EP1187174A2 - Niederdruckgasentladungslampe mit indiumhaltiger Gasfüllung - Google Patents

Niederdruckgasentladungslampe mit indiumhaltiger Gasfüllung Download PDF

Info

Publication number
EP1187174A2
EP1187174A2 EP01000430A EP01000430A EP1187174A2 EP 1187174 A2 EP1187174 A2 EP 1187174A2 EP 01000430 A EP01000430 A EP 01000430A EP 01000430 A EP01000430 A EP 01000430A EP 1187174 A2 EP1187174 A2 EP 1187174A2
Authority
EP
European Patent Office
Prior art keywords
gas
gas discharge
low
indium
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01000430A
Other languages
English (en)
French (fr)
Other versions
EP1187174A3 (de
Inventor
Robert Dr c/o Philips C.I.P.GmbH Scholl
Rainer Dr c/o Philips C.I.P.GmbH Hilbig
Achim c/o Philips C.I.P.GmbH Körber
Johannes Dr c/o Philips C.I.P.GmbH Baier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Philips Corporate Intellectual Property GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Philips Corporate Intellectual Property GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1187174A2 publication Critical patent/EP1187174A2/de
Publication of EP1187174A3 publication Critical patent/EP1187174A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/048Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using an excitation coil

Definitions

  • the invention relates to a low-pressure gas discharge lamp which has a gas discharge vessel, which contains a gas filling, with electrodes and with means for production and maintaining a low pressure gas discharge.
  • the generation of light in low-pressure gas discharge lamps is based on the fact that charge carriers, especially electrons, but also ions, through an electric field between the Electrodes of the lamp are accelerated so much that they are in the gas filling of the lamp stimulate them by collisions with the gas atoms or molecules of the gas filling or ionize.
  • charge carriers especially electrons, but also ions
  • Conventional low-pressure gas discharge lamps contain mercury in the gas filling and also have a fluorescent coating on the inside of the gas discharge vessel. It is a disadvantage of mercury low pressure gas discharge lamps that mercury vapor primarily radiation in the high-energy but invisible UV-C range of emits electromagnetic spectrum, which is only in the visible much lower energy radiation must be converted. The The energy difference is converted into unwanted heat radiation.
  • the mercury in the gas filling is also reinforced as environmentally harmful and viewed as a toxic substance in modern mass products due to environmental hazards when using. Production and disposal should be avoided if possible should.
  • a low-pressure gas discharge lamp is known from GB 2 014 358 A.
  • a discharge vessel, electrodes and a filling comprising at least one copper halide contains as LTV emitter.
  • This low-pressure gas discharge lamp containing copper halide emits in the visible range as well as in the UV range at 324.75 and 327.4 nm
  • a low-pressure gas discharge lamp equipped with a gas discharge vessel, which is a gas filling with an indium compound and contains a buffer gas, with electrodes and with means for generating and Maintenance of a low pressure gas discharge.
  • a molecular gas discharge at low pressure takes place in the lamp according to the invention instead, the radiation in the visible and near UVA range of the electromagnetic spectrum emits.
  • the radiation contains in addition to the characteristic lines of the indium 410 and 451 nm also have a wide continuum in the range of 320 to 450 nm. Because it is the radiation of a molar discharge is the exact location of the continuum due to the type of indium compound, any other additives and lamp pressure and operating temperature controllable.
  • the lamp according to the invention has a visual efficiency that is considerably higher than that of conventional low-pressure mercury discharge lamps.
  • the visual efficiency expressed in lumens / watt, is the ratio between the Brightness of the radiation in a certain visible wavelength range and Generation energy for the radiation.
  • the high visual efficiency of the invention Lamp means that a certain amount of light is realized through less power consumption becomes.
  • the lamp according to the invention is advantageously used as a UV-A lamp for Sunbeds, disinfection lights and paint curing lights.
  • the lamp is combined with appropriate phosphors. Because the Losses due to Stoke's displacement are small, you get visible light with a high luminous efficacy of more than 100 lumens / watt.
  • the indium compound is selected from the group of halides, oxides, chalcogenides, hydroxides, Hydrides and the organometallic compounds of indium.
  • Gas filling with indium halides is particularly preferred.
  • a further improved efficiency is achieved when the gas filling is a mixture of two Contains indium halides.
  • the gas filling be a compound as a further additive thallium, selected from the group of halides, oxides, chalcogenides, hydroxides, Hydride and the organometallic compounds of thallium, contains. you receives a gas discharge with a wide continuous spectrum.
  • the gas filling can advantageously also be a halide selected from contain the halides of copper and alkali metals.
  • the gas filling as a buffer gas can be an inert gas, selected from the group consisting of helium, neon, argon, krypton and xenon.
  • the gas pressure of the noble gas at operating temperature is advantageously 2 to 10 mbar, in particular 3.4 mbar.
  • the gas discharge vessel has a phosphor coating on the outer surface.
  • the UVA radiation which is emitted by the low-pressure gas discharge lamp according to the invention, is not absorbed by the common types of glass, but passes through the walls of the discharge vessel almost without loss.
  • the fluorescent coating can therefore be applied to the outside of the gas discharge vessel. This simplifies the manufacturing process.
  • the gas filling Indium halide with a partial pressure of 1.0 to 30.0 ⁇ bar, thallium halide with a partial pressure of ⁇ 1.0 ⁇ bar and argon with a partial pressure of 2 to 10 mbar contains.
  • the pressure specifications are based on the respective operating temperature.
