EP1181421B1 - Leichtbauelement in form einer hohlkörperkonturwabe - Google Patents
Leichtbauelement in form einer hohlkörperkonturwabe Download PDFInfo
- Publication number
- EP1181421B1 EP1181421B1 EP00941929A EP00941929A EP1181421B1 EP 1181421 B1 EP1181421 B1 EP 1181421B1 EP 00941929 A EP00941929 A EP 00941929A EP 00941929 A EP00941929 A EP 00941929A EP 1181421 B1 EP1181421 B1 EP 1181421B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hollow bodies
- individual layers
- construction element
- element according
- individual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/3405—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/3405—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
- E04C2002/3411—Dimpled spacer sheets
- E04C2002/3422—Dimpled spacer sheets with polygonal dimples
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/3405—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
- E04C2002/3411—Dimpled spacer sheets
- E04C2002/3433—Dimpled spacer sheets with dimples extending from both sides of the spacer sheet
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/3405—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
- E04C2002/3472—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets with multiple layers of profiled spacer sheets
Definitions
- the invention relates to a component composed of several individual layers which is a honeycomb construction with protruding beyond the basic construction Have partial hollow bodies, wherein the individual layers can be joined together with the partial hollow bodies are.
- the two Cover plates made of metal and the interposed cell walls or the corresponding Honeycomb structures are connected to the cover plates by welding or soldering, wherein in particular the soldering material is guided so that it can also be found in the Cell corners are fixed and so the cover plate is particularly good with the honeycomb construction combines.
- the cover plate is particularly good with the honeycomb construction combines.
- the stability is almost entirely from depending on the top layers.
- the inherent stability of the sandwich core is negligible small.
- Another disadvantage is the relatively complex production method, as well the use of different materials and the impossibility, for example also use plastic.
- a component is known that is composed of several egg-box-like individual layers.
- the individual layers have hollow bodies of different dimensions in order to assemble Marginal zones with an increased number of hollow bodies and slightly flat contact to reach.
- the middle individual layers have no flat support or connection with each other, just a linear connection. High pressures and torsional Burdens cannot be accepted and transferred.
- the invention is therefore based on the object of minimizing a component To create weight and with favorable stability and insulating properties.
- the object is achieved according to the invention in that the embossed with the adjacent individual layers in the flat connection, if possible, a wall single layers as a very thin wall Partial honeycomb panel or partial honeycomb film are formed over a basic construction and positive and / or negative hollow bodies or partial hollow bodies protruding above them have a first individual layer, which serves as a coupling element for the individual layers half of the hollow body is provided with a second single layer Equipped holes and thus to claw and connect with the first individual layer is that the missing sides are formed by complementary partial hollow bodies and that a third individual layer has partial hollow bodies, which in that of the first and second Single layer formed part hollow body is insertable, so that the surfaces of all one enter into a flat connection.
- the corresponding Hollow bodies or partial hollow bodies can also be used to Absorb liquid or inert material and, for example, fire resistance to provide, which makes the use possible even in extreme situations.
- the individual component is made from individual nested individual layers, whereby this gives the possibility of specifying a construction that once due to the extensive training and on the other hand due to the corresponding Shaping to create wall thicknesses of practically any thickness or with corresponding ones mutually touching hollow bodies, the ones described above Bring advantages.
- the low weight of such is particularly impressive Components and the high stability that u. a. also through the flat connection achieved and support and formation of stable walls is achieved.
- the first, the second and third individual layers are created by clawing and joining together to a honeycomb construction with a surprising multiple effect.
- a corresponding construction of such a component is in particular due to this achieved that the hollow body or partial hollow body assigned to the individual layers with the hollow bodies or partial hollow bodies of others which represent the middle individual layer Individual layers and these again having corresponding surfaces are trained.
- the corresponding partial hollow bodies or hollow bodies become corresponding Hollow bodies or even closed hollow bodies if the corresponding Individual layers, as mentioned above, are nested or nested become.
- the separately produced individual layers on their separate structure will be discussed later, are coordinated so that they in each case specify the partial hollow bodies or hollow bodies described and assign them to one another also form accordingly.
- the individual layers or the partial hollow bodies and hollow bodies have a very small wall thickness, with further details above It has been pointed out that they are designed, for example, as a partial honeycomb film can.
- This pyramid shape has the advantage that four or more surfaces are used Are available to the neighboring pyramid or the hollow body or partial hollow body can be created and adjusted in order to ensure the flat transmission of the Ensure forces.
