EP1168372B1 - Résine pour isolation électrique - Google Patents

Résine pour isolation électrique

Info

Publication number
EP1168372B1
EP1168372B1 EP00810540A EP00810540A EP1168372B1 EP 1168372 B1 EP1168372 B1 EP 1168372B1 EP 00810540 A EP00810540 A EP 00810540A EP 00810540 A EP00810540 A EP 00810540A EP 1168372 B1 EP1168372 B1 EP 1168372B1
Authority
EP
European Patent Office
Prior art keywords
compound
compounds
insulators
encapsulated
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00810540A
Other languages
German (de)
English (en)
Other versions
EP1168372A1 (fr
Inventor
Uwe Kaltenborn
Jens Rocks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP00810540A priority Critical patent/EP1168372B1/fr
Priority to DE50013562T priority patent/DE50013562D1/de
Priority to CA002350369A priority patent/CA2350369C/fr
Priority to JP2001185372A priority patent/JP2002075056A/ja
Priority to US09/884,019 priority patent/US6548763B2/en
Publication of EP1168372A1 publication Critical patent/EP1168372A1/fr
Application granted granted Critical
Publication of EP1168372B1 publication Critical patent/EP1168372B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to potting compounds based on polymeric matrix resins for the production of self-healing electrical insulation, in particular in the form of moldings and coatings in the field of high-voltage insulation for outdoor use, as well as the electrical insulation produced according to the invention.
  • High-voltage insulation based on polymeric matrix resins for outdoor use are known per se.
  • insulators based on glass and ceramics are traditionally used.
  • polymeric insulating materials have also been able to gain a steadily increasing market share.
  • outdoor insulators are used in large quantities both for high voltage power lines, as well as in the medium voltage range, especially as support insulators.
  • Other applications include outdoor circuit breakers, transducers, feedthroughs, arresters and switchgear.
  • the aforementioned polymeric materials such as ethylene-propylene rubber or resin systems based on epoxy resins and polyurethanes have no intrinsic hydrophobicity and also have a much lower hydrophobicity. Furthermore, these materials are degraded by thermal and oxidative influences, in particular by UV radiation, relatively strong. There is therefore a need for improved polymeric materials, which are better in their mechanical properties than silicones and are suitable for the production of electrical insulation, which have an increased hydrophobicity and at the same time the property of hydrophobicity, without significantly changing their mechanical properties or weakened. With such improved polymeric materials, for example, inexpensive epoxy resins could be made and used for the production of electrical insulation.
  • the patent US 4,537,803 proposes the addition of a polymerizable silicone oil to the epoxy resin mixture.
  • US 5,306,747 relates to the addition of a modified silicone oil which can chemically react with the resin system.
  • the addition of silicones to the epoxy resin mixture or to other thermoset systems generally has the disadvantage that the physical properties, the reaction behavior, the flow and processing properties of the matrix are changed in such a way that, for example, demixing phenomena or electrical discharges occur in cavities.
  • the silicone oil is terminally provided with hydroxyphenyl groups and chemically bound into the matrix.
  • the main disadvantage of this method is, as described in the patent, in the poorer mechanical properties, with greater chain length of the introduced silicone oil. Due to the direct incorporation of the hydrophobic constituents into the resin matrix, no return of the hydrophobicity is given with this method, since the return of hydrophobicity is bound to the diffusion of free-moving, low molecular weight silicone oligomers.
  • potting compounds based on polymeric matrix resins for the production of self-healing electrical insulation are obtained by adding encapsulated selected water-repellent compounds to the polymeric matrix resins before they are cured.
  • Cured potting compounds based on polymeric matrix resins, which according to the invention contain encapsulated water-repellent compounds show a good hydrophobicity and a pronounced hydrophobicity return without the mechanical properties being appreciably changed. It occurs no phase separation on.
  • the capsule material is broken up, which simultaneously accompanies the thermal and / or oxidative degradation of the cured matrix surface, the encapsulated water-repellent compound (s) are released so that they diffuse to the immediate surface.
  • these compounds penetrate the surface and can also penetrate any degraded and / or superimposed foreign layers which may form, so that the oxidative and / or thermal degradation of the surface is accompanied in each case by a restoration of the hydrophobicity or a self-healing.
  • This self-healing process continues as long as the erosion-exposed surface consists of the potting compound of the invention.
  • the life expectancy of products which are produced from the casting compounds according to the invention is therefore considerably longer.
  • the good mechanical properties of low-cost thermoset materials can be combined in an excellent manner with the properties of hydrophobicity and hydrophobicity recovery.
  • the present invention relates to a liquid or pasty potting compound based on a polymeric matrix resin or a mixture of such resins, for the production of self-healing electrical insulation, and this potting compound is characterized in that this in a uniform distribution of a selected hydrophobizing compound or a mixture contains such compounds in encapsulated form.