  • FIG. 1 schematically shows the light generation in a low-pressure gas discharge lamp a gas filling containing an indium (I) compound.
  • the low-pressure gas discharge lamp according to the invention from a tubular lamp bulb 1, which has a discharge space surrounds. At both ends of the tube electrodes 2 are melted inside, via which the Gas discharge can be ignited.
  • the low pressure gas discharge lamp has the Version and the base 3. In the version or in the base is known in itself Way integrated an electrical ballast that ignites and operates the gas discharge lamp regulates. In a further embodiment, not shown in FIG. 1 the low-pressure gas discharge lamp can also be operated via an external ballast and be regulated.
  • the gas discharge vessel can also be used as a multiple folded or coiled tube executed and surrounded by an outer bulb.
  • the wall of the gas discharge vessel preferably consists of a type of glass that is suitable for UVA radiation with a wavelength between 320 and 450 nm is transparent.
  • the gas filling consists of an indium halide in an amount of 1 to 10 ⁇ g / cm 3 and an inert gas.
  • the noble gas serves as a buffer gas and facilitates the ignition of the gas discharge.
  • the preferred buffer gas is argon.
  • Argon can be replaced in whole or in part by another noble gas, such as helium, neon, krypton or xenon.
  • the lumen efficiency can be significantly improved become.
  • Another way to increase efficiency is to use two or two to combine more indium halides in the gas atmosphere
  • the cold filling pressure of the buffer gas is a maximum of 10 mbar. Is preferred a range between 1.0 and 2.5 mbar.
  • the operating temperature of the lamp has checked the operating temperature of the lamp by appropriate proven constructive measures.
  • the diameter and length of the lamp are chosen so that an internal temperature during operation at an outside temperature of 25 ° C from 170 to 285 ° C is reached.
  • This internal temperature refers to the coldest point of the gas discharge vessel, as a temperature gradient is caused by the discharge arises in the vessel.
  • the gas discharge vessel can also be used with IR radiation reflective layer can be coated.
  • Infrared radiation is preferred reflective coating made of indium-doped tin oxide.
  • the temperature is the coldest point should be at 220 to 285 ° C, preferably at 255 ° C.
  • a suitable material for the electrodes in the low-pressure gas discharge lamp according to the invention consists for example of nickel or a nickel alloy or a refractory metal, especially tungsten and tungsten alloys. Also Composite materials made of tungsten with thorium oxide or indium oxide are suitable.
  • the gas discharge vessel of the lamp is on it Outside surface coated with a phosphor layer 4.
  • the emitted UV radiation the gas discharge stimulates the phosphors in the phosphor layer to emit light in the visible area 5.
  • the chemical composition of the phosphor layer determines the spectrum of the Light or its color.
  • the materials that can be used as phosphors must be absorb the generated radiation and in a suitable wavelength range z. B. for the three primary colors red, blue and green emit and a high fluorescence quantum yield to reach.
  • Suitable luminescent materials and luminescent material combinations do not have to be on the inside of the gas discharge vessel can be applied, but can also be on the outside be applied because the radiation generated in the UVA range from the usual Glass types are not absorbed.
  • the lamp is a capacitive with a high frequency field excited lamp, in which the electrodes on the outside of the gas discharge vessel are attached.
  • the lamp is an inductive one with a high-frequency field excited lamp.
  • the electrons emitted by the electrodes excite the Atoms and molecules of the gas filling to emit UV radiation from the characteristic radiation and a continuum between 320 to 450 nm.
  • the discharge heats the gas filling so that the desired vapor pressure and the desired one Operating temperature of 170 to 285 ° C is reached, at which the luminous efficacy is optimal.
  • the radiation generated during operation of the gas filling containing indium halide mostly coexists the line spectrum of the elemental indium at 410 nm and 451 nm an intense, broad, continuous molecular spectrum between 340 and 420 nm molecular discharge of the indium halide is caused.
  • the area of maximum Emission of the continuous molecular spectrum shifts to longer wavelengths with increasing molecular weight of the indium halide
  • a cylindrical discharge vessel made of a glass that is transparent to UVA radiation, with a length of 15 cm and a diameter of 2.5 cm with internal electrodes made of tungsten.
  • the discharge vessel will be evacuated and at the same time 0.3 mg indium bromide metered in.
  • argon becomes cold with a pressure of 1.7 mbar filled.
  • AC power is supplied from an external AC power source and measured the lumen efficiency at an operating temperature of 225 ° C. The lumen efficiency is 100 Lm / W.
  • a cylindrical discharge vessel made of a glass that is transparent to UVA radiation, with a length of 15 cm and a diameter of 2.5 cm is with external electrodes made of copper.
  • the discharge vessel will be evacuated and at the same time dosed for the gas filling indium bromide, indium iodide and argon, so that at operating temperature a partial pressure of 5.0 to 15.0 ⁇ bar for indium bromide, 0.5 to 1.5 ⁇ bar for Indium iodide and 5.0 mbar for argon is reached.
  • a cylindrical discharge vessel made of a glass that is transparent to UVA radiation, with a length of 15 cm and a diameter of 2.5 cm with internal electrodes made of tungsten.
  • the discharge vessel is evacuated and at the same time for the Gas filling indium bromide, thallium iodide and argon metered in so that at operating temperature a partial pressure of 1.0 to 10.0 ⁇ bar for indium bromide, ⁇ 1 ⁇ bar for thallium iodide and 5.0 mbar for argon is reached.
  • An AC power is supplied from an external AC power source and the lumen efficiency of 90 Im / W was measured at an operating temperature of 210 ⁇ 10 ° C.