- the pyramid can be standing, lying or otherwise formed be or only arise when the individual layers are joined together without thereby fear of a reduction in the stability of the entire component would.
- the individual layers are made of partial hollow bodies or Hollow bodies formed pyramids arranged and formed so that adjacent, pyramids or mirror image double pyramids also formed when nesting lie flat against it, with a flat connection of the individual layers static cross wall is created, which absorbs the forces from all sides is.
- the pyramid shape is particularly well suited to a flat "connection" of the individual pyramid parts to ensure each other.
- the areas of the individual pyramids are all used for Creation of adjacent pyramids of the same or different individual layers, so that it follows from the description that this results in an optimized construction is created that the characteristics of the low weight and high stability. The result is an advantageous one Cross wall that can absorb forces from all sides.
- Partial hollow body has the first individual layer, which has an intermediate single-cell layer on both sides and then assigned a single layer provided with partial hollow bodies on one side is.
- the individual layers are taken as described in the description can, put together or nested, so that an overall stabilized Component results in that the pyramid surfaces are particularly advantageous Forwarding or derivation of the occurring forces ensures.
- cover plates significant outer individual layers also integrated into the stability structure by they also on their underside with corresponding hollow bodies or partial hollow bodies are equipped with the one between the individual layer and the middle class Design that guarantees the desired stability properties.
- the hollow bodies or partial hollow bodies assigned to the “cover layers” can also Shear forces or other unusual forces are easily absorbed because these forces from the "cover layers” into the intermediate layer or intermediate individual layer initiated that a safe removal or forwarding is possible. Since the "cover layers” do not have a stability task or at least no separate task or the sole task of stability, it is possible that the entire combination element also curved or otherwise curved, because these individual layers on the edge are made of the same thin-walled material as the interposed ones Individual layers.
- a honeycomb structure that can be expanded into the room, or rather a hollow body structure can be realized in that one or both intermediate single layers have one Single adapter layer or the subsequent first single layer on both sides adapter single layers Building of any height and / or width resulting from the spatial construction assigned.
- the individual adapter layers make it possible, so to speak, on the middle layer building up again to build a corresponding construction so that in the room the component has to be cleverly and specifically expanded.
- this force is evenly distributed to all elements, with this combination the possibility is created to build up any total wall thickness.
- a middle class can work together with adapater single cell layers arranged on both sides on one side "Single layer” acting like an edge-side single layer or correspondingly be constructed, whereby the corresponding complementary structure into the room is achieved.
- the strength of the component structure can according to the invention by the choice of material can be varied, the invention providing that the individual layers made of paper soaked in liquid plastic, aluminum, steel or consist of plastic films.
- the corresponding individual layers show thereby, as already mentioned above, a wall thickness in the ⁇ range, whereby this in the invention is clarified further above by the term "film”.
- film Depending on the application components can do exactly the right purpose be created, both in terms of price and stability values Possibility to provide optimal components.
- the individual layers are made from woven, preferably from plastic threads or fiber composite materials woven foils, so the strength properties and thus the stability values even further targeted to the respective operating conditions to be able to adapt.
- the corresponding hollow body or partial hollow body should according to the Support the invention optimally flat against each other, the intermediate areas between contribute to the pyramids, as explained later.
- This stable individual layers can nevertheless be bent into the respective shape according to the invention or be edged, since according to the invention those leading up to the top of the pyramid Edges are perforated and / or slotted. With a corresponding load this perforation or the slitting is not problematic, because nevertheless the areas are contiguous and the corresponding forwarding or recording of Secure forces. Perforating or slitting also allows bending in the area of the individual pyramid without causing a deformation of the pyramid or of the corresponding hollow body must come.
- honeycomb structure resulting hollow body with inclined surfaces, preferably on a Edge are arranged at an angle. This sloping arrangement of the surfaces is optimal because the entire hollow body is then included in the line of force can, without there being differently loaded or unloaded sections of the hollow body gives.
- the oblique surfaces of the hollow bodies lie against one another and pass on the impact force or ensure an optimal distribution and thus Utilization of the entire honeycomb structure and ultimately also the corresponding one Component.
- the edge-side individual layers act or serve in the component according to the invention no more than top layer. Rather, they are in the entire component integrated by their hollow body or partial hollow body. Still, an exterior is smooth Formation possible in that the edge-side individual layers on the inside hollow body or partial hollow body and have a flat cover on the outside. The flat cover enables the corresponding components to be stacked, but then there is no interlocking of the components. Are advantageous such trained components in particular, for example, in the manufacture of Partitions or the like.