  • the casting compounds according to the invention are particularly suitable for the production of molded parts and coatings in the field of electrical insulation, in particular high-voltage insulation, in particular for outdoor use. It is also possible to use these insulations in indoor installations.
  • the present invention relates to the use of the inventive casting compounds for the production of moldings and coatings in the field of electrical insulation, in particular high-voltage insulation, in particular high-voltage insulation for outdoor use.
  • the invention further relates to the electrical insulation produced from the casting compounds according to the invention.
  • the invention further relates to a method for producing the novel casting compounds.
  • thermosetting curable casting compounds in question are polymeric materials, such as thermosetting curable casting compounds in question.
  • potting compounds are casting resin systems, in particular thermosetting polycondensates, thermosetting polyadducts and their mixed forms.
  • duroplastic curable casting resins according to the invention can be used in the known duroplastic molding compositions.
  • Duroplastic plastics are known from the literature in large numbers.
  • Thermosetting polycondensates and polyadducts are, for example, curable phenol / formaldehyde plastics, hardenable urea / formaldehyde plastics, melamine / formaldehyde plastics, curable melamine / phenol / formaldehyde molding compounds, unsaturated polyester resins, DAP resins (polydiallyl phthalates), polyimides, polybenzimidazoles, epoxy resins or crosslinked polyurethanes (PUR). Preference is given to those having good electrical properties, preferably aromatic and / or cycloaliphatic epoxy resins and / or PU casting compositions.
  • Epoxy resins and PUR resins used in the electrical industry are known per se from the literature and can be used according to the invention.
  • Epoxy resins and PUR resins used in the electrical industry are known per se and described for example in I. Quint, Investigations on the influence of weakly conductive foreign layers on the surface aging behavior of alternating voltage loaded cylindrical test pieces made of epoxy resin molding, thesis TH Darmstadt, Darmstadt (1993) or O. Claus, characterization of the surface state of cylindrical test specimens of epoxy resin molding material before and after exposure to aqueous salt-containing foreign layers and 50 Hz AC voltage, thesis TH Darmstadt, Darmstadt (1995). Numerous publications also exist on the electrical Araldit® casting resin systems of Ciba-Geigy AG.
  • Epoxy resins for electrical applications usually contain at least one carboxyl-containing polymer, in particular a carboxyl-terminated polyester and / or a carboxyl-containing acrylate and / or methacrylate polymer and / or a hydroxyl-containing compound or a mixture of such compounds, and a glycidyl compound or a mixture of glycidyl compounds and optionally (goes without) an accelerator for the crosslinking reaction of the glycidyl compound or glycidyl compounds with the carboxyl-containing polymer and / or the hydroxyl-containing compound and conventional further additives.
  • crosslinking glycidyl compounds which have at least two 1,2-epoxide groups in the molecule.
  • a mixture of polyglycidyl compounds is used, for example a mixture of diglycidyl and triglycidyl compounds.
  • Such compounds are known per se and described in detail in the literature.
  • a selection suitable for the intended electrical application can be made from the known glycidyl compounds, which represents an optimization problem for a person skilled in the art.
  • Suitable glycidyl compounds are described, for example, in EP-A-0 297 030, EP-A-0 356 391, EP-A-0 462 053, EP-A-0 506 617, EP-A-0 536 085 or in US Pat. A-3,859,314 or described in DE-A-31 26 411. These include compounds having unsubstituted glycidyl groups and / or glycidyl groups substituted with methyl groups.
  • the glycidyl compounds preferably have a molecular weight between 200 and 1200, in particular between 200 and 1000 and can be solid or liquid.
  • epoxide content is preferably at least three equivalents per kilogram the compound, preferably at least four equivalents per kilogram and in particular at least five equivalents per kilogram.
  • glycidyl compounds which have glycidyl ether and / or glycidyl ester groups.
  • a glycidyl compound may also contain both types of glycidyl groups, such as 4-glycidyloxy-benzoeklareglycidylester.
  • Preference is given to polyglycidyl esters having 1-4 glycidyl ester groups, in particular diglycidyl esters and / or triglycidyl esters.
  • the preferred diglycidyl esters are preferably derived from aromatic, araliphatic, cycloaliphatic, heterocyclic, heterocyclic-aliphatic or heterocyclic-aromatic dicarboxylic acids having from 6 to 20, in particular from 6 to 12, ring carbon atoms or from aliphatic dicarboxylic acids having from 2 to 10 carbon atoms.