Landscapes

  • Discharge Lamp (AREA)

Abstract

Niederdruckgasentladungslampe, ausgerüstet mit einem Gasentladungsgefäß, das eine Gasfüllung mit einer Indiumverbindung und einem Puffergas enthält, mit Elektroden und mit Mitteln zur Erzeugung und Aufrechterhaltung einer Niederdruckgasentladung. <IMAGE>

Description

Die Erfindung betrifft eine Niederdruckgasentladungslampe, die mit einem Gasentladungsgefäß, das eine Gasfüllung enthält, mit Elektroden und mit Mitteln zur Erzeugung und Aufrechterhaltung einer Niederdruckgasentladung ausgerüstet ist.
Die Lichterzeugung in Niederdruckgasentladungslampen beruht darauf, dass Ladungsträger, insbesondere Elektronen, aber auch Ionen, durch ein elektrisches Feld zwischen den Elektroden der Lampe so stark beschleunigt werden, dass sie in der Gasfüllung der Lampe durch Zusammenstöße mit den Gasatomen oder Molekülen der Gasfüllung diese anregen oder ionisieren. Bei der Rückkehr der Atome oder Moleküle der Gasfüllung in ihren Grundzustand wird ein mehr oder weniger großer Teil der Anregungsenergie in Strahlung umgewandelt.
Konventionelle Niederdruckgasentladungslampen enthalten Quecksilber in der Gasfüllung und weisen außerdem einen Leuchtstoffüberzug innen auf dem Gasentladungsgefäß auf. Es ist ein Nachteil der Quecksilber-Niederdruckgasentladungslampen, dass Quecksilberdampf primär Strahlung im hochenergetischen, aber unsichtbaren UV-C-Bereich des elektromagnetischen Spektrums abgibt, die erst durch die Leuchtstoffe in die sichtbare, wesentlich niederenergetischere Strahlung umgewandelt werden muß. Die Energiedifferenz wird dabei in unerwünschte Wärmestrahlung umgewandelt.
Das Quecksilber in der Gasfüllung wird außerdem auch verstärkt als umweltschädliche und giftige Substanz angesehen, die in modernen Massenprodukten aufgrund der Umweltgefährdung bei Anwendung. Produktion und Entsorgung möglichst vermieden werden sollte.
Es ist bereits bekannt, das Spektrum von Niederdruckgasentladungslampen zu beeinflussen, indem man das Quecksilbers in der Gasfüllung durch andere Stoffe ersetzt.
Beispielsweise ist aus GB 2 014 358 A eine Niederdruckgasentladungslampe bekannt, die ein Entladungsgefäß, Elektroden und eine Füllung umfasst, die wenigstens ein Kupferhalogenid als LTV-Emitter enthält. Diese kupferhalogenidhaltige Niederdruckgasentladungslampe emittiert im sichtbaren Bereich sowie im UV-Bereich bei 324,75 und 327,4 nm
Es ist eine Aufgabe der vorliegenden Erfindung eine Niederdruckgasentladungslampe zu schaffen, deren Strahlung möglichst nahe am sichtbaren Bereich des elektromagnetischen Spektrums liegt.
Erfindungsgemäß wird die Aufgabe gelöst durch eine Niederdruckgasentladungslampe, ausgerüstet mit einem Gasentladungsgefäß, das eine Gasfüllung mit einer Indiumverbindung und einem Puffergas enthält, mit Elektroden und mit Mitteln zur Erzeugung und Aufrechterhaltung einer Niederdruckgasentladung.
In der erfindungsgemäßen Lampe findet eine molekulare Gasentladung bei Niederdruck statt, die Strahlung im sichtbaren und nahen UVA-Bereich des elektromagnetischen Spektrum abgibt. Die Strahlung enthält neben den charakteristischen Linien des Indiums bei 410 und 451 nm auch ein breites Kontinuum im Bereich von 320 bis 450 nm. Da es sich um die Strahlung einer molehlaren Entladung handelt, ist die genaue Lage des Kontinuums durch die Art der Indiumverbindung, etwaigen weiteren Additiven sowie Lampeninnendruck und Betriebstemperatur steuerbar.
Kombiniert mit Leuchtstoffen hat die erfindungsgemäße Lampe eine visuelle Effizienz, die beträchtlich höher ist als die von konventionellen Niederdruckquecksilberentladungslampen. Die visuelle Effizienz, ausgedrückt in Lumen/Watt ist das Verhältnis zwischen der Helligkeit der Strahlung in einem bestimmten sichtbaren Wellenlängenbereich und der Erzeugungsenergie für die Strahlung. Die hohe visuelle Effizienz der erfindungsgemäßen Lampe bedeutet, dass eine bestimmte Lichtmenge durch weniger Leistungsaufnahme realisiert wird.
Außerdem wird die Verwendung von Quecksilber vermieden.
Eine vorteilhafte Verwendung findet die erfindungsgemäße lampe als UV-A-Lampe für Sonnenbänke, Desinfektionsleuchten und Lackhärtungsbeleuchtungen. Für allgemeine Beleuchtungszwecke wird die Lampe mit entsprechenden Leuchtstoffen kombiniert. Weil die Verluste durch Stokesche Verschiebung gering sind, erhält man sichtbares Licht mit einer hohen Lichtausbeute von mehr als 100 Lumen/Watt.
Im Rahmen der vorliegenden Erfindung kann es bevorzugt sein, dass die Indiumverbindung ausgswählt ist aus der Gruppe der Halogenide, Oxide, Chalkogenide, Hydroxide, Hydride und der metallorganischen Verbindungen des Indiums.
Besonders bevorzugt ist eine Gasfüllung mit Indiumhalogeniden.
Eine weiter verbesserte Effizienz wird erreicht, wenn die Gasfüllung ein Gemisch aus zwei Indiumhalogeniden enthält.