- the individual layers on the edge also consist of the same material with the same wall thickness as the other individual layers, so that the edge-side individual layers fully participate in the movements or better in the shapes of the other individual layers.
- This can be supported by the fact that the upper and the lower Single layer are made of flexible material or material to be made flexible.
- a softer one for the individual layers on the edge Plastic is used as for the other individual layers.
- the respective component is brought into the intended shape, it can be useful be to connect the individual layers with each other, this in particular is achieved in that the hollow body or the partial hollow body, the honeycomb structure resulting permanent with each other taking into account the material property or also releasably connected, preferably welded, glued, screwed together or are connected by friction.
- the respective shape can also be produced by this connection and thereby then be made the same.
- the invention provides that the Partial hollow body or hollow body of the individual layer pyramid-shaped and the honeycomb construction forming hollow pyramid-shaped or a mirror image double pyramid are trained accordingly. These double pyramids or rather Mirror image double pyramids support each other over the lower edges and thus form a stable spatial structure that fulfills the described and required tasks optimally sufficient.
- a gluing, screwing, etc. possible to to effectively connect the pyramids or double pyramids with each other and with each other to couple.
- the high stability of such components is due to the flat support of the elements involved in the honeycomb construction, with the Edges or clashing components of the basic construction are included can be by the pyramidal partial hollow body or the hollow body the base construction are spaced apart to form a spacer while the segments the double pyramid-shaped hollow body parallel to the central axis running edge strips are interconnected. So that is also in this Areas ensured a flat support instead of the previously usual linear Support.
- the stability of the entire component is thus specifically increased.
- the joining together of the individual segments of the double pyramid-shaped hollow body or the partial honeycomb panels and the secure flat support is favored in that the tips of the segments of the double pyramid-shaped hollow body or the partial hollow body are flattened. This is a threading of the honeycomb panels favors and facilitates merging.
- a precise support of the pyramid tips in addition to the one on top of the other Areas of the cooperating pyramids or mirror image double pyramids can be achieved according to the invention in that the flattening at the top the pyramid or the mirror image double pyramid with the spacer strip and / or Edge strips corresponding and designed to ensure a flat support is.
- the tip is also integrated into the flat support structure by the Flattening - as described - is done specifically, so that the Pyramids or mirror image double pyramids exactly in or on the spacer strips or have the edge strips fitted.
- the hollow body after connecting with a gaseous or liquid medium to fill completely or partially, with an exchange between the individual hollow bodies is achieved via recesses left in the walls.
- the kind of "Filling" depends on the application.
- the invention is characterized in particular by the fact that all of the structure such a honeycomb structure elements involved in the inclusion on the Involve component forces. That means the forces from the outside Level and added to the subsequent elements, d. H. the individual layers and their individual parts are forwarded. So the individual elements are one such component jointly responsible for the stability of the entire component.
- the top layers or individual layers on the edge no longer need anything special to be constructed in terms of stability, but have the same wall thickness as that remaining individual layers and usually consist of the same material. Not only are they simpler in terms of their structure, they also hinder them the shape of the entire component is no longer, since it with the intermediate individual layers bent together or otherwise deformed to the component to give the desired shape.
- FIG. 1 shows a component 1 in the finished state.
- the upper edge single layer 2 is partially open to reveal the honeycomb structure 3 that once on the upper edge-side individual layer 2 and on the other at the lower edge layer 4 supports.
- the honeycomb structure 3 is shown here in simplified form.
- the individual layers 2, 4 are integrally formed.
- the side edge 5 of the component 1 is a smooth plane here shown, as well as the edge-side individual layer 2, which is achieved there is that a cover on the single layer 2 shown further back 29 is applied.
- the honeycomb structure 3 consists of a large number of individual layers 23, 24, 25 with hollow bodies 7, 8, 9 or partial hollow bodies 26, 27; the corresponding reference numerals can be found in the following figures.
- Both the edge-side individual layer 2 and the edge-side individual layer 4 and the intervening honeycomb structure 3 with the corresponding individual layers 23, 24, 25 consists of honeycomb panels 17 of small wall thickness.
- This honeycomb panel 17 is usually even designed as a partial honeycomb film, ie it has a wall thickness in the ⁇ range on.