  • aromatic, araliphatic, cycloaliphatic, heterocyclic, heterocyclic-aliphatic or heterocyclic-aromatic dicarboxylic acids having from 6 to 20, in particular from 6 to 12, ring carbon atoms or from aliphatic dicarboxylic acids having from 2 to 10 carbon atoms.
  • Araldit® Ciba SC Ltd.
  • Preference is given, for example, to the per se known epoxy resins based on polyvalent aromatic or cycloaliphatic hydroxyl compounds.
  • glycidyl ethers of bisphenol A or bisphenol F and the glycidyl ethers of phenol novolac resins or cresol novolac resins are known.
  • Cycloaliphatic epoxy resins are, for example, bis-epoxidized 1,2,3,6-tetrahydrobenzoic acid beta-1 ', 2', 3 ', 6'-tetrahydrophenyl ethyl ester, hexahydro-o-phthalic acid bis-glycidyl ester.
  • aliphatic epoxy resins, such as 1,4-butanediol diglycidyl ether are suitable for the inventive use.
  • casting compounds which contain at least one filler.
  • fillers are preferably quartz powder, alumina and / or dolomite in various known millings.
  • the fillers are preferably provided with a silanization in order to ensure optimum chemical bonding of the particles in the resin matrix.
  • Hydrophobizing compounds are preferably free-flowing fluorinated and / or chlorinated hydrocarbons which contain -CH 2 units and / or -CHF units, -CF 2 units, -CF 3 units, -CHCl units, -C (Cl) 2 units and / or -C (Cl) 3 units or cyclic, linear or branched flowable organopolysiloxanes.
  • these have a viscosity in the range of about 50 cSt to 10,000 cSt, preferably in the range of 100 cSt to 10,000 cSt and preferably in the range of 500 cSt to 3,000 cSt, measured according to DIN 53 019 at 20 ° C. ,
  • R 2 has one of the meanings of R, and R preferably methyl or phenyl, wherein both methyl and phenyl may be present in the molecule.
  • the ratio of methyl to phenyl is predetermined by the flowability of the compound or of the compound mixture.
  • R is methyl.
  • the compound of the formula (I) is generally a mixture of compounds of the formula (I), which is known to the person skilled in the art.
  • the compound of the formula (I) is a cyclic compound, it is composed of - [Si (R) (R) O] - and / or - [SiR 1 (R 2 ) O] units which have a ring with preferably 4 to 12 such units.
  • the ring-shaped siloxanes however, the ring-shaped oligomeric polysiloxanes having 4 to 8 siloxy units are preferred, in particular polydimethylsiloxanes having 4 to 8 siloxy units.
  • these cyclic compounds may also be, for example, organohydrogenpolysiloxanes which contain, for example, only - [SiH (R 2 ) O] units or, correspondingly, organovinylpolysiloxanes.
  • the two components flow into each other and together undergo an addition reaction which enhances hydrophobicity and hydrophobicity by forming a more stable layer.
  • at least one of the two encapsulated components contains a complex compound or a mixture of such complex compounds from the group of rhodium, nickel, palladium and / or platinum metals, such as those as catalytically active compounds for addition reactions between SiH bonds and alkenyl radicals are known.
  • a complex compound or a mixture of such complex compounds from the group of rhodium, nickel, palladium and / or platinum metals, such as those as catalytically active compounds for addition reactions between SiH bonds and alkenyl radicals are known.
  • Pt (0) complexes with alkenylsiloxanes as ligands or Rh catalysts in catalytic amounts of preferably from 1 to 100 ppm of platinum.
  • the individual components preferably have a viscosity in the range of about 10 cSt to 10,000 cSt, preferably in the range of 100 cSt to 10,000 cSt and preferably in the range of 500 cSt to 3,000 cSt, measured according to DIN 53 019 at 20 ° C.
  • the compounds of the formula (I) may contain up to 10 mol percent, calculated on the Si atoms present, both alkoxy and OH groups. Such compounds are within the present invention.
  • the encapsulation of the hydrophobizing compound or compounds it is preferable to use the same polymeric compound or compositions which are used as the polymeric matrix resin.
  • This has the advantage that the encapsulation, ie the wall material, at the same speed by thermal and / or oxidative influences is degraded as the surface of the insulation itself.
  • the encapsulation breaks in each case in a timely manner and sets the encapsulated Connection at the ideal time free.
  • the encapsulation material is selected such that it is decomposed thermally and / or oxidatively at the same speed or faster than the matrix material. In any case, the encapsulation material does not have to be the same as the matrix material.
  • Suitable encapsulating materials are the same compounds listed above as matrix materials. Suitable synthetic rubbers and the above-mentioned thermoset curable compositions, which in each case can be introduced independently of each other usually in all matrix systems.