Es kann auch bevorzugt sein, dass die Gasfüllung als ein weiteres Additiv eine Verbindung des Thalliums, ausgewählt aus der Gruppe der Halogenide, Oxide, Chalkogenide, Hydroxide, Hydride und der metallorganischen Verbindungen des Thalliums, enthält. Man erhält eine Gasentladung mit einem breiten kontinuierlichen Spektrum.
Als weiteres Additiv kann die Gasfüllung auch vorteilhaft ein Halogenid, ausgewählt aus den Halogeniden des Kupfers und der Alkalimetalle enthalten.
Besonders vorteilhafte Wirkungen gegenüber dem Stand der Technik werden durch die Erfindung erreicht, wenn die Gasfüllung ein Halogenid des Indiums und ein Halogenid des Thalliums im molaren Verhältnis 1:1 enthält.
Die Gasfüllung kann als Puffergas ein Edelgas, ausgewählt aus der Gruppe Helium, Neon, Argon, Krypton und Xenon uinfaseen. Vorteilhafterweise beträgt der Gasdruck des Edelgases bei Betriebstemperatur 2 bis 10 mbar, insbesondere 3.4 mbar.
Im Rahmen der vorliegenden Erfindung kann es bevorzugt sein, dass das Gasentladungsgefäß einen Leuchtstoffüberzug auf der äußeren Oberfläche aufwsist. Die UVA-Strahlung, die von der erfindungsgemäßen Niederdruckgasentladungslampe abgestrahlt wird, wird von den gängigen Glassorten nicht absorbiert, sondern passiert die Wände des Entladungsgefäßes nahezu verlustfrei. Der Leuchtstoffüberzug kann deshalb auf der Außenseite des Gasentladungsgefäßes angebracht werden. Dadurch wird das Herstellungsverfahren vereinfacht.
Im Rahmen der vorliegenden Erfindung ist es besonders bevorzugt, dass die Gasfüllung Indiumhalogenid mit einem Partialdruck von 1.0 bis 30.0 µbar, Thalliumhalogenid mit einem Partialdruck von < 1.0 µbar und Argon mit einem Partialdruck von 2 bis 10 mbar enthält. Die Druckangaben sind auf die jeweilige Betriebstemperatur bezogen.
Nachfolgend wird die Erfindung anhand von einer Figur und 3 Ausführungsbeispielen weiter erläutert.
Fig. 1 zeigt schematisch die Lichterzeugung in einer Niederdruckgasentladungslampe mit einer Gasfüllung, die eine Indium(I)-Verbindung enthält.
In der in Fig. 1 gezeigten Ausführungsform besteht die erfindungsgemäße Niederdruckgasentladungslampe aus einem rohrförmigen Lampenkolben 1, der einen Entladungsraum umgibt. An beiden Enden des Rohrs sind innen Elektroden 2 eingedmolzen, über die die Gasentladung gezündet werden kann. Die Niederdruckgasentladungslampe besitzt die Fassung und den Sockel 3. In die Fassung oder in den Sockel ist in an sich bekannter Weise ein elektrisches Vorschaltgerät integriert, das die Zündung und den Betrieb der Gasentladungslampe regelt. Bei einer weiteren, in Fig. 1 nicht dargestellten Ausführungsform kann die Niederdruckgasentladungslampe auch über ein externes Vorschaltgerät betrieben und geregelt werden.
Das Gasentladungsgefäß kann auch als ein mehrfach gefaltetes oder gewendeltes Rohr ausgeführt und von einem Außenkolben umgeben sein.
Die Wand des Gasentladungsgefäßes besteht bevorzugt aus einer Glassorte, die für UVA-Strahlung mit einer Wellenlänge zwischen 320 und 450 nm durchlässig ist.
Die Gasfüllung besteht im einfachsten Fall aus einem Indiumhalogenid in einer Menge von 1 bis 10 µg/cm3 und einem Edelgas. Das Edelgas dient als Puffergas und erleichtert die Zündung der Gasentladung. Bevorzugtes Puffergas ist Argon. Argon kann ganz oder teilweise durch ein anderes Edelgas, wie Helium, Neon, Krypton oder Xenon ersetzt werden.
Durch ein Additiv zur Gasfüllung das aus der Gruppe der Halogenide des Thalliums, Kupfers und der Alkalimetalle ausgewählt ist, kann die Lumeneffizienz entscheidend verbessert werden. Eine weitere Möglichkeit zur Effizienzsteigerung besteht darin, zwei oder mehr Indiumhalogenide in der Gasatmosphäre zu kombinieren
Die Effizienz kann weiterhin verbessert werden, wenn der Betriebsinnendruck der Lampe optimiert wird. Der Kaltfülldruck des Puffergases beträgt maximal 10 mbar. Bevorzugt ist ein Bereich zwischen 1.0 bis 2.5 mbar.
Als weitere vorteilhafte Maßnahme zur Steigerung der Lumeneffizienz der Niederdruckgasentladungslampe hat sich die Kontrolle der Betriebstemperatur der Lampe durch geeignete konstruktive Maßnahmen erwiesen. Durchmesser und Länge der Lampe werden so gewählt, dass während des Betriebes bei einer Außentemperatur von 25 °C eine Innentemperatur von 170 bis 285°C erreicht wird. Diese Innentemperatur bezieht sich auf die kälteste Stelle des Gasentladungsgefäßes, da durch die Entladung ein Temperaturgradient in dem Gefäß entsteht.
Um die Innentemperatur zu erhöhen, kann das Gasentladungsgefäß auch mit einer IR-Strahlung reflektierende Schicht beschichtet werden. Bevorzugt ist eine Infrarotstrahlung reflektierende Beschichtung aus indiumdotiertem Zinnoxid.