- the honeycomb structure 3 or the individual layers 2, 4, 23, 24, 25 are with hollow bodies 7, 8, 9 according to FIGS. 2 and 3 or partial hollow bodies 26, 27 according to FIG 6 trained.
- Hollow bodies 7, 8, 9 and partial hollow bodies 26, 27 differentiated because when joining the individual layers 2, 4, 23, 24, 25 are in turn hollow bodies 7, 8, 9 like also form part hollow bodies 26, 27, the total of the honeycomb structure 3 and Guide component 1.
- the individual hollow bodies 7, 8, 9 according to FIG. 2 and FIG. 3 generally form Pyramids 14, 14 'or mirror image double pyramids 19, with the individual segments 20, 21 serve to support the individual elements as a whole the honeycomb structure to reach each other and ensure.
- the pyramids are suitable 14 or mirror image double pyramids 19 are particularly favorable for such a flat area Support of the individual elements, because surfaces 10, 11 are offset accordingly are available that are also large enough to correspond to the component 1 acting forces can be safely absorbed and forwarded.
- the mirror image double pyramid 19 consists of the two pyramids 14, 14 ' are connected to one another via a coupling web 22.
- the central axis 30 separates the two Elements or along this central axis are connected to one another.
- Flattenings 13 are provided at the tips 12 of the individual pyramids 14, 14 ', an additional favorable support for the individual parts or individual elements towards the edge strip 31 or the spacer strip 18 or the base construction 16 enable.
- FIG. 4 shows an individual layer 2 or 4 on the edge, which is on the inside 28 Has hollow bodies 7, 8 or pyramids 14. These individual pyramids 14 are all same mast and connected to each other via the basic construction 16.
- This basic construction 16 simultaneously forms the spacer strips 18, which ensure that once the individual pyramids 14 are arranged at the same distance from each other are and at the same time ensure that when pushing the individual Individual layers 2, 4, 23, 24, 25 resulting partial hollow bodies 26, 27 and 7, 8, 9 also can support with their tips 12 on this spacer strip 18.
- the stability the corresponding overall construction of the component is thereby optimized.
- Figure 5 corresponds in principle to the representation of Figure 4 only that here Perspective is reproduced, which at the same time makes it clear that the corresponding Surfaces 10, 10 ', 11, 11' all on the mutual support and thus on the forwarding of the occurring or impacting forces are involved.
- the corresponding here also pyramids 14 formed on the inside 28 have the same shape on and thus also the same surfaces 10, 11. Between the individual pyramids 14 the base construction 16 or the spacer strips 18 run.
- FIG. 6 shows a component 1, which here consists of a total of five individual layers 2, 4, 23, 24, 25 is composed.
- the marginal individual layers are designated with 2 and 4, while the middle layer 25 or the middle individual layer 25 with their protruding on both sides Partial bodies 26 and 27 simultaneously as a coupling element for the individual layers 23, 24 and then the edge-side individual layers 2, 4 is used.
- Middle class d. H.
- the middle individual layer 25 protruding on both sides Has pyramids 14 or 14 'available for clawing or connection with to enable and favor the appropriately trained individual layers 23 and 24, complementary hollow bodies 7, 8, 9 or partial hollow bodies 26, 27 arise.
- the component 1 shown in FIG. 6 is in FIG. 7 shortly before the assembly reproduced, which is also intended to indicate optically that the edge-side individual layers 2, 4 and the individual layers 23, 24, 25 are so nested and can be nested in one another so that it forms a flat component high stability and low weight, with another advantage being the isolating effect of such a component results.
- Figure 8 finally shows the component of Figure 6 and Figure 7 in perspective Representation also shortly before the assembly, whereby it becomes clear here that the edge-side individual layers 2, 4 have no cover here.
- FIG. 9 finally shows a component 1 that consists of a total of eleven individual layers 2, 4, 23, 24, 25, 25 'and 33, the individual layers 23 and 24 and 25' and 33 are duplicated.
- the individual layers 2, 4 and also the individual layers 23, 24, 25 are known from the preceding figures, with two individual adapter layers here 33 come from the middle single layer 25 with hollow bodies on both sides 7, 8, 9 make a single layer 2 or 4 on the edge, because they alternate with Pyramids 14 and recesses 34 are provided and thereby on both sides of the middle individual layer 25 result in a coupling surface that those of the inside 28 of the edge-side individual layer 2 or 4 correspond.
- This is an extension of a corresponding one Component according to Figure 6, 7, 8 possible in the room, so that Components 1 of virtually any wall thickness can be generated.
