EP1173634B1 - Kühlsystem für filamentbündel - Google Patents

Kühlsystem für filamentbündel Download PDF

Info

Publication number
EP1173634B1
EP1173634B1 EP00926823A EP00926823A EP1173634B1 EP 1173634 B1 EP1173634 B1 EP 1173634B1 EP 00926823 A EP00926823 A EP 00926823A EP 00926823 A EP00926823 A EP 00926823A EP 1173634 B1 EP1173634 B1 EP 1173634B1
Authority
EP
European Patent Office
Prior art keywords
shaft
cooling system
filament bundles
air
draw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00926823A
Other languages
English (en)
French (fr)
Other versions
EP1173634A1 (de
Inventor
Heinz-Dieter Beeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LL Plant Engineering AG
Original Assignee
ZiAG Plant Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZiAG Plant Engineering GmbH filed Critical ZiAG Plant Engineering GmbH
Publication of EP1173634A1 publication Critical patent/EP1173634A1/de
Application granted granted Critical
Publication of EP1173634B1 publication Critical patent/EP1173634B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/115Lubricator

Definitions

  • the present invention relates to a cooling system for filament bundles, which by at least two arranged side by side Spinneret units spun from polymer melt and with one Deduct speed of ⁇ 1000 m / min from a fume cupboard system be, the filament bundles by a rectified Air flow to be cooled.
  • a completely different cooling concept is based on the cooling of the filaments through a rectified accompanying air flow within one Protection tube per filament bundle, the air flow through blower u. Like. And / or by the caused by the filament advancement Suction is generated (U.S. Patents 5,688,458; 5,360,589; 5,340,517).
  • By funnel-shaped design of the bottom of the otherwise cylindrical Protection tube can according to EP patent 0 396 646, the air consumption reduce and improve the uniformity of the filaments.
  • Loud US Patent 3,611,485 is said to be the freshly spun filament bundle in one always free and uncontrolled cooling airflow is cooled, which is only filled up by fresh air as much as by the controllable output losses arise. Again, there is only one fireplace per Spinneret provided.
  • Patent 3,707,593 discloses a spinning process described, which is only suitable for nonwoven production: In The freshly spun filaments are turned into a pressure-tight spinning tube cooled by means of the compressed air used for extraction, in one cylindrical tube without partitions also several filament bundles can be cooled.
  • the method of EP patent 0 682 720 also wants the Ambient air at the same speed as the filaments carry along in order to later reach the solidification point of the thread and to be able to increase the take-off speed. This is with economy, d. H. higher production speed same quality or higher quality at the same speed founded. This is to be achieved by a in the lower area Extended cylindrical protective tube with suction device. Produce air speeds that are of the order of magnitude Filament take-off speed is, but not a Speed profile, which by the pre-stretching of the still not solidified filament bundle due to speed increase considered.
  • the object of the invention is to provide a cooling system for filament bundles create, which the protection of the not yet solidified filaments and their careful cooling serves and at the same time one if possible easy handling and high economic efficiency.
  • the cooling system is suitable for all those that can be processed by melt spinning Polymers, especially for textile polyester filaments with high Winding speed can be spun.
  • the idea of the invention is based on the fact that in a cylindrical tube an air column in itself flows at (almost) constant speed, even if the air layers in a parabolic flow profile slow down from the inside out. This is for the frozen one Thread that runs even at constant speed, meaningless, but not for the still soft, stretching filaments, whose Speed increases until solidification has occurred. If you now look at a conical tube, it is also here parabolic flow profile (slower from the inside to the outside becoming). But this profile is much stronger at the narrow end pronounced than at the beginning, d. H. the speed of the Air flow is not constant, but increases. And this does not apply only for standard cylindrical tubes, but also for tubes with rectangular cross section.
  • the idea of the invention further assumes that instead of individual, conical tubes for each individual thread, also a tapered one rectangular channel for all threads together can fulfill the task a supporting accompanying air flow with the most adapted Speed to produce the threads.
  • the rectangular cross section especially in connection with partitions between the individual Filament bundles, allows a more uniform cooling of all Individual filaments of the filament bundle than, for example, an oval one Cross-section. It is basically the same where and how the rejuvenation takes place.
  • the first part of the shaft (A) remain constant in width so that the individual filament bundles can be deducted in parallel and under the same conditions. This can by additional fenders between each Spinneret positions are still supported.
  • shaft B has to be wound up together slightly tapered in depth or strongly tapered Cross-section.
  • shaft B For individually wound, arranged side by side The width of the chute B remains unchanged over the bundles of filaments total shaft height and opposite shaft A.
  • the depth of shaft B should be dimensioned at the lower end so that on the one hand false air and Turbulence is prevented, but on the other hand touching the Shaft walls through the filaments are excluded. This will due to a slight inclination of the front and / or rear wall of the Shaft B reached according to a slight taper. at a bundle of filaments to be wound up is additionally carried out lateral tapering of the shaft B, so that the threads save space can be continued.
  • this second Shaft (B) Shortly before the end of this second Shaft (B), the air is extracted, taking the air can be traced back to the spinning position to already tempered (because it was driven in a circle) to be reinserted close to the thread. If necessary, additional air volumes are through the upper open gap sucked in between the spinneret units and the first shaft (A). At the The transition from the second shaft (B) to the end shaft (C) can be further Thread guide be attached.