  • Preferably used as the encapsulating material are ethylene-propylene rubber (EPR), ethylene-propylene-diene terpolymers (EPDM) or styrene-butadiene copolymers (PBR) and related compounds when the encapsulated compounds are to be incorporated into synthetic rubbers.
  • EPR ethylene-propylene rubber
  • EPDM ethylene-propylene-diene terpolymers
  • PBR styrene-butadiene copolymers
  • Thermosetting polycondensates, thermosetting polyadducts and their mixed forms are advantageously used as the encapsulating material if the encapsulated compounds are to be introduced into a duroplastic curable casting resin system.
  • Preferred encapsulating materials are
  • An encapsulation material which behaves in a similar manner to the matrix material is preferably used.
  • a melamine / formaldehyde resin as the encapsulating material, this is incorporated and fixed in the curing of the matrix in this, which ensures a uniform distribution of hydrophobizing compound over a long period of time and has a positive effect on the mechanical properties of the insulation produced ,
  • the procedure is to finely disperse the compound to be encapsulated (core material), for example a silicone oil, in the encapsulation material (wall material), for example a melamine / formaldehyde resin, for example in a ratio of wall material to core material of 10: 1 to 2: 1, preferably 6: 1 to 3: 1, in particular about 4: 1, and then the resulting dispersion at high temperature, for example by means of spraying, at least partially hardens.
  • core material for example a silicone oil
  • wall material for example a melamine / formaldehyde resin
  • the encapsulated material or have the particles containing the liquid (s) or pasty compound (s), or encapsulated compound (s), having a particle diameter of preferably 2 ⁇ m - 1000 microns, preferably 5 microns - 500 microns, and preferably 5 microns - 100 microns, on.
  • the casting compound according to the invention preferably contains about 0.1% by weight to 10% by weight of hydrophobizing compound, preferably 0.25% by weight to 5% by weight of hydrophobizing compound, preferably about 0.25% by weight to 3% by weight .-%, based on the total weight of the potting compound.
  • the casting compounds according to the invention are prepared by stirring the encapsulated liquid or pasty compound or an encapsulated mixture of such compounds, that is to say the encapsulated material, into the matrix material, if appropriate using a surface-active compound or an emulsifier.
  • a surface-active compound or an emulsifier In order to avoid floating, it is advantageous to add highly disperse (pyrogenic) silica (Aerosil) or an analogous compound to the matrix.
  • the present invention relates to a process for the preparation of liquid or pasty casting compounds based on polymeric matrix resins for the production of self-healing electrical insulation, which is characterized in that (a) a selected hydrophobizing compound or a mixture of such compounds in encapsulated and at least partially cured in a suitable encapsulating material, and (b) dispersing the encapsulated material in a suitable liquid or pasty polymeric matrix resin in a uniform distribution.
  • the casting compounds of the invention are used in particular for the production of high-voltage insulation for outdoor use, in particular for the production of outdoor insulators in high-voltage lines as long-rod, composite and cap insulators and for post insulators in the medium voltage range.
  • the encapsulants according to the invention can also be used in the manufacture of insulation in outdoor circuit breakers, transducers, feedthroughs and arresters, in switchgear construction, in circuit breakers, dry-type transformers and electrical machines.
  • the casting compounds according to the invention can also be used as coating materials for transistors and other semiconductor elements and in general for impregnating electrical components.
  • the casting compound according to the invention can be used as corrosion protection for metallic components, e.g. for bridges and industrial plants, where, for example, the gloss of the layer is not lost even with aging.
  • the molded part is produced or cast in one step or in two or more steps. So you can first cast a core whose material contains no encapsulated aggregate. In a second casting step, the finished mold is then produced by coating the core with the casting material according to the invention.
  • the core may consist of any suitable material, for example made of a fiber-reinforced plastic.
  • the core used is a material which is compatible with the casting material according to the invention and in particular can enter into a chemical bond with it. This is the case, for example, when the core consists of an unmodified casting resin and the coating consists of a casting resin modified according to the invention.
  • the casting material according to the invention is cast onto a core, and the core with the polymer matrix of the potting material does not undergo chemical bonding, but due to the shrinkage pressure of the potting material, a sufficiently strong mechanical connection between the core and the molded part.
  • the following examples illustrate the invention.
  • the two specimens are subjected to an electrical corona discharge for a period of at least 20 minutes.
  • the surface hydrophobicity is temporarily reduced or completely destroyed, whereupon a hydrophobic recovery ensues.
  • the hydrophobicity is measured in a manner known per se with the dynamic advancing angle with water in degrees (°). The larger the angle of view, the higher the hydrophobicity.
  • the measured dynamic advancing angles for hardened potting compounds or test specimens according to the invention and the comparative values for the comparable conventional test specimens are listed in Table 1 .