- the individual figures also show that the special training the individual layers 2, 4, 23, 24, 25 and also 33 give the opportunity by accordingly staggered arrangement of the individual layers 2, 4, 23, 24, 25, 33 a To bring about expansion in the plane that the expansion of the component 1 to a very large component.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
- Panels For Use In Building Construction (AREA)
- Rod-Shaped Construction Members (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Building Environments (AREA)
- Adornments (AREA)
- Vending Machines For Individual Products (AREA)
- Electronic Switches (AREA)
- Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19924332 | 1999-05-27 | ||
DE19924332 | 1999-05-27 | ||
DE10022742A DE10022742A1 (de) | 1999-05-27 | 2000-05-10 | Leichtbauelement in Form einer Hohlkörperkonturwabe |
DE10022742 | 2000-05-10 | ||
PCT/DE2000/001683 WO2000073602A1 (de) | 1999-05-27 | 2000-05-25 | Leichtbauelement in form einer hohlkörperkonturwabe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1181421A1 EP1181421A1 (de) | 2002-02-27 |
EP1181421B1 true EP1181421B1 (de) | 2003-07-30 |
Family
ID=26005620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00941929A Expired - Lifetime EP1181421B1 (de) | 1999-05-27 | 2000-05-25 | Leichtbauelement in form einer hohlkörperkonturwabe |
Country Status (25)
Country | Link |
---|---|
US (1) | US7010897B1 (tr) |
EP (1) | EP1181421B1 (tr) |
JP (1) | JP2003500580A (tr) |
CN (1) | CN1133785C (tr) |
AT (1) | ATE246289T1 (tr) |
AU (1) | AU764925B2 (tr) |
BG (1) | BG106148A (tr) |
BR (1) | BR0011007A (tr) |
CA (1) | CA2375016A1 (tr) |
CZ (1) | CZ20014211A3 (tr) |
DK (1) | DK1181421T3 (tr) |
EA (1) | EA003566B1 (tr) |
EE (1) | EE200100625A (tr) |
ES (1) | ES2203490T3 (tr) |
HU (1) | HU224112B1 (tr) |
IL (1) | IL146630A (tr) |
IS (1) | IS6169A (tr) |
MA (1) | MA25415A1 (tr) |
NO (1) | NO20015684L (tr) |
NZ (1) | NZ515784A (tr) |
PL (1) | PL354358A1 (tr) |
PT (1) | PT1181421E (tr) |
SK (1) | SK16872001A3 (tr) |
TR (1) | TR200103407T2 (tr) |
WO (1) | WO2000073602A1 (tr) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10135255B4 (de) * | 2001-07-19 | 2005-11-24 | Hubert Leutermann | Leichtbau-Element mit pyramidenförmigen Vorsprüngen |
FI20020738A (fi) * | 2002-04-17 | 2003-10-18 | Compuson X Oy | Kantava seinärakenne kytkentäkaappeja varten sekä menetelmä seinärakenteen valmistamiseksi |
DE10222495C1 (de) * | 2002-05-22 | 2003-12-18 | Dirk Bohmann | Wabenplatte aus flächigen Formbauteilen |
US20040048027A1 (en) * | 2002-09-06 | 2004-03-11 | Hayes Michael W. | Honeycomb cores for aerospace applications |
DE10241726B3 (de) * | 2002-09-10 | 2004-01-08 | Bohmann, Dirk, Dr.-Ing. | Belüftete Höckerplatte als Kern eines Sandwichs |
CN100425433C (zh) * | 2004-09-30 | 2008-10-15 | 冷鹭浩 | 塑料复合板及其制造方法 |
DE102004062264A1 (de) * | 2004-12-23 | 2006-07-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Bauelement, insbesondere Wandverkleidung, und Verfahren zu dessen Herstellung |
US8381471B2 (en) * | 2005-12-09 | 2013-02-26 | Stephen C. Kobre | Packaging/construction material to make variable sized structures with intrinsic cushioning |
DE102006050393B4 (de) * | 2006-10-20 | 2012-10-18 | Amir Tahric | Lastaufnehmende Raumgitterstruktur, Leichtbauelement und Verfahren zu dessen Herstellung |
WO2009108712A2 (en) * | 2008-02-26 | 2009-09-03 | Klaus Stadthagen-Gonzalez | Structural element |
US8317258B2 (en) * | 2009-07-08 | 2012-11-27 | Mazda Motor Corporation | Frame structure for vehicle |
CN101791860B (zh) * | 2009-11-10 | 2012-05-09 | 仲杰 | 高强中空夹心板材的芯板的制造方法及板材 |
CN101798202A (zh) * | 2010-02-11 | 2010-08-11 | 詹德威 | 复合式板材制程及其结构物 |
DE102011100967A1 (de) * | 2011-05-09 | 2013-01-03 | Peter Küppers | Hohlkörperanordnung und Verfahren zur Herstellung derselben |