  • the idea of the invention further assumes that the solidified Thread from the winding machine with constant, high Speed is subtracted automatically around you moving air jacket. This drag air cannot prevent but be used. So instead of narrowing the thread exit and the Extracting all air from the duct is invented suggested that after exiting the shaft (B) in the Cross section constant, but very tight end shaft (C) connect in which the threads should remain as long as possible. The not only does this prevent constant air flow Inflow of false air, but still supported by the The aforementioned drag air pulls the suction on the air inflow and relieves it the cost of generating suction air.
  • a process structure according to the invention is purely schematic shown.
  • the width of the first shaft (A) is constant, i. H. the two side walls (4) are straight and parallel to each other executed, and the taper takes place only through the front and back walls (5a, 5b) of the shaft.
  • the thread path (3a) is easily out of the Vertically clamped so that the start-up in the preparation oiler (6) can be guaranteed.
  • Front and rear wall (5a, 5b) of the shaft are inclined evenly towards the middle of the thread, so that the bevel must be done asymmetrically.
  • the individual are on the right in the view Fenders or partitions (7) shown the identical conditions between the individual filament bundles (3a) in this area subtracted parallel to each other.
  • the preparation oilers (6) which are for different titers must be adjustable in height, and then the first thread guides (8) directly before the transition to the next one Shaft (B) housed. Since the filament bundle (3) in the present Example wound separately, there is only a small one Tapering of the shaft B via its front and rear walls (9a, 9b). The width of the shaft (B), however, remains constant, the side walls (10) parallel to each other.
  • the air extraction (11) takes place shortly before the end of the second shaft (B) by means of a suction fan (11a), and the Air is then returned to the spinneret units (1) already tempered (because driven in a circle) close to the thread over one Blow ring (12) introduced and evenly on the Spinneret units (1) to be distributed. More air volumes will be at the upper open beginning of the first shaft (A) through the gap (13) sucked in if necessary. At the transition from the second shaft (B) to the End shaft (C) are attached to the second thread guides (14) can also be omitted if necessary. Basically, the Air extraction (11) also in the extraction direction further down from shaft C be made.
  • the shaft (C) is constant in cross section, but is kept very narrow, so the constant air flow created here the inflow of False air is prevented and extends until shortly before the first extraction godet (17) or in the case of spinning without godets until shortly before the next one Spinning element, for example the winder (2).
  • The is preferably Distance between filament bundles and the walls (15a, 15b) of Shaft (C) 1 to 4 cm.
  • Fig. 2 shows schematically the thread path (3a, 3) in one on the left conventional cooling shaft and the vertical speed curve of the total air, which is blown transversely downwards very slowly flows.
  • the filament speed is entered on the right in the diagram, the from the injection speed (V1) to the Winding speed (V2) increases in order to then remain constant. Nearly in parallel, the speed of the immediate accompanying air increases, generated only by the pull of the thread, its course.
  • FIG. 3 shows the schematic thread path on the left (3a, 3) in shaft A and B of a cooling system according to the invention and vertical speed curve of the guided in direct current Total air.
  • the extraction is forced into the vertical moving air due to the tapering of the cooling shaft A as a whole accelerated.
  • the speed course of the filament and the Speed of the direct accompanying air of the thread is in the Diagram shown on the right.
  • the thread (3a, 3) needs its immediate accompanying air not to accelerate as much as with conventional thread cooling. That is, the filament speed of the non-solidified polymer (3a) is not braked as much as usual in the prior art, and the Freezing point of the filaments or the first thread guide (8) lies further away from the spinneret unit (1). Through this gentle Elongation, in a longer period of time than usual, can cause Take-off speed can be increased without causing thread breakage.
  • the width of the first shaft (A) is constant and designed according to the spinning arrangement. Between each Filament bundles (3a) separating plates (7) are positioned so that for each of these bundles of threads (3a) the same space is available.
  • the height of the shaft (A) is usually 1.8 to max. Be 2.2 m, according to the level of the spinning platform.
  • the two side walls (4) are straight and parallel to each other and the taper of a total of 10 ° to max. 30 ° only overlaps laterally, the front and Rear wall (5a, 5b) of the shaft instead.
  • the front wall (5a) can be folded executed, the hinges of the hinged doors (19) for a vertical vertical opening are provided.
  • the doors (19) have in the area of Lubricator arrangement (6) Viewing window (20) for process monitoring on the lubricator (6) and first thread guide (8).
  • In the drawing is the left door (19) shown open.
  • the taper in the second shaft (B) is true freely selectable, but mostly on the side and as short as possible building so that the threads (3) can be carried on to save space, d. H. here the dimensioning results more or less from the structural conditions of the plant.
  • Air extraction (11) takes place shortly before the end of the shaft (B) via an adapted Pipe system.
  • the return of the air to the spinning position is here Not shown.
  • the subsequent end shaft (C) is in cross section kept constant, but it should be as tight as still manageable, and also be as long as possible.
  • a single door (21) is provided here, which extends into the area at the transition of the second shaft (B), so that the second thread guides (14) can be operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