  • the measured mechanical properties of the two test specimens are essentially of a comparable order of magnitude and in each case are significantly above the required utility values.
  • Table 1 ⁇ / u> Dynamic advance angle (water, in °) Test specimen according to Example 1
  • Basic hydrophobicity 95 115 Hydrophobicity immediately after the corona discharge zero 50 Hydrophobicity after 20 h 40 80 Hydrophobicity after 100 h 50 90 Hydrophobicity after 200 h 50 100 Hydrophobicity after 300 h 50 100 Hydrophobicity after 400 h 50 110 Hydrophobicity after 500 h 50 110

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulators (AREA)

Claims (19)

  1. Isolants électriques autoréparables destinés à une utilisation comme isolants de haute tension, notamment pour un usage à l'air libre, comme isolants dans la plage de moyenne tension, dans la fabrication d'isolants pour les disjoncteurs à l'air libre, les transformateurs de mesure, les traversées et les balais de décharge dans la construction d'installations de commutation, dans les disjoncteurs, les transformateurs à sec et les machines électriques, comme matières de revêtement pour les transistors et autres éléments semiconducteurs, pour l'imprégnation de composantes électriques et/ou comme anti-rouille pour des composantes métalliques, qui ont été fabriqués à partir d'une masse fondue liquide ou pâteuse à base d'une résine de matrice en polymère ou d'un mélange de telles résines, caractérisés en ce que (i) cette masse fondue contient en répartition homogène un composé sélectionné ayant un effet hydrophobe ou un mélange de tels composés sous forme encapsulée et (ii) ce composé sélectionné ayant un effet hydrophobe comprend un hydrocarbure fluoré et/ou chloré fluide qui contient des unités -CH2 et/ou des unités -CHF, des unités -CF2, des unités -CF3, des unités -CHCl, - des unités C(Cl)2 et/ou des unités -C(Cl)3 ou constitue un organopolysiloxane fluide cyclique, linéaire ou ramifié.
  2. Isolants selon la revendication 1, caractérisés en ce que la masse fondue constitue un système de résine coulée thermodurcissable, de préférence à base d'un polycondensat thermodurcissable, d'un polyadduit thermodurcissable et/ou d'une forme mélangée de ceux-ci.
  3. Isolants selon la revendication 1 ou 2, caractérisés en ce que la masse fondue en résine de matrice est sélectionnée parmi le groupe des matières plastiques durcissables de phénol/formaldéhyde, d'urée/formaldéhyde, de mélamine/formaldéhyde, des masses moulées de mélamine/phénol/formaldéhyde, des résines de polyester insaturées, des résines DAP, des polyimides, des polybenzimidazoles, des résines époxydes ou des polyuréthanes réticulés (PUR) et constitue de préférence une résine époxyde aromatique et/ou cycloaliphatique et/ou une masse coulée de PUR.
  4. Isolants selon l'une quelconque des revendications 1 à 3, caractérisés en ce que la masse fondue constitue une résine époxyde aromatique et/ou cycloaliphatique et contient au moins un composé de glycidyl agissant par réticulation et présentant au moins deux groupes époxydes 1,2 dans la molécule, de préférence un mélange de tels composés de polyglycidyl, de préférence un mélange de diglycidyl et de triglycidyl.
  5. Isolants selon la revendication 4, caractérisés en ce que le composé de glycidyl présente un poids moléculaire allant de 200 à 1200, notamment de 200 à 1000 et que sa teneur en époxyde s'élève à au moins trois équivalents par kilogramme du composé, de préférence au moins quatre équivalents par kilogramme,et notamment au moins cinq équivalents par kilogramme.
  6. Isolants selon l'une quelconque des revendications 1 à 5, caractérisés en ce que la masse fondue contient au moins une matière de charge, de préférence de la poudre de quartz, de l'oxyde d'aluminium et/ou de la dolomite, de préférence une matière de charge pourvue d'une silanisation.
  7. Isolants selon l'une quelconque des revendications 1 à 6, caractérisés en ce que le composé ayant un effet hydrophobe présente une viscosité allant de 50 cSt à 10 000 cSt, de préférence de 100 cSt à 10 000 cSt et de préférence de 500 cSt à 3 000 cSt, mesurée suivant la DIN 53 019 à 20° C.