In diesem Fall wurde gefunden, dass für eine Niederdruckgasentladungslampe mit einer Gasfüllung, die Indiumchlorid enthält, bei Betriebstemperatur die kälteste Stelle eine Temperatur von 170 bis 210 °C, bevorzugt 200°C, haben sollte. Analog gilt für eine Gasfüllung, die Indiumbromid enthält, dass die Temperatur der kältesten Stelle bei 210 bis 250°C, bevorzugt bei 225°C, liegen sollte.
Für eine Gasfüllung, die Indiumjodid enthält, gilt, dass die Temperatur der kältesten Stelle bei 220 bis 285°C, bevorzugt bei 255°C, liegen sollte.
Als vorteilhaft hat sich auch eine Kombination aus den drei vorstehend genannten Maßnahmen erwiesen.
Ein geeigneter Werkstoff für die Elektroden in der erfindungsgemäßen Niederdruck-Gasentladungslampe besteht beispielsweise aus Nickel oder einer Nickellegierung oder aus einem hochschmelzenden Metall, insbesondere Wolfram und Wolframlegierungen. Auch Verbundwerkstoffe aus Wolfram mit Thoriumoxid oder Indiumoxid sind geeignet.
In der Ausführungsform gemäß Fig. 1 ist das Gasentladungsgefäß der Lampe an seiner Außenfläche mit einer Leuchtstoffschicht 4 beschichtet. Die ausgesendete UV-Strahlung der Gasentladung regt die Leuchtstoffe in der Leuchtstoffschicht zur Emission von Licht im sichtbaren Bereich 5 an.
Die chemische Zusammensetzung der Leuchtstoffschicht bestimmt das Spektrum des Lichts bzw. dessen Farbton. Die als Leuchtstoffe in Frage kommenden Materialien müssen die erzeugte Strahlung absorbieren und in einem geeigneten Wellenlängenbereich z. B. für die drei Grundfarben Rot, Blau und Grün emittieren und eine hohe Fluoreszenzquantenausbeute erreichen.
Geeignete Leuchtstoffe und Leuchtstoffkombinationen müssen nicht auf die Innenseite des Gasentladungsgefäßes aufgebracht werden, sondern können auch auf die Außenseite aufgetragen werden, da die erzeugte Strahlung im UVA-Bereich von den gängigen Glassorten nicht absorbiert wird.
Nach einer anderen Ausführungsform ist die Lampe eine kapazitiv mit einem Hochfrequenzfeld angeregte Lampe, bei der die Elektroden außen an dem Gasentladungsgefäß angebracht sind. Nach einer weiteren Ausführungsform ist die Lampe eine induktiv mit einem Hochfrequenzfeld angeregte Lampe.
Wenn die Lampe gezündet wird, regen die von den Elektroden emittierten Elektronen die Atome und Moleküle der Gasfüllung zur Ausstrahlung von UV-Strahlung aus der charakteristischen Strahlung und einem Kontinuum zwischen 320 bis 450 nm an.
Die Entladung erwärmt die Gasfüllung so, dass der gewünschte Dampfdruck und die gewünschte Betriebstemperatur von 170 bis 285°C erreicht wird, bei der die Lichtausbeute optimal ist.
Die im Betrieb erzeugte Strahlung der indiumhalogenidhaltigen Gasfüllung veist neben dem Linienspektrum des elementaren Indiums bei 410 nm und 451 nm ein intensives, breites, kontinuierliches Molekülspektrum zwischen 340 und 420 nm auf, das durch molekulare Entladung des Indiumhalogenids verursacht ist. Der Bereich der maximalen Emission des kontinuierlichen Molekülspektrums verschiebt sich zu längeren Wellenlängen mit steigendem Molekulargewicht des Indiumhalogenids
Ausführungsbeispiel 1
Ein zylindrisches Entladungsgefäß aus einem Glas, das für UVA-Strahlung durchlässig ist, mit einer Länge von 15 cm und einem Durchmesser von 2,5 cm wird mit inneren Elektroden aus Wolfram ausgerüstet. Das Entladungsgefäß wird evakuiert und gleichzeitig werden 0.3 mg Indiumbromid eindosiert. Ebenso wird Argon mit einem Kaltdruck von 1.7 mbar eingefüllt. Es wird ein Wechselstrom von einer externen Wechselstromquelle zugeführt und bei einer Betriebstemperatur von 225 °C die Lumeneffizienz gemessen. Die Lumeneffizienz beträgt 100 Lm/W.
Ausführungsbeispiel 2
Ein zylindrisches Entladungsgefäß aus einem Glas, das für UVA-Strahlung durchlässig ist, mit einer Länge von 15 cm und einem Durchmesser von 2,5 cm wird mit äußeren Elektroden aus Kupfer ausgerüstet. Das Entladungsgefäß wird evakuiert und gleichzeitig werden für die Gasfüllung Indiumbromid, Indiumjodid und Argon eindosiert, so dass bei Betriebstemperatur ein Partialdruck von 5.0 bis 15.0 µbar für Indiumbromid, 0.5 bis 1.5 µbar für Indiumjodid und 5.0 mbar für Argon erreicht wird.
Es wird ein Hochfrequenzfeld mit einer Frequenz von 13.5 MHz von einer externen Quelle zugeführt und bei einer Betriebstemperatur von 240 °C die Lumeneffizienz von 85 lm/W gemessen.
Ausführungsbeispiel 3
Ein zylindrisches Entladungsgefäß aus einem Glas, das für UVA-Strahlung durchlässig ist, mit einer Länge von 15 cm und einem Durchmesser von 2,5 cm wird mit inneren Elektroden aus Wolfram ausgerüstet. Das Entladungsgefäß wird evakuiert und gleichzeitig für die Gasfüllung Indiumbromid, Thalliumjodid und Argon eindosiert, so dass bei Betriebstemperatur ein Partialdruck von 1.0 bis 10.0 µbar für Indiumbromid, <1µbar für Thalliumjodid und 5.0 mbar für Argon erreicht wird.
Es wird ein Wechistrom von einer externen Wechselstromquelle zugeführt und bei einer Betriebstemperatur von 210 ± 10 °C die Lumeneffizienz von 90 Im/W gemessen.