Die vorliegende Erfindung betrifft ein Kühlsystem für Filamentbündel, welche durch mindestens zwei nebeneinander angeordnete Spinndüseneinheiten aus Polymerschmelze ersponnen und mit einer Geschwindigkeit von ≥ 1000 m/min von einem Abzugsystem abgezogen werden, wobei die Filamentbündel durch einen gleichgerichteten Luftstrom abgekühlt werden.
Polymerschmelzspinnverfahren, bei denen gleichzeitig mehrere Filamentbündel ersponnen, vorverstreckt, abgekühlt, präpariert und nach eventuellen weiteren Arbeitsschritten aufgespult werden, sind bekannt. In konventionellen Spinnanlagen werden die frisch ersponnenen, weichen Polymerfilamente kurz nach ihrem Austritt aus der Spinndüseneinheit durch eine Querstromanblasung abgekühlt. Bis zu ihrer Erstarrung erhöht sich die Geschwindigkeit der Filamente von der Spinngeschwindigkeit an der Düse bis auf die Aufspulgeschwindigkeit, d. h. auf dieser Strecke werden die Filamente verstreckt. Gleichzeitig ist dies die Strecke während der die Filamente gegen äußere Einwirkungen am empfindlichsten sind. US-Patent 3 551 949 (= DE-A 1 956 860) beschreibt einen Blasschacht mit Querstromanblasung für ein einzelnes Filamentbündel, wobei durch geneigte Seitenwände Luft-Turbulenzen reduziert werden. Gemäß US-Patent 3 684 416 (= DE-A 1 962 946) läßt sich der Platzbedarf von Blasschächten mit Querstromanblasung für mehrere Filamentbündel dadurch mindern, daß die Trennwände zwischen den einzelnen Filamentbündeln verformbar sind.
Ein völlig anderes Kühlkonzept basiert auf der Abkühlung der Filamente durch einen gleichgerichteten Begleitluftstrom innerhalb von je einem Schutzrohr pro Filamentbündel, wobei der Luftstrom durch Gebläse u. dgl. und/oder durch den durch die Filamentfortbewegung verursachten Sog erzeugt wird (US-Patente 5,688,458; 5,360,589; 5,340,517). Durch trichterförmige Ausbildung des Bodens des ansonsten zylinderförmigen Schutzrohres läßt sich gemäß dem EP-Patent 0 396 646 der Luftverbrauch reduzieren und die Gleichmäßigkeit der Filamente verbessern. Laut US-Patent 3 611 485 soll das frisch ersponnene Filamentbündel in einem stets frei und unkontrolliert umlaufenden Luftstrom abgekühlt werden, der nur soweit durch Frischluft aufgefüllt wird, wie durch den regelbaren Ausgang Verluste entstehen. Auch hier ist nur ein Kamin pro Spinndüse vorgesehen. Im US-Patent 3 707 593 wird ein Spinnprozeß beschrieben, der nur für Vlies-Herstellung (non-woven) geeignet ist: In einem druckdichten Spinnrohr werden die frisch ersponnene Filamente mittels der zum Abzug dienenden Druckluft abgekühlt, wobei in einem zylindrischen Rohr ohne Zwischenwände auch mehrere Filamentbündel abgekühlt werden können.
Das Verfahren des EP-Patentes 0 682 720 will darüber hinaus die Umgebungsluft mit der gleichen Geschwindigkeit wie die Filamente mitführen, um so den Erstarrungspunkt des Fadens später zu erreichen und dadurch die Abzugsgeschwindigkeit erhöhen zu können. Dies wird mit der Wirtschaftlichkeit, d. h. höhere Produktionsgeschwindigkeit bei gleicher Qualität oder höhere Qualität bei gleicher Geschwindigkeit begründet. Erreicht werden soll dies durch ein im unteren Bereich erweitertes zylindrisches Schutzrohr mit Absaugvorrichtung. Erzeugen lassen sich so zwar Luftgeschwindigkeiten, die in der Größenordnung der Filament-Abzugsgeschwindigkeit liegen, nicht aber ein Geschwindigkeitsprofil, welches die durch die Vorverstreckung des noch nicht erstarrten Filamentbündels bedingte Geschwindigkeitszunahme berücksichtigt.
Einzelne Fadenschutzrohre sind teurer als ein gemeinsamer Kanal für mehrere Fäden und besonders nachteilig ist deren Handhabung: Jeder einzelne Faden muß beim Auflegen auf die Spulmaschine durch sein ihm zugehöriges Schutzrohr manuell hindurchgeführt werden. Dies ist bei der Ausgestaltung nach EP-Patent 0 682 720 besonders schwierig durch die enge Öffnung am unteren Ende, die das Ansaugen von Falschluft verhindern soll. Wegen der Enge der Rohre wird der Präparationsauftrag auch erst nach dem Austritt aus dem Rohr auf den Faden aufgebracht. Dies ist ein Nachteil gegenüber den Verfahren mit Querstromanblasung, die sofort nach der Abkühlung der einzelnen Filamente den Fadenschluß anstreben und erst nach der Ölung Fadenführerelemente einsetzen. Besonders nachteilig und kostenintensiv ist aber, daß die Luftabsaugung für jedes einzelne Fadenschutzrohr installiert, betrieben und geregelt werden muß.
Aufgabe der Erfindung ist es ein Kühlsystem für Filamentbündel zu schaffen, welches dem Schutz der noch nicht erstarrten Filamente und deren behutsamer Abkühlung dient und gleichzeitig eine möglichst einfache Handhabung und hohe Wirtschaftlichkeit sichert.
Die Lösung dieser Aufgabe erfolgt erfindungsgemäß durch ein Kühlsystem gemäß den Angaben der Patentansprüche.
Das Kühlsystem eignet sich für alle durch Schmelzspinnen verarbeitbare Polymere, insbesondere für textile Polyesterfilamente, die mit hoher Aufspulgeschwindigkeit ersponnen werden.
Der Erfindungsgedanke geht davon aus, daß in einem zylindrischen Rohr eine Luftsäule an sich mit (fast) konstanter Geschwindigkeit strömt, auch wenn die Luftschichten in einem parabelförmigen Strömungsprofil von innen nach außen langsamer werden. Dies ist für den erstarrten Faden, der selbst mit konstanter Geschwindigkeit läuft, bedeutungslos, nicht aber für die noch weichen, sich streckenden Filamente, deren Geschwindigkeit solange zunimmt, bis die Erstarrung eingetreten ist. Betrachtet man nun ein konisches Rohr, so liegt auch hier ein parabelförmiges Strömungsprofil (von innen nach außen langsamer werdend) vor. Aber dieses Profil ist am engen Ende wesentlich stärker ausgeprägt als am weiten Anfang, d. h. die Geschwindigkeit des Luftstromes ist nicht konstant, sondern nimmt zu. Und dies gilt nicht nur für übliche zylindrische Rohre, sondern auch für Rohre mit rechteckigem Querschnitt.