  8. Isolants selon l'une quelconque des revendications 1 à 7, caractérisés en ce que le composé ayant un effet hydrophobe constitue un composé ou un mélange de composés de formule générale (I) :
    Figure imgb0004
    R représente, indépendamment l'un de l'autre, un radical alkyle éventuellement chloré et/ou fluoré ayant 1 à 8 atomes de carbone, un alkylaryle ou aryle (C1-C4) ;
    R1 représente, indépendamment l'un de l'autre, une des significations de R ou R2, tandis qu'éventuellement deux substituants R1 à l'état final liés à différents atomes de Si, pris ensemble, représentent un atome d'oxygène (= composé cyclique) ;
    R2 représente une des significations de R ou de l'hydrogène ou un radical -(A)r-CH=CH2 ;
    A représente un radical -Cs-H2s-, de préférence -(CH2)s-, où
    s est un nombre entier de 1 à 6, de préférence 1 ;
    r est zéro ou un ;
    m est en moyenne de zéro à 5000 ;
    n est en moyenne de zéro à 100 ;
    tandis que la somme de [m+n] pour les composés non cycliques s'élève à au moins 20, de préférence au moins 50, et que les groupes -[Si(R)(R)O]- et - [Si(R1)(R2)O]- sont disposés dans n'importe quel ordre dans la molécule.
  9. Isolants selon la revendication 8, caractérisés en ce que, dans le composé de formule (I)
    R représente, indépendamment l'un de l'autre, un radical alkyle éventuellement fluoré ayant 1 à 4 atomes de carbone ou un phényle ; de préférence du 3,3,3-trifluoropropyle, du monofluorométhyle, du difluorométhyle ou de l'alkyle ayant 1 à 4 atomes de carbone ; de préférence du méthyle ou du phényle, de préférence du méthyle ;
    m est en moyenne de 20 à 5000, de préférence de 50 à 1500 ;
    n est en moyenne de 2 à 100, de préférence de 2 à 20 ;
    tandis que la somme de [m+n] pour les composés non cycliques se situe en moyenne dans la plage de 20 à 5000, de préférence dans la plage de 50 à 1500, et que les groupes -[Si(R) (R)O]- et -[Si(R1)(R2)O]-sont disposés dans n'importe quel ordre dans la molécule.
  10. Isolants selon la revendication 8, caractérisés en ce que le composé de formule (I) constitue un composé cyclique qui est composé d'unités de - [Si(R)(R)O]- et/ou de -[Si(R1)(R2)O]- et qui constitue un anneau comportant 4 à 12 unités de ce type, de préférence 4 à 8 unités de siloxy de ce type.
  11. Isolants selon la revendication 10, caractérisés en ce que le composé de formule (I) constitue un polydiméthylsiloxane cyclique comportant 4 à 8 unités de siloxy ou un organohydrogène-polysiloxane ou un organovinylpolysiloxane cyclique.
  12. Isolants selon la revendication 11, caractérisés en ce que, dans le composé de formule (I), R2 représente aussi bien de l'hydrogène que du -A-CH=CH2, tandis que R2 par molécule ne représente que soit de l'hydrogène, soit du -A-CH=CH2, et que ces deux composés encapsulés séparément sont présents au moins en quantités équimolaires dans la masse fondue avec au moins un composé de complexe ou un mélange de composés de complexe du groupe des métaux rhodium, nickel, palladium et/ou platine.
  13. Isolants selon l'une quelconque des revendications 1 à 12, caractérisés en ce que, pour l'encapsulage du composé ou des composés ayant un effet hydrophobe, on utilise un système de résine coulée thermodurcissable selon l'une quelconque des revendications 2 à 4, de préférence à base de polycondensat thermodurcissable, de polyadduit thermodurcissable et/ou d'une forme mélangée de ceux-ci.
  14. Isolants selon la revendication 13, caractérisés en ce que, pour l'encapsulage du composé ou des composés ayant un effet hydrophobe, on utilise une résine de mélamine/formaldéhyde, une masse coulée durcissable de mélamine/phénol/formaldéhyde, une résine époxyde et/ou un polyuréthane réticulé.
  15. Isolants selon l'une quelconque des revendications 1 à 14, caractérisés en ce que le rapport de la matière de paroi au composé à encapsuler se situe dans la plage de 10 :1 à 2 :1, de préférence dans la plage de 6 :1 à 3 :1 et notamment à environ 4 :1.
  16. Isolants selon l'une quelconque des revendications 1 à 15, caractérisés en ce que la matière encapsulée ou les particules contenant un(des) composé(s) encapsulé(s) présentent un diamètre de particules de 2 µm à 1000 µm, de préférence de 5 µm à 500 µm et de préférence de 5 µm à 100 µm.
  17. Isolants selon l'une quelconque des revendications 1 à 16, caractérisés en ce que la masse fondue contient de 0,1 % en poids à 10 % en poids, de préférence 0,25 % en poids à 5 % en poids et de préférence 0,25 % en poids à 3 % en poids de composé ayant un effet hydrophobe.