Claims (12)

  1. Niederdruckgasentladungslampe, ausgerüstet mit einem Gasentladungsgefäß, das eine Gasfüllung mit einer Indiumverbindung und einem Puffergas enthält, mit Elektroden und mit Mitteln zur Erzeugung und Aufrechterhaltung einer Niederdruckgasentladung.
  2. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Indiumverbindungen ausgewählt ist aus der Gruppe der Halogenide, Oxide, Chalkogenide, Hydroxide, Hydride und der metallorganischen Verbindungen des Indiums sind
  3. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Indiumverbindungen ausgewählt ist aus der Gruppe der Halogenide
  4. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung ein Gemisch aus zwei Indiumhalogeniden enthält.
  5. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung als ein weiteres Additiv eine Verbindung des Thalliums, ausgewählt aus der Gruppe der Halogenide, Oxide, Chalkogenide, Hydroxide, Hydride und der metallorganischen Verbindungen des Thalliums, enthält.
  6. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung als ein weiteres Additiv ein Halogenid, ausgewählt aus den Haloganiden des Kupfers und der Alkalimetalle enthält.
  7. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung ein Halogenid des Indiums und ein Halogenid des Thalliums im molaren Verhältnis 1:1 enthält.
  8. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung als Puffergas ein Edelgas, ausgewählt aus der Gruppe Helium, Neon, Argon, Krypton und Xenon, umfasst.
  9. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung als Puffergas ein Edelgas, ausgewählt aus der Gruppe Helium, Neon, Argon, Krypton und Xenon, mit einem Gasdruck bei Betriebstemperatur von 2 bis 10 mbar umfasst.
  10. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung als Puffergas ein Edelgas, ausgewählt aus der Gruppe Helium, Neon, Argon, Krypton und Xenon, mit einem Gasdruck bei Betriebstemperatur von 3.4 mbar umfasst.
  11. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass das Gasentladungsgefäß einen Leuchtstoffüberzug auf der äußeren Oberfläche aufweist.
  12. Niederdruckgasentladungslampe gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die Gasfüllung Indiumhalogenid mit einem Partialdruck von 1.0 bis 10.0 µbar, Thalliumhalogenid mit einem Partialdruck <1.0 µbar und Argon mit einem Partialdruck von 2 bis 10 mbar enthält.
EP01000430A 2000-09-08 2001-09-06 Niederdruckgasentladungslampe mit indiumhaltiger Gasfüllung Withdrawn EP1187174A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10044562 2000-09-08
DE10044562A DE10044562A1 (de) 2000-09-08 2000-09-08 Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung

Publications (2)

Publication Number Publication Date
EP1187174A2 true EP1187174A2 (de) 2002-03-13
EP1187174A3 EP1187174A3 (de) 2006-03-29

Family

ID=7655583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01000430A Withdrawn EP1187174A3 (de) 2000-09-08 2001-09-06 Niederdruckgasentladungslampe mit indiumhaltiger Gasfüllung

Country Status (5)

Country Link
US (1) US6972521B2 (de)
EP (1) EP1187174A3 (de)
JP (1) JP2002124211A (de)
CN (1) CN1342994A (de)
DE (1) DE10044562A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103748A1 (en) * 2001-06-19 2002-12-27 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp with a mercury-free gas filling
WO2004011846A1 (en) 2002-07-25 2004-02-05 Philips Intellectual Property & Standards Gmbh Lamp system with green-blue gas-discharge lamp and yellow-red led
WO2005045881A1 (en) * 2003-11-11 2005-05-19 Koninklijke Philips Electronics N.V. Low-pressure vapor discharge lamp with a mercury-free gas filling
WO2006043204A2 (en) * 2004-10-19 2006-04-27 Koninklijke Philips Electronics N.V. Sun-tanning lamp with white light having high color rendering index
WO2007085972A1 (en) * 2006-01-24 2007-08-02 Koninklijke Philips Electronics N.V. Assembly for generating ultraviolet radiation, and tanning device comprising such as assembly