Der Erfindungsgedanke geht des weiteren davon aus, daß statt einzelner, konischer Rohre für jeden einzelnen Faden, auch ein sich verjüngender rechteckiger Kanal für alle Fäden gemeinsam die Aufgabe erfüllen kann, einen unterstützenden Begleitluftstrom mit möglichst angepaßter Geschwindigkeit zu den Fäden zu erzeugen. Der rechteckige Querschnitt, insbesondere in Verbindung mit Trennwänden zwischen den einzelnen Filamentbündeln, erlaubt eine gleichmäßigere Abkühlung sämtlicher Einzelfilamente der Filamentbündel als zum Beispiel ein ovaler Querschnitt. Dabei ist es im Prinzip gleich, wo und wie die Verjüngung stattfindet. Vorzugsweise sollte aber der erste Teil des Schachtes (A) in der Breite konstant bleiben, damit die einzelnen Filamentbündel parallel und unter gleichen Bedingungen abgezogen werden können. Dies kann durch zusätzliche Schutzbleche zwischen den einzelnen Spinndüsenpositionen noch unterstützt werden. Hier ist bis zum unteren Ende des ersten Schachtes (A) auch Raum genug für die übliche Position des Präparationsölers, der zudem in der Höhe verstellbar sein kann, um die Vorteile der Erfindung auch für unterschiedliche Titer nutzen zu können. Direkt vor dem Übergang zum folgenden Schacht (B) ist zunächst ein Fadenführer untergebracht.
Je nachdem, ob die einzelnen Filamentbündel einzeln oder zu mehreren zusammengefaßt aufgewickelt werden sollen, hat Schacht B einen geringfügig in der Tiefe verjüngten oder einen stark verjüngten Querschnitt. Bei einzeln aufzuwickelnden, nebeneinander angeordneten Filamentbündeln bleibt die Breite des Schachtes B unverändert über die gesamte Schachthöhe und gegenüber Schacht A. Die Tiefe des Schachtes B sollte am unteren Ende so bemessen sein, daß einerseits Falschluft und Turbulenzen unterbunden werden, andererseits aber Berührungen der Schachtwandungen durch die Filamente ausgeschlossen sind. Dies wird durch eine leichte Neigung der Vorder- und/oder Rückwand des Schachtes B entsprechend einer geringfügigen Verjüngung erreicht. Bei zusammengefaßt aufzuwickelnden Filamentbündeln erfolgt zusätzlich eine seitliche Verjüngung des Schachtes B, damit die Fäden platzsparend weiter geführt werden können. Kurz vor dem Ende dieses zweiten Schachtes (B) wird die Absaugung der Luft vorgenommen, wobei die Luft bis zur Spinnposition zurückgeführt werden kann, um bereits temperiert (weil im Kreis gefahren) nahe am Faden erneut eingebracht zu werden. Weitere Luftmengen werden, soweit nötig, durch den oberen offenen Spalt zwischen Spinndüseneinheiten und dem ersten Schacht (A) angesaugt. Am Übergang des zweiten Schachtes (B) zum Endschacht (C) können weitere Fadenführer angebracht sein.
Der Erfindungsgedanke geht des weiteren davon aus, daß der erstarrte Faden, der von der Aufspulmaschine mit konstanter, hoher Geschwindigkeit abgezogen wird, um sich herum einen automatisch mitlaufenden Luftmantel hat. Diese Schleppluft kann nicht verhindert, aber genutzt werden. Statt also den Fadenaustritt zu verengen und die gesamte Luft aus dem Kanal abzusaugen, wird erfindungsgemäß vorgeschlagen, nach dem Austritt aus dem Schacht (B) einen im Querschnitt konstant, aber sehr eng bleibenden Endschacht (C) anzuschließen, in dem die Fäden möglichst lange verbleiben sollen. Die hier entstehende konstante Luftströmung verhindert nicht nur das Einströmen von Falschluft, sondern unterstützt noch durch die vorerwähnte Schleppluft den Sog auf die Luftzuströmung und entlastet so die Kosten für die Erzeugung der Saugluft.
Der prozeßtechnische Nutzeffekt der Erfindung liegt vor allem in der Möglichkeit, höhere Spinngeschwindigkeiten als bei konventionellen Verfahren mit rein mechanischen Mittel zu erreichen. Auch wird die Aufgabe gegenüber dem bekannten EP-Patent 0 682 720 besser und kostengünstiger gelöst.
Die weitere Beschreibung erfolgt anhand der Zeichnungen, wobei:
  • Fig. 1 zeigt schematisch ein erfindungsgemäßes Kühlsystem, links einen Schnitt durch den Fadenlauf von der Spinndüseneinheit bis zur Aufspulung und rechts die Ansicht auf einen beispielhaften Aufbau mit sechs Fadenläufen.
  • Fig. 2 zeigt links den Fadenlauf in einem konventionellen Kühlschacht mit Querstromanblasung und den vertikalen Geschwindigkeitsverlauf der Gesamtluft und rechts im Diagramm die Filamentgeschwindigkeit und dazu die Geschwindigkeit der unmittelbaren Begleitluft des Fadens.
  • Fig. 3 zeigt links den Fadenlauf in einem erfindungsgemäßen Kühlschacht mit Gleichstromführung und den vertikalen Geschwindigkeitsverlauf der Gesamtluft und im Diagramm rechts die Filamentgeschwindigkeit und die Geschwindigkeit der unmittelbaren Begleitluft des Fadens.
  • Fig. 4 zeigt ein erfindungsgemäßes Beispiel für sechs Fäden in dreidimensionaler Darstellung.