  18. Procédé de fabrication d'isolants électriques autoréparables à partir de masses fondues liquides ou pâteuses à base de résines de matrice en polymère, caractérisé en ce qu'on encapsule et qu'on durcit au moins partiellement (a) un composé sélectionné ayant un effet hydrophobe ou un mélange de tels composés selon l'une quelconque des revendications 1 et 7 à 12 dans une matière d'encapsulage appropriée selon l'une quelconque des revendications 13 et 14 et (b) qu'on disperse la matière encapsulée dans une résine de matrice liquide ou pâteuse en polymère appropriée selon l'une quelconque des revendications 1 et 3 à 6 suivant une répartition homogène et qu'on fabrique à partir de là des isolants électriques autoréparables.
  19. Isolants électriques autoréparables selon l'une quelconque des revendications 1 à 17 pour la fabrication d'isolants de haute tension pour un usage à l'air libre, notamment pour la fabrication d'isolateurs à l'air libre dans les lignes à haute tension sous forme d'isolateurs à long fût, d'isolateurs composites et d'isolateurs à capot et à tige ainsi que pour des isolateurs support dans la plage de moyenne tension, dans la fabrication d'isolants pour les disjoncteurs à l'air libre, les transformateurs de mesure, les traversées et les balais de décharge, dans la construction d'installations de commutation, dans les disjoncteurs, les transformateurs à sec et les machines électriques, comme matières de revêtement pour les transistors et autres éléments semiconducteurs, pour l'imprégnation de composantes électriques et/ou comme anti-rouille pour des composantes métalliques.
EP00810540A 2000-06-20 2000-06-20 Résine pour isolation électrique Expired - Lifetime EP1168372B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00810540A EP1168372B1 (fr) 2000-06-20 2000-06-20 Résine pour isolation électrique
DE50013562T DE50013562D1 (de) 2000-06-20 2000-06-20 Vergussmassen für die Herstellung von elektrischen Isolierungen
CA002350369A CA2350369C (fr) 2000-06-20 2001-06-13 Compositions de moulage pour la production d'isolateurs electriques
JP2001185372A JP2002075056A (ja) 2000-06-20 2001-06-19 電気絶縁物を製造するための注型用材料
US09/884,019 US6548763B2 (en) 2000-06-20 2001-06-20 Casting compositions for producing electrical insulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00810540A EP1168372B1 (fr) 2000-06-20 2000-06-20 Résine pour isolation électrique

Publications (2)

Publication Number Publication Date
EP1168372A1 EP1168372A1 (fr) 2002-01-02
EP1168372B1 true EP1168372B1 (fr) 2006-10-04

Family

ID=8174766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810540A Expired - Lifetime EP1168372B1 (fr) 2000-06-20 2000-06-20 Résine pour isolation électrique

Country Status (5)

Country Link
US (1) US6548763B2 (fr)
EP (1) EP1168372B1 (fr)
JP (1) JP2002075056A (fr)
CA (1) CA2350369C (fr)
DE (1) DE50013562D1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808461B2 (en) * 2001-06-22 2004-10-26 Acushnet Company Golf ball compositions with microencapsulated healing agent
US7108914B2 (en) * 2002-07-15 2006-09-19 Motorola, Inc. Self-healing polymer compositions
US7285306B1 (en) * 2003-04-18 2007-10-23 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for self-repair of insulation material
US7015260B2 (en) * 2003-06-04 2006-03-21 E.I. Du Pont De Nemours And Company High temperature polymeric materials containing corona resistant composite filler, and methods relating thereto
US6930254B2 (en) * 2003-08-14 2005-08-16 Electric Power Research Institute Chemically-doped composite insulator for early detection of potential failures due to exposure of the fiberglass rod
US7566747B2 (en) * 2004-05-07 2009-07-28 The Board Of Trustees Of The University Of Illinois Wax particles for protection of activators, and multifunctional autonomically healing composite materials
US20060157269A1 (en) * 2005-01-18 2006-07-20 Kopp Alvin B Methods and apparatus for electric bushing fabrication
US7612152B2 (en) 2005-05-06 2009-11-03 The Board Of Trustees Of The University Of Illinois Self-healing polymers