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10204691C1 (de) * 2002-02-06 2003-04-24 Philips Corp Intellectual Pty Quecksilberfreie Hochdruckgasentladungslampe und Beleuchtungseinheit mit einer solchen Hochdruckgasentladungslampe
DE10242049A1 (de) 2002-09-11 2004-03-25 Philips Intellectual Property & Standards Gmbh Niederdruckgasentladungslampe mit zinnhaltiger Gasfüllung
DE10242245A1 (de) * 2002-09-12 2004-03-25 Philips Intellectual Property & Standards Gmbh Niederdruckgasentlastungslampe mit einem Erdalkalioxidgemisch als Elektronen-Ermittersubstanz
DE10242241A1 (de) * 2002-09-12 2004-03-25 Philips Intellectual Property & Standards Gmbh Niederdruckgasentladungslampe mit Ba TiO3-ähnlichen Elektronen-Ermittersubstanzen
WO2004075242A1 (ja) * 2003-02-18 2004-09-02 Tadahiro Ohmi 蛍光管及びその製造方法
US20060214590A1 (en) * 2003-08-07 2006-09-28 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp with alkaline eart chalcogenides as electron emitter material
JP2007507844A (ja) * 2003-09-30 2007-03-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 酸素および水分を固定化する手段を有する低圧ガス放電ランプ
US20070222389A1 (en) * 2004-05-27 2007-09-27 Koninklijke Philips Electronics, N.V. Low Pressure Discharge Lamp Comprising a Discharge Maintaining Compound
US20080258623A1 (en) * 2004-05-27 2008-10-23 Koninklijke Philips Electronics, N.V. Low Pressure Discharge Lamp Comprising a Metal Halide
US7265493B2 (en) * 2004-10-04 2007-09-04 General Electric Company Mercury-free compositions and radiation sources incorporating same
WO2006043200A1 (en) * 2004-10-19 2006-04-27 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp for backlighting with a large color gamut
WO2006043191A1 (en) * 2004-10-20 2006-04-27 Philips Intellectual Property & Standards Gmbh High intensity discharge lamp
US7847484B2 (en) * 2004-12-20 2010-12-07 General Electric Company Mercury-free and sodium-free compositions and radiation source incorporating same
US7825598B2 (en) * 2004-12-20 2010-11-02 General Electric Company Mercury-free discharge compositions and lamps incorporating Titanium, Zirconium, and Hafnium
US20060132043A1 (en) * 2004-12-20 2006-06-22 Srivastava Alok M Mercury-free discharge compositions and lamps incorporating gallium
CN101164135A (zh) * 2005-04-20 2008-04-16 皇家飞利浦电子股份有限公司 包括铟和钠的卤化物的低压气体放电灯
US20060290284A1 (en) * 2005-06-28 2006-12-28 Osram Sylvania Inc. Lamp with phosphor layer on an exterior surface and method of applying the phosphor layer
EP1905062A2 (de) * 2005-06-29 2008-04-02 Philips Intellectual Property & Standards GmbH Niederdruckentladungslampe mit molekularstrahler und zusatz dafür
WO2007132368A2 (en) * 2006-05-15 2007-11-22 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp having improved efficiency
US8282986B2 (en) * 2006-05-18 2012-10-09 Osram Sylvania, Inc. Method of applying phosphor coatings
US8994288B2 (en) 2013-03-07 2015-03-31 Osram Sylvania Inc. Pulse-excited mercury-free lamp system
CN105810551A (zh) * 2014-12-31 2016-07-27 广东雪莱特光电科技股份有限公司 一种无汞高压气体放电灯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678315A (en) * 1969-12-13 1972-07-18 Philips Corp Low-pressure sodium vapor discharge lamp
DE2604916A1 (de) * 1975-02-14 1976-08-26 Itt Ind Gmbh Deutsche Quecksilberdampf-entladungslampe
DE2903963A1 (de) * 1978-02-10 1979-08-16 Thorn Electrical Ind Ltd Entladungslampe und ihre verwendung
DE3306375A1 (de) * 1982-03-01 1983-09-08 General Electric Co., Schenectady, N.Y. Leuchtstoff-bogenentladungslampe
RU2035794C1 (ru) * 1993-03-02 1995-05-20 Акционерное общество "Лисма" - завод специальных источников света и электровакуумного стекла Установка для облучения растений