  • In Fig. 1 wird ein erfindungsgemäßer Verfahrensaufbau rein schematisch dargestellt. Links im Schnitt wird der Fadenlauf (3a, 3) von der Spinndüseneinheit (1) bis zur Aufspulung (2) und rechts dazu die Ansicht für einen beispielhaften Aufbau mit sechs Spinndüseneinheiten (1) gezeigt. Der erste Schacht (A) ist in der Breite konstant, d. h. die beiden Seitenwände (4) sind gerade und parallel zueinander ausgeführt, und die Verjüngung findet nur über die Vorder- und Rückwand (5a, 5b) des Schachtes statt. Der Fadenlauf (3a) ist leicht aus der Senkrechten verspannt, damit im Präparationsöler (6) der Anlauf gewährleistet werden kann. Vorder- und Rückwand (5a, 5b) des Schachtes sind zur Fadenmitte gleichmäßig geneigt, so daß die Schrägung asymmetrisch erfolgen muß. Rechts in der Ansicht sind die einzelnen Schutz- bzw. Trennbleche (7) gezeigt, die identische Bedingungen zwischen den einzelnen Filamentbündeln (3a), die in diesem Bereich parallel zueinander abgezogen werden, schaffen. Am unteren Ende des ersten Schachtes (A) sind zunächst die Präparationsöler (6), die für unterschiedliche Titer in der Höhe verstellbar sein müssen, und danach die ersten Fadenführer (8) direkt vor dem Übergang zum nachfolgenden Schacht (B) untergebracht. Da die Filamentbündel (3) im vorliegenden Beispiel separat aufgewickelt werden, erfolgt nur eine geringe Verjüngung des Schachtes B über dessen Vorder- und Rückwand (9a, 9b). Die Breite des Schachtes (B) bleibt hingegen konstant, die Seitenwände (10) also parallel zueinander. Die Luftabsaugung (11) erfolgt kurz vor dem Ende des zweiten Schachtes (B) mittels Sauggebläse (11a), und die Luft wird dann bis zu den Spinndüseneinheiten (1) zurückgeführt, um bereits temperiert (weil im Kreis gefahren) nahe am Faden über einen Einblasring (12) eingebracht und gleichmäßig auf die Spinndüseneinheiten (1) verteilt zu werden. Weitere Luftmengen werden am oberen offenen Anfang des ersten Schachtes (A) durch den Spalt (13) angesaugt, soweit nötig. Am Übergang des zweiten Schachtes (B) zum Endschacht (C) sind die zweiten Fadenführer (14) angebracht, die gegebenenfalls auch entfallen können. Grundsätzlich kann die Luftabsaugung (11) auch in Abzugsrichtung weiter unten aus Schacht C vorgenommen werden. Jedoch ist die Gefahr unerwünschter Falschluftansaugung um so größer, je geringer der Abstand zwischen Luftabsaugung (11) und dem Austrittsende (18) von Schacht C ist. Der Schacht (C) ist im Querschnitt konstant, aber sehr eng gehalten, damit die hier entstehende konstante Luftströmung das Einströmen von Falschluft verhindert, und reicht bis kurz vor die erste Abzugsgalette (17) oder bei galettenlosem Spinnen bis kurz vor das nachfolgende Spinnelement, zum Beispiel der Wickler (2). Vorzugsweise beträgt der Abstand zwischen Filamentbündeln und den Wandungen (15a, 15b) von Schacht (C) 1 bis 4 cm.
    Fig. 2 zeigt schematisch links den Fadenlauf (3a, 3) in einem konventionellen Kühlschacht und den vertikalen Geschwindigkeitsverlauf der Gesamtluft, die quer eingeblasen nach unten hin nur sehr langsam strömt. Rechts im Diagramm ist die Filamentgeschwindigkeit eingetragen, die von der Einspritzgeschwindigkeit (V1) bis auf die Aufspulgeschwindigkeit (V2) zunimmt, um dann konstant zu bleiben. Fast parallel dazu nimmt'die Geschwindigkeit der unmittelbaren Begleitluft, nur durch den Sog des Fadens erzeugt, ihren Verlauf.
    Im Vergleich dazu zeigt die Fig. 3 links den schematischen Fadenlauf (3a, 3) im Schacht A und B eines erfindungsgemäßen Kühlsystems und den vertikalen Geschwindigkeitsverlauf der im Gleichstrom geführten Gesamtluft. Hier wird, durch die Absaugung erzwungen, die vertikal bewegte Luft durch die Verjüngung des Kühlschachtes A insgesamt beschleunigt. Der Geschwindigkeitsverlauf des Filamentes und die Geschwindigkeit der unmittelbaren Begleitluft des Fadens wird im Diagramm rechts dargestellt. Weil schon eine beschleunigte Luftbewegung vorliegt, braucht der Faden (3a, 3) seine unmittelbare Begleitluft nicht so extrem zu beschleunigen, wie bei konventioneller Fadenkühlung. D. h., die Filamentgeschwindigkeit des nicht erstarrten Polymers (3a) wird nicht so stark gebremst wie beim Stand der Technik üblich, und der Erstarrungspunkt der Filamente bzw. der erste Fadenführer (8) liegt weiter weg von der Spinndüseneinheit (1). Durch diese sanfte Verstreckung, in einem längeren Zeitraum als üblich, kann die Abzugsgeschwindigkeit erhöht werden, ohne daß es zum Fadenbruch kommt.
    Fig. 4 zeigt ein anderes, erfindungsgemäßes Beispiel für sechs gemeinsam aufgewickelte Filamentbündel (3) in dreidimensionaler Darstellung. Der erste Schacht (A) ist in der Breite konstant und entsprechend der Spinnanordnung ausgelegt. Zwischen den einzelnen Filamentbündeln (3a) sind Trennbleche (7) positioniert, so daß für jedes dieser Fadenbündel (3a) der gleiche Raum zur Verfügung steht. Die Höhe des Schachtes (A) wird in der Regel 1,8 bis max. 2,2 m betragen, entsprechend der Etagenhöhe der Spinnbühne. Die beiden Seitenwände (4) sind gerade und parallel zueinander ausgeführt und die Verjüngung von insgesamt 10° bis max. 30° findet nur seitlich über, die Vorder- und Rückwand (5a, 5b) des Schachtes statt. Die Vorderwand (5a) ist klappbar ausgeführt, wobei die Scharniere der Flügeltüren (19) für eine vertikal senkrechte Öffnung vorgesehen sind. Die Türen (19) haben im Bereich der Öleranordnung (6) Sichtfenster (20) zur Prozeßüberwachung am Öler (6) und ersten Fadenführer (8). In der Zeichnung ist die linke Tür (19) geöffnet dargestellt. Die Verjüngung im zweiten Schacht (B) ist zwar frei wählbar, erfolgt jedoch vorwiegend seitlich und möglichst kurz bauend, damit die Fäden (3) platzsparend weiter geführt werden können, d. h. hier ergibt sich die Dimensionierung mehr oder weniger aus den baulichen Gegebenheiten der Anlage. Im allgemeinen ist ein Winkel von 2 bis 30° zwischen Vorder- und Rückwand (9a, 9b) und von 30 bis 120° zwischen beiden Seitenwänden (10) angemessen. Die Luftabsaugung (11) erfolgt kurz vor dem Ende des Schachtes (B) über ein angepaßtes Rohrsystem. Die Rückführung der Luft bis zur Spinnposition ist hier nicht gezeigt. Der anschließende Endschacht (C) ist im Querschnitt konstant gehalten, aber er sollte so eng, wie noch handhabbar, und auch so lang wie möglich sein. Hier ist eine einzelne Tür (21) vorgesehen, die bis in den Bereich am Übergang des zweiten Schachtes (B) reicht, damit die zweiten Fadenführer (14) bedient werden können.