JP2013052581A (ja) * | 2011-09-03 | 2013-03-21 | Awa Paper Mfg Co Ltd | ハニカム構造体 |
US8835016B2 (en) | 2012-03-14 | 2014-09-16 | Celltech Metals, Inc. | Optimal sandwich core structures and forming tools for the mass production of sandwich structures |
JP2014087985A (ja) * | 2012-10-30 | 2014-05-15 | Awa Paper Mfg Co Ltd | ハニカム構造積層体 |
DE102013104318A1 (de) * | 2013-04-29 | 2014-10-30 | Fredy Iseli | Beschichtungsvorrichtung sowie Beschichtungsverfahren |
US9925736B2 (en) | 2013-12-13 | 2018-03-27 | Celltech Metals, Inc. | Sandwich structure |
WO2015148707A1 (en) | 2014-03-26 | 2015-10-01 | Celltech Metals Inc. | Container apparatus including sandwich structure |
US10124555B2 (en) * | 2014-04-22 | 2018-11-13 | Celltech Metals, Inc. | Sandwich structure including grooved outer sheet |
US10710328B2 (en) | 2014-04-22 | 2020-07-14 | Celltech Metals, Inc. | Wheeled trailer sandwich structure including grooved outer sheet |
US10112248B2 (en) | 2014-09-09 | 2018-10-30 | Celltech Metals, Inc. | Method of creating a bonded structure and apparatuses for same |
CN104328857B (zh) * | 2014-09-18 | 2017-04-12 | 天津市何七科技有限公司 | 一种多孔轻质复合板 |
KR101605662B1 (ko) | 2014-11-27 | 2016-03-22 | 김충기 | 다중 지지벽 구조체 |
US10286623B2 (en) * | 2015-06-15 | 2019-05-14 | Lockheed Martin Corporation | Composite materials with tapered reinforcements |
NO341234B1 (en) * | 2015-12-29 | 2017-09-25 | Stian Valentin Knutsen | Packaging system |
CN107825769A (zh) * | 2016-02-17 | 2018-03-23 | 林暄智 | 复合空心板结构及其制作方法 |
US10144582B2 (en) | 2016-05-11 | 2018-12-04 | Celltech Metals, Inc. | Cargo container apparatus including a sandwich structure and a track |
CN109391717B (zh) * | 2017-08-03 | 2021-05-14 | 富泰华工业(深圳)有限公司 | 手机外壳结构 |
CN107795250A (zh) * | 2017-12-01 | 2018-03-13 | 刘雨菡 | 一种坚固门门体 |
US10266098B1 (en) | 2017-12-21 | 2019-04-23 | Celltech Metals, Inc. | Cargo transportation system including a sandwich panel and a channel |
US11319133B2 (en) * | 2018-02-02 | 2022-05-03 | Foldstar, Inc. | Multi-laminate folded materials for construction of boxes and other objects |
US10507875B1 (en) | 2018-12-21 | 2019-12-17 | Celltech Metals Inc. | Trailer wall including logistics post |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB956132A (en) * | 1959-04-14 | 1964-04-22 | George Mountford Adie | Improvements in and relating to laminated slabs or panels |
US3639106A (en) | 1968-05-06 | 1972-02-01 | Burnley Engineering Products L | Acoustic panel |
US4021983A (en) * | 1976-02-09 | 1977-05-10 | Kirk Jr James D | Honeycomb building wall construction |
US4453367A (en) * | 1981-07-10 | 1984-06-12 | General Electric Company | Honeycomb core material and sandwich construction structural building materials incorporating same |
US4510725A (en) * | 1981-09-17 | 1985-04-16 | Wilson Mark E | Building block and construction system |
US4495237A (en) * | 1983-06-10 | 1985-01-22 | Patterson Fred R | Pyramidal core structure |
US4687691A (en) * | 1986-04-28 | 1987-08-18 | United Technologies Corporation | Honeycomb spliced multilayer foam core aircraft composite parts and method for making same |
US5106668A (en) * | 1989-06-07 | 1992-04-21 | Hexcel Corporation | Multi-layer honeycomb structure |
US5016417A (en) * | 1989-11-06 | 1991-05-21 | Robert Mentken | Modular universal construction units employing flexible web with interlockable heads |
US5233798A (en) * | 1991-03-06 | 1993-08-10 | Shaw Clive A | Enabling assembly |
EP0512433B1 (de) * | 1991-05-04 | 1997-07-30 | Hoechst Aktiengesellschaft | Poröses Honeycomb-Material, Verfahren zu seiner Herstellung und seine Verwendung |
US5270092A (en) * | 1991-08-08 | 1993-12-14 | The Regents, University Of California | Gas filled panel insulation |
