna.
US5611373A (en) * 1995-04-27 1997-03-18 Handy & Harman Automotive Group, Inc. Laminated fuel line and connector
IT1284334B1 (it) * 1996-01-23 1998-05-18 Fiat Ricerche Struttura di contenimento e di raccolta di combustibile per un impianto di iniezione ad alta pressione di motori a combustione
US6499466B2 (en) * 2000-10-25 2002-12-31 Siemens Vdo Automotive Inc. Double walled fuel rail

Also Published As

Publication number Publication date
DE50009126D1 (de) 2005-02-03
US6604509B1 (en) 2003-08-12
JP2003504552A (ja) 2003-02-04
WO2001004488A1 (de) 2001-01-18
EP1192352A1 (de) 2002-04-03
DE19931282C1 (de) 2001-01-11

Similar Documents

Publication Publication Date Title
EP1192352B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
EP1485609B1 (de) Vorrichtung zum einspritzen von kraftstoff an stationären verbrennungskraftmaschinen
EP1314883B1 (de) Kraftstoffversorgungsanlage in Form eines Common-Rail-Systems einer Brennkraftmaschine mit mehreren Zylindern
EP2526283B1 (de) Verfahren zum temperieren eines injektors einer einspritzung für das einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1554488B1 (de) Druckverstärkte kraftstoffeinspritzeinrichtung mit innenliegender steuerleitung
DE19910589C2 (de) Einspritzventil für eine Brennkraftmaschine
DE19728111A1 (de) Kraftstoffeinspritzsystem
DE19720913C1 (de) Kraftstoffeinspritzsystem mit gemeinsamem Vorspeicher
DE19946766C2 (de) Injektor für eine Brennkraftmaschine mit Direkteinspritzung
WO2002077440A1 (de) Kraftstoffinjektor mit vorgeordnetem speichervolumen
DE10114252C2 (de) Verfahren zum Einspritzen von Kraftstoff in die Brennräume einer Brennkraftmaschine, sowie Kraftstoffeinspritzsystem für eine solche
EP2439397A2 (de) Kraftstoffinjektor
EP2807366B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2807367B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE10209527A1 (de) Einrichtung zur druckmodulierten Formung des Einspritzverlaufes
EP1403508A2 (de) Kraftstoffzufuhrzusammenbau
DE10015740C2 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
DE19715785A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine für Kraftstoff/Emulsionsbetrieb
DE10160490A1 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
DE102011082668A1 (de) Kraftstoffeinspritzvorrichtung
DE10155187A1 (de) Einspritzinjektor für Brennkraftmaschinen
AT3982U2 (de) Kraftstoffeinspritzdüse für eine brennkraftmaschine
DE102005037548A1 (de) Kraftstoffinjektor
AT4631U1 (de) Speichereinspritzeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040223

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009126

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080715

Year of fee payment: 9

Ref country code: DE

Payment date: 20080722

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111007