    Claims (10)

    1. Kühlsystem für Filamentbündel, welche durch mindestens zwei nebeneinander angeordnete Spinndüseneinheiten (1) aus Polymerschmelze ersponnen und mit einer Geschwindigkeit von ≥ 1000 m/min von einem Abzugsystem abgezogen werden, wobei die Filamentbündel durch einen gleichgerichteten Luftstrom abgekühlt werden, dadurch gekennzeichnet, daß das Kühlsystem aus folgenden Teilen besteht:
      unmittelbar unterhalb der Spinndüseneinheiten (1) Mittel (12, 13) zum Zuführen von Luft,
      daran anschließend ein Schacht A mit rechteckigem Querschnitt, konstanter Breite zwischen den Schacht-Seitenwänden (4) und sich in Abzugsrichtung verjüngender Tiefe zwischen Schacht-Vorder- und -Rückwand (5a, 5b), wobei die Filamentbündel (3a) durch den Schacht A abgezogen werden und nahe dem Austritt aus Schacht A zunächst über einen Präparationsöler (6) und danach durch einen ersten Fadenführer (8) geführt werden,
      ein an Schacht A anschließender Schacht B mit rechteckigem Querschnitt und sich in Abzugsrichtung verjüngender Tiefe und wahlweise verjüngender Breite, wobei die Filamentbündel (3) durch den Schacht B abgezogen werden,
      ein an Schacht B anschließender Schacht C mit rechteckigem, konstantem Querschnitt, welcher bis nahe an das Abzugssystem (17) reicht, wobei die Filamentbündel (3) durch den Schacht C dem Abzugssystem (17) zugeführt werden, und
      nahe dem Austritt aus Schacht B Mittel (11) zum Abführen von Luft.
    2. Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, daß innerhalb des Schachtes A zwischen jeweils zwei Filamentbündeln (3a) je eine Trennwand (7) angeordnet ist, welche über die gesamte Tiefe des Schachtes A parallel zu dessen Seitenwänden (4) verläuft.
    3. Kühlsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Vorder- und Rückwand (5a, 5b) des Schachtes A in einem Winkel von 10 bis 30° zueinander angeordnet sind, wobei beide Wände (5a, 5b) gleichmäßig zur Achse der Filamentbündel (3a) geneigt sind.
    4. Kühlsystem nach Anspruch 3, dadurch gekennzeichnet, daß der Winkel zwischen Vorder- und Rückwand (5a, 5b) variabel einstellbar ist, wobei die Einstellung derart erfolgt, daß innerhalb des Schachtes A die Strömungsgeschwindigkeit der zugeführten Luft in etwa im gleichen Umfang zunimmt wie die Geschwindigkeit der Filamentbündel (3a).
    5. Kühlsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Abstand zwischen den Filamentbündeln (3) und den Wandungen (15a, 15b, 16) von Schacht C 1 bis 4 cm beträgt.
    6. Kühlsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sich der Querschnitt von Schacht B in der Tiefe und in der Breite verjüngt, wobei die Filamentbündel (3) nahe dem Austritt aus Schacht B durch einen zweiten Fadenführer (14) geführt werden.
    7. Kühlsystem nach Anspruch 6, dadurch gekennzeichnet, daß Vorderund Rückwand (9a, 9b) des Schachtes B in einem Winkel von 2 bis 30° und die beiden Seitenwände (10) in einem Winkel von 30 bis 120° zueinander verlaufen.
    8. Kühlsystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Vorderwand (5a) des Schachtes A und/oder die Vorderwand (15a) des Schachtes C geöffnet werden kann.
    9. Kühlsystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Mittel zum Zuführen von Luft aus einem zur Umgebungsluft offenen Spalt (13) zwischen Schacht A und den Spinndüseneinheiten (1) besteht, und das Mittel zum Abführen von Luft aus mindestens einer von Schacht B abzweigenden Leitung (11) mit Absauggebläse (11a) besteht.
    10. Kühlsystem nach Anspruch 9, dadurch gekennzeichnet, daß das Mittel zum Zuführen von Luft zusätzlich einen in den Spalt (13) mündenden, die mindestens zwei Spinndüseneinheiten (1) umgebenden Blasring (12) umfaßt, wobei die mittels des mindestens einem Absauggebläse (11a) abgeführte Luft zu dem Blasring (12) rückgeführt und gleichmäßig auf die mindestens zwei Spinndüseneinheiten (1) verteilt wird.
    EP00926823A 1999-04-08 2000-04-06 Kühlsystem für filamentbündel Expired - Lifetime EP1173634B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19915762 1999-04-08
    DE19915762A DE19915762A1 (de) 1999-04-08 1999-04-08 Kühlsystem für Filamentbündel
    PCT/EP2000/003067 WO2000061842A1 (de) 1999-04-08 2000-04-06 Kühlsystem für filamentbündel