US5460865A (en) * | 1993-05-13 | 1995-10-24 | Ciba-Geigy Corporation | Hybrid honeycomb sandwich panel |
US5543204A (en) * | 1995-01-05 | 1996-08-06 | The United States Of America As Represented By The Secretary Of The Navy | Bi-directionally corrugated sandwich construction |
US5588538A (en) * | 1995-09-13 | 1996-12-31 | Rundle; Christopher | Tire stacking method and apparatus |
US6253530B1 (en) * | 1995-09-27 | 2001-07-03 | Tracy Price | Structural honeycomb panel building system |
JP2901959B2 (ja) * | 1997-05-21 | 1999-06-07 | 株式会社環境アセスメントセンター | 積層構造物 |
DE19748192A1 (de) | 1997-10-31 | 1999-05-06 | Ipm Alternative Werkstoffe Gmb | Werkstoffplatte mit integriertem Randverschluß |
US6003283A (en) * | 1998-05-07 | 1999-12-21 | Hexcel Corporation | Vented flexible honeycomb |
-
2000
- 2000-05-25 US US09/979,926 patent/US7010897B1/en not_active Expired - Fee Related
- 2000-05-25 PL PL00354358A patent/PL354358A1/xx unknown
- 2000-05-25 CZ CZ20014211A patent/CZ20014211A3/cs unknown
- 2000-05-25 AT AT00941929T patent/ATE246289T1/de not_active IP Right Cessation
- 2000-05-25 ES ES00941929T patent/ES2203490T3/es not_active Expired - Lifetime
- 2000-05-25 WO PCT/DE2000/001683 patent/WO2000073602A1/de active IP Right Grant
- 2000-05-25 BR BR0011007-8A patent/BR0011007A/pt not_active IP Right Cessation
- 2000-05-25 CA CA002375016A patent/CA2375016A1/en not_active Abandoned
- 2000-05-25 EE EEP200100625A patent/EE200100625A/xx unknown
- 2000-05-25 CN CNB008108854A patent/CN1133785C/zh not_active Expired - Fee Related
- 2000-05-25 DK DK00941929T patent/DK1181421T3/da active
- 2000-05-25 TR TR2001/03407T patent/TR200103407T2/tr unknown
- 2000-05-25 EA EA200101210A patent/EA003566B1/ru not_active IP Right Cessation
- 2000-05-25 PT PT00941929T patent/PT1181421E/pt unknown
- 2000-05-25 EP EP00941929A patent/EP1181421B1/de not_active Expired - Lifetime
- 2000-05-25 HU HU0201458A patent/HU224112B1/hu not_active IP Right Cessation
- 2000-05-25 NZ NZ515784A patent/NZ515784A/en unknown
- 2000-05-25 JP JP2001500075A patent/JP2003500580A/ja not_active Withdrawn
- 2000-05-25 IL IL14663000A patent/IL146630A/xx not_active IP Right Cessation
- 2000-05-25 AU AU56726/00A patent/AU764925B2/en not_active Ceased
- 2000-05-25 SK SK1687-2001A patent/SK16872001A3/sk unknown
-
2001
- 2001-11-21 NO NO20015684A patent/NO20015684L/no not_active Application Discontinuation
- 2001-11-21 IS IS6169A patent/IS6169A/is unknown
- 2001-11-26 BG BG106148A patent/BG106148A/xx unknown
- 2001-11-27 MA MA26430A patent/MA25415A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
ES2203490T3 (es) | 2004-04-16 |
DK1181421T3 (da) | 2003-11-03 |
TR200103407T2 (tr) | 2002-06-21 |
JP2003500580A (ja) | 2003-01-07 |
PL354358A1 (en) | 2004-01-12 |
NO20015684D0 (no) | 2001-11-21 |
CA2375016A1 (en) | 2000-12-07 |
NO20015684L (no) | 2001-11-21 |
BR0011007A (pt) | 2002-05-14 |
CZ20014211A3 (cs) | 2002-06-12 |
EA200101210A1 (ru) | 2002-04-25 |
EA003566B1 (ru) | 2003-06-26 |
IS6169A (is) | 2001-11-21 |
CN1365414A (zh) | 2002-08-21 |
NZ515784A (en) | 2003-09-26 |
WO2000073602A1 (de) | 2000-12-07 |
EP1181421A1 (de) | 2002-02-27 |
IL146630A0 (en) | 2002-07-25 |
SK16872001A3 (sk) | 2002-10-08 |
AU5672600A (en) | 2000-12-18 |
US7010897B1 (en) | 2006-03-14 |
CN1133785C (zh) | 2004-01-07 |
MA25415A1 (fr) | 2002-04-01 |
EE200100625A (et) | 2003-02-17 |
IL146630A (en) | 2005-08-31 |
AU764925B2 (en) | 2003-09-04 |
BG106148A (en) | 2002-08-30 |
HUP0201458A2 (en) | 2002-10-28 |
HU224112B1 (hu) | 2005-05-30 |
ATE246289T1 (de) | 2003-08-15 |
PT1181421E (pt) | 2003-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1181421B1 (de) | Leichtbauelement in form einer hohlkörperkonturwabe | |
AT410687B (de) | Schichtholzelement | |