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657591A (en) * 1970-06-26 1972-04-18 Gen Electric High intensity far u.v. radiation source
GB2014358B (en) 1978-02-10 1982-03-03 Thorn Electrical Ind Ltd Discharge lamp
NL7903285A (nl) * 1979-04-26 1980-10-28 Philips Nv Ontladingslamp.
US4427922A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Electrodeless light source
SU1191982A1 (ru) * 1984-02-13 1985-11-15 Мордовский Ордена Дружбы Народов Государственный Университет Им.Н.П.Огарева Газоразр дна лампа высокого давлени
HU195593B (en) * 1985-10-01 1988-05-30 Tungsram Reszvenytarsasag Light-source, preferably for public lighting and industrial applications
DE3716485C1 (de) * 1987-05-16 1988-11-24 Heraeus Gmbh W C Xenon-Kurzbogen-Entladungslampe
US6020676A (en) * 1992-04-13 2000-02-01 Fusion Lighting, Inc. Lamp with light reflection back into bulb
JP3076678B2 (ja) * 1992-08-21 2000-08-14 松下電器産業株式会社 投写形画像表示装置
DE4327534A1 (de) * 1993-08-16 1995-02-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidentladungslampe für fotooptische Zwecke
JP3405049B2 (ja) * 1995-05-29 2003-05-12 日亜化学工業株式会社 残光性ランプ
RU2074454C1 (ru) * 1995-08-01 1997-02-27 Акционерное общество закрытого типа Научно-техническое агентство "Интеллект" Способ получения оптического излучения и разрядная лампа для его осуществления
EP0769801B1 (de) * 1995-10-20 2002-01-02 Matsushita Electric Industrial Co., Ltd. Verfahren zum Betreiben einer Metallhalogenidlampe
JP3239721B2 (ja) * 1995-11-16 2001-12-17 松下電器産業株式会社 メタルハライドランプ
DE19731168A1 (de) * 1997-07-21 1999-01-28 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungssystem
US6157141A (en) * 1998-05-05 2000-12-05 Osram Sylvania Inc. Blue light electrodeless high intensity discharge lamp system
DE10044563A1 (de) * 2000-09-08 2002-03-21 Philips Corp Intellectual Pty Niederdruckgasentladungslampe mit kupferhaltiger Gasfüllung
DE10128915A1 (de) * 2001-06-15 2002-12-19 Philips Corp Intellectual Pty Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung
JP3565203B2 (ja) * 2001-12-05 2004-09-15 ウシオ電機株式会社 超高圧水銀ランプ
JP2003242933A (ja) * 2002-02-15 2003-08-29 Toshiba Lighting & Technology Corp メタルハライドランプおよび自動車用前照灯装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678315A (en) * 1969-12-13 1972-07-18 Philips Corp Low-pressure sodium vapor discharge lamp
DE2604916A1 (de) * 1975-02-14 1976-08-26 Itt Ind Gmbh Deutsche Quecksilberdampf-entladungslampe
DE2903963A1 (de) * 1978-02-10 1979-08-16 Thorn Electrical Ind Ltd Entladungslampe und ihre verwendung
DE3306375A1 (de) * 1982-03-01 1983-09-08 General Electric Co., Schenectady, N.Y. Leuchtstoff-bogenentladungslampe
RU2035794C1 (ru) * 1993-03-02 1995-05-20 Акционерное общество "Лисма" - завод специальных источников света и электровакуумного стекла Установка для облучения растений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 199347 Derwent Publications Ltd., London, GB; Class L03, AN 1993-375763 XP002267199 -& SU 1 772 841 A (SARANSK LISMA PRODN ASSOC) 30. Oktober 1992 (1992-10-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103748A1 (en) * 2001-06-19 2002-12-27 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp with a mercury-free gas filling
WO2004011846A1 (en) 2002-07-25 2004-02-05 Philips Intellectual Property & Standards Gmbh Lamp system with green-blue gas-discharge lamp and yellow-red led
WO2005045881A1 (en) * 2003-11-11 2005-05-19 Koninklijke Philips Electronics N.V. Low-pressure vapor discharge lamp with a mercury-free gas filling
WO2006043204A2 (en) * 2004-10-19 2006-04-27 Koninklijke Philips Electronics N.V. Sun-tanning lamp with white light having high color rendering index
WO2006043204A3 (en) * 2004-10-19 2006-06-22 Koninkl Philips Electronics Nv Sun-tanning lamp with white light having high color rendering index
WO2007085972A1 (en) * 2006-01-24 2007-08-02 Koninklijke Philips Electronics N.V. Assembly for generating ultraviolet radiation, and tanning device comprising such as assembly

Also Published As

Publication number Publication date
DE10044562A1 (de) 2002-03-21
US6972521B2 (en) 2005-12-06
CN1342994A (zh) 2002-04-03
JP2002124211A (ja) 2002-04-26
US20020047525A1 (en) 2002-04-25
EP1187174A3 (de) 2006-03-29

Similar Documents

Publication Publication Date Title
EP1187174A2 (de) Niederdruckgasentladungslampe mit indiumhaltiger Gasfüllung
EP0338637B1 (de) Hochdruck-Quecksilberdampfentladungslampe
DE10129464A1 (de) Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung
DE1464181A1 (de) Elektrische Gasentladungslampe
DE10129630A1 (de) Niederdruckgasentladungslampe mit Leuchtstoffbeschichtung
DE19919169A1 (de) Vorrichtung zur Desinfektion von Wasser mit einer UV-C-Gasentladungslampe
DE1764979A1 (de) Quecksilber-Metallhalogenid-Dampflampe mit Regeneration
JP2002124211A5 (de)
DE69010258T2 (de) Niederdruckquecksilberdampfentladungslampe.
DE69010425T2 (de) Elektrodenlose Niederdruckquecksilberdampfentladungslampe.
DE2422411A1 (de) Hochdruckquecksilberdampfentladungslampe
EP1187173A2 (de) Niederdruckgasentladungslampe mit kupferhaltiger Gasfüllung
EP1267389B1 (de) Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung
EP1253624B1 (de) Gasentladungslampe mit Down-Conversion-Leuchtstoff
DE60031083T2 (de) Elektrodenlose Metallhalogenid-Beleuchtungslampe
DE1489527B2 (de) Quecksilberdampfhochdrucklampe
EP1253625B1 (de) Gasentladungslampe mit Down-Conversion-Leuchtstoff
DE60313194T2 (de) Niederdruck-quecksilber-entladungs-leuchtstofflampen
EP1254943B1 (de) Down-Conversion-Leuchtstoff, und Gasentladungslampe mit diesem Leuchtstoff
DE10242049A1 (de) Niederdruckgasentladungslampe mit zinnhaltiger Gasfüllung
DE10254737A1 (de) Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung
DE10242241A1 (de) Niederdruckgasentladungslampe mit Ba TiO3-ähnlichen Elektronen-Ermittersubstanzen
DE2150740C3 (de) Leuchtstofflampe hoher Intensität
EP0334356A1 (de) Wandstabilisierte Metalldampfentladungslampe
DE1464181C (de) Elektrische Hochdruck Dampfentladungs lampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20060929

17Q First examination report despatched

Effective date: 20061027

AKX Designation fees paid

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091229