    Publications (2)

    Publication Number Publication Date
    EP1173634A1 EP1173634A1 (de) 2002-01-23
    EP1173634B1 true EP1173634B1 (de) 2004-06-02

    Family

    ID=7903829

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00926823A Expired - Lifetime EP1173634B1 (de) 1999-04-08 2000-04-06 Kühlsystem für filamentbündel

    Country Status (5)

    Country Link
    US (1) US6652255B1 (de)
    EP (1) EP1173634B1 (de)
    AT (1) ATE268394T1 (de)
    DE (2) DE19915762A1 (de)
    WO (1) WO2000061842A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1762644A1 (de) 2005-09-07 2007-03-14 Maschinenfabrik Rieter Ag Verfahren und Vorrichtung zur Herstellung von Filamentgarne mittels Schmelzspinnen

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1582610A1 (de) * 2004-03-25 2005-10-05 Maschinenfabrik Rieter Ag Abkühlung von Filamentgarnen
    DE102009021117A1 (de) * 2009-05-13 2010-11-18 Oerlikon Textile Gmbh & Co. Kg Verfahren und Vorrichtung zum Schmelzspinnen und Abkühlen einer Vielzahl von Monofilamenten
    CN108823665B (zh) * 2018-09-07 2023-12-22 闽江学院 一种带有可调聚冷板的自动化纺丝系统
    DE102022003354A1 (de) 2022-09-12 2024-03-14 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zur Herstellung synthetischer Fäden