DE60031129T2 (de) | Deckensystem mit austauschbaren platten | |
EP1881124B1 (de) | Leichtbauplatte | |
DE3935120C2 (de) | Verfahren zur Herstellung von Metallverbundplatten | |
DE2758041C2 (de) | Verwendung eines aus mindestens zwei übereinander angeordneten Folien, insbesondere Kunststoffolien, bestehenden Bauelements | |
EP2506942B1 (de) | Puzzlespiel mit einem oder mehreren knickbaren puzzleteilen | |
DE10022742A1 (de) | Leichtbauelement in Form einer Hohlkörperkonturwabe | |
EP0159454A1 (de) | Hinterlüftete Isolierfassade | |
DE102008062678B4 (de) | Verbundbauteil mit einer Wabenstruktur | |
CH658698A5 (de) | Hohlbaustein. | |
DE4323922A1 (de) | Wabenstruktur, vorzugsweise für ein plattenförmiges Verbundmaterial, Verbundmaterial sowie Verfahren zur Herstellung eine solchen Verbundmaterials | |
EP2933393B1 (de) | Wand- oder deckensystem für gebäude | |
DE9412030U1 (de) | Bauteil | |
DE3801445A1 (de) | Flaechenelastisches fussbodenelement | |
DE2827837A1 (de) | Stapelbare platte fuer die herstellung von zweischaligen isolierten waenden | |
DE3426571A1 (de) | Lamellenklaerer | |
AT503224A2 (de) | Holzbautafel | |
DE102019104448A1 (de) | Schalungspaneel für Betonschalungen | |
DE10219981A1 (de) | Holzbautafel | |
WO1996015335A1 (de) | Schalungselement | |
DE202009003775U1 (de) | Schalungselement | |
CH490187A (de) | Aus geschichtetem Material bestehendes Plattengebilde | |
AT387331B (de) | Verfahren zur herstellung eines als kern von skiern verwendbaren bauteiles | |
DE10052070A1 (de) | Mobile Trennwand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20011211;LT PAYMENT 20011211;LV PAYMENT 20011211;MK PAYMENT 20011211;RO PAYMENT 20011211;SI PAYMENT 20011211 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SPARKASSE KLEVE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KUEPPERS, PETER |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030730 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030730 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PA ALDO ROEMPLER |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50003119 Country of ref document: DE Date of ref document: 20030904 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031030 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20031113 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20030730 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2203490 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040505 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20040506 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040510 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040512 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20040513 Year of fee payment: 5 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20040514 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20040517 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040518 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040519 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040527 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20040715 Year of fee payment: 5 |
|
26N | No opposition filed |
Effective date: 20040504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040730 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050525 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050526 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051125 |
|
BERE | Be: lapsed |
Owner name: *SPARKASSE KLEVE Effective date: 20050531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20051201 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060131 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050526 |
|
BERE | Be: lapsed |
Owner name: *SPARKASSE KLEVE Effective date: 20050531 |