    Family Cites Families (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE396646C (de) 1922-08-03 1924-06-06 Antonie Maier Staubsauger
    DE682720C (de) 1938-08-16 1939-10-21 Kurt Mussmann Klammer zum Aufhaengen einer Handtasche an einer Tischplatte
    US3336634A (en) * 1966-04-22 1967-08-22 Du Pont Quenching chimney
    US3551949A (en) 1968-11-15 1971-01-05 Monsanto Co Spinning chimney
    US3611485A (en) 1968-12-30 1971-10-12 Monsanto Co Spinning chimney
    BE757536A (fr) 1969-12-16 1971-03-16 Lilly Co Eli Immuno-depresseurs et agents antiviraux
    CA944913A (en) 1970-04-01 1974-04-09 Toray Industries, Inc. Apparatus and method for manufacturing continuous filaments from synthetic polymers
    US3999909A (en) * 1974-08-09 1976-12-28 Barmag Barmer Maschinenfabrik Aktiengesellschaft Spinning apparatus with pneumatic filament conveyor tube
    US4204828A (en) * 1978-08-01 1980-05-27 Allied Chemical Corporation Quench system for synthetic fibers using fog and flowing air
    DE7926583U1 (de) * 1979-09-17 1980-11-27 Karl Fischer Industrieanlagen Gmbh, 1000 Berlin Spinnvorrichtung zum spinnen von endlosen faeden
    DE8412111U1 (de) * 1984-04-18 1985-08-14 Fourné, Franz, 5305 Alfter Vorrichtung zum Führen der Kühlluft in Kühlschächten zum Abkühlen und Verfestigen schmelzgesponnener Fäden u. dgl.
    JPS63165506A (ja) * 1986-12-25 1988-07-08 Toray Ind Inc 複数本の合成繊維の製造装置
    EP0549763B1 (de) * 1991-07-23 1995-02-01 Barmag Ag Vorrichtung zur herstellung eines synthetischen fadens
    US5688458A (en) 1992-03-18 1997-11-18 Maschinenfabrik Rieter Ag Method and device to manufacture synthetic endless filaments
    DE4220915A1 (de) 1992-06-25 1994-01-05 Zimmer Ag Verfahren und Vorrichtung zur Herstellung synthetischer Endlosfilamente
    DE4223198A1 (de) 1992-07-15 1994-01-20 Zimmer Ag Verfahren und Vorrichtung zur Herstellung synthetischer Endlosfilamente
    TR28441A (tr) * 1993-05-24 1996-07-04 Courtaulds Fibres Holdings Ltd Liyosel filamentlerinin pihtilastirilmasinda kullanilabilen egirme hücreleri.
    TW268054B (de) 1993-12-03 1996-01-11 Rieter Automatik Gmbh
    DE59611386D1 (de) * 1995-07-19 2006-11-16 Saurer Gmbh & Co Kg Verfahren und Vorrichtung zum Heizen eines synthetischen Fadens

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1762644A1 (de) 2005-09-07 2007-03-14 Maschinenfabrik Rieter Ag Verfahren und Vorrichtung zur Herstellung von Filamentgarne mittels Schmelzspinnen

    Also Published As

    Publication number Publication date
    DE50006689D1 (de) 2004-07-08
    EP1173634A1 (de) 2002-01-23
    US6652255B1 (en) 2003-11-25
    DE19915762A1 (de) 2000-10-12
    WO2000061842A1 (de) 2000-10-19
    ATE268394T1 (de) 2004-06-15

    Similar Documents

    Publication Publication Date Title
    EP0682720B1 (de) Schmelzspinnverfahren für filamente
    DE1904561A1 (de) Spinnverfahren und Spinnapparat zur Durchfuehrung des Verfahrens
    EP1173634B1 (de) Kühlsystem für filamentbündel
    DE1289943B (de) Verfahren und Vorrichtung zur Herstellung eines Vlieses oder Stranges bzw. einer Lunte aus Glas- oder anderen thermoplastischen Fasern
    EP1762644B1 (de) Verfahren und Vorrichtung zur Herstellung von Filamentgarne mittels Schmelzspinnen
    EP0580977A1 (de) Spinnvorrichtung zum Spinnen synthetischer Fäden
    LU81698A1 (de) Duennwandiger schlauch aus einem schmelzspinnbaren synthetischen polymeren sowie verfahren zu einer herstellung
    DE3406347A1 (de) Spinnanlage fuer chemiefasern mit anblaskasten und spinnschacht
    DE4220915A1 (de) Verfahren und Vorrichtung zur Herstellung synthetischer Endlosfilamente
    WO2015144440A1 (de) Vorrichtung zum abziehen und behandeln einer fadenschar
    EP1307610B2 (de) Verfahren und vorrichtung zur herstellung von endlosformkörpern
    DE2840988C2 (de) Verfahren zur Herstellung von Monofilen
    DE1936354A1 (de) Verfahren und Vorrichtung zum Ablegen von Faeden zur Vliesherstellung
    CH663222A5 (de) Spinnanlage fuer chemiefasern.
    DE4208568A1 (de) Verfahren und vorrichtung zur herstellung synthetischer endlosfilamente
    EP0480550B1 (de) Verfahren und Vorrichtung zur Herstellung von Spinnvliesen
    DE19924508C1 (de) Vorrichtung zum Herstellen eines Spinnvlieses durch Spinnen aus einer Überdruckkammer
    DE102008051836B4 (de) Verfahren zur Herstellung von Spinnvliesen
    EP3575468B1 (de) Vorrichtung und verfahren zur herstellung von spinnvliesen aus endlosfilamenten
    EP0488939A1 (de) Verfahren und Vorrichtung zur Pfropfenauflösung nach der Texturierung
    DE19514997A1 (de) Verfahren und Vorrichtung zum Führen und Fördern der Lunte in einem Streckwerk einer Spinnmaschine
    DE2331114A1 (de) Stufenloser energieabbau eines fadenkabels
    DE10060879B4 (de) Spinntrichtervorrichtung
    DE3908463A1 (de) Vorrichtung zum zwischenspeichern eines doppelfadens
    DE2505547A1 (de) Verfahren und vorrichtung zur aufnahme und vorratsbildung fuer aus hochpolymeren spinnmassen erzeugte fadenbuendel

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20011108

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040602

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040602

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040602

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040602

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040602

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040602

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50006689

    Country of ref document: DE

    Date of ref document: 20040708

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040902

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040902

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040902

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040913

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040602

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050406

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050406

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050406

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    26N No opposition filed

    Effective date: 20050303

    EN Fr: translation not filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20051014

    Year of fee payment: 6

    BERE Be: lapsed

    Owner name: *ZIMMER A.G.

    Effective date: 20050430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061101

    BERE Be: lapsed

    Owner name: *ZIMMER A.G.

    Effective date: 20050430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041102