EP1973972A2 (fr) 2006-01-05 2008-10-01 The Board Of Trustees Of The University Of Illinois Système de revêtement autorégénérant
US7569625B2 (en) 2006-06-02 2009-08-04 The Board Of Trustees Of The University Of Illinois Self-healing elastomer system
US20080299391A1 (en) * 2007-05-31 2008-12-04 White Scott R Capsules, methods for making capsules, and self-healing composites including the same
US20090181254A1 (en) * 2008-01-15 2009-07-16 The Board Of Trustees Of The University Of Illinois Multi-capsule system and its use for encapsulating active agents
US7708912B2 (en) * 2008-06-16 2010-05-04 Polytronics Technology Corporation Variable impedance composition
IT1392394B1 (it) * 2008-12-22 2012-03-02 Vittoria Materiale composito dotato di proprietà di autoriparazione e di rilascio di principi attivi, per applicazioni biomediche
CN102421835A (zh) * 2009-05-05 2012-04-18 Abb研究有限公司 可固化溶胶-凝胶组合物
US8475925B2 (en) 2010-06-22 2013-07-02 Pbi Performance Products, Inc. PBI/epoxy coatings
EP2624258A1 (fr) * 2012-02-06 2013-08-07 Siemens Aktiengesellschaft Couche isolante auto-curative pour une machine électrique
EP3131973A4 (fr) * 2014-04-15 2018-01-24 3M Innovative Properties Company Composition durcissable de silicone
CN107109169B (zh) 2015-01-08 2020-10-20 3M创新有限公司 湿气可固化硅氧烷组合物
US10526495B2 (en) 2015-01-16 2020-01-07 Abb Schweiz Ag Electrical devices and components used in electrical systems made with self-healing materials
EP3249659A1 (fr) * 2016-05-23 2017-11-29 Siemens Aktiengesellschaft Dispositif anti-effluves, machine electrique et procede de production de dispositif anti-effluves
EP3648117A1 (fr) * 2018-11-02 2020-05-06 ABB Schweiz AG Isolation électrique, utilisation d'une isolation électrique et procédé de production d'une isolation électrique
CN110229585A (zh) * 2019-06-18 2019-09-13 刘涛 一种热处理可快速自修复的涂料及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446741A (en) * 1963-11-14 1969-05-27 Minnesota Mining & Mfg Insulating device,composition,and method
DE1590958C3 (de) * 1966-12-12 1974-01-31 Aeg-Telefunken Kabelwerk Ag, Rheydt, 4070 Rheydt Selbstdichtender Kabelmantel für Fernmelde- oder Starkstromkabel
US3859314A (en) 1967-06-29 1975-01-07 Celanese Coatings Co Process for preparing glycidyl esters of polycarboxylic acids
DE2556420A1 (de) * 1975-12-15 1977-06-16 Wacker Chemie Gmbh Zu elastomeren haertbare massen auf grundlage von diorganopolysiloxanen und verfahren zum herstellen von organopolysiloxanelastomeren
DE3126411A1 (de) 1981-07-04 1983-01-13 Degussa Ag, 6000 Frankfurt Verfahren zur herstellung von aromatischen glycidylestern
DE3209755A1 (de) * 1982-03-17 1983-09-22 Wacker-Chemie GmbH, 8000 München Verfahren zum verstaerken des haftens von organopolysiloxanelastomeren
JPS59136348A (ja) * 1983-01-26 1984-08-04 Sumitomo Chem Co Ltd ライニング材用熱硬化性樹脂組成物
US4537803A (en) * 1984-05-24 1985-08-27 Westinghouse Corp. Resins containing a low viscosity organopolysiloxane liquid dielectric and a method of insulating a conductor therewith
US4857607A (en) 1987-05-27 1989-08-15 Ciba-Geigy Corporation Epoxidized polycycloacetals
US4808687A (en) * 1988-01-04 1989-02-28 Dow Corning Corporation Novel organopolysiloxanes derived from bis-silyl substituted heterocyclic compounds
KR930001988B1 (ko) * 1988-04-05 1993-03-20 미쓰비시뎅끼 가부시끼가이샤 반도체 봉지용 에폭시 수지조성물
JP2620303B2 (ja) * 1988-05-12 1997-06-11 東芝シリコーン株式会社 光ファイバー被覆用紫外線硬化型シリコーン樹脂組成物
DE58909048D1 (de) 1988-08-22 1995-04-06 Ciba Geigy Ag Epoxidgruppenhaltige modifizierte Acetophenon-Formaldehyd-Harze.
US5106943A (en) * 1989-10-04 1992-04-21 Takeda Chemical Industries, Ltd. Resin compositions, shaped articles, and methods for manufacture
EP0462053B1 (fr) 1990-06-05 1997-01-15 Ciba SC Holding AG Compositions sous forme de poudre à base de résines époxydes, s'écoulant librement.
EP0506617B1 (fr) 1991-03-27 1996-08-21 Ciba-Geigy Ag Agent durcisseur pour revêtements sous forme de poudre à base de polyesters
TW282486B (fr) 1991-10-03 1996-08-01 Ciba Geigy Ag
US5212218A (en) * 1991-10-15 1993-05-18 A. B. Chance Company Hydrophobic, erodiable synthetic resin composition for electrical insulators
ES2175061T3 (es) * 1995-11-29 2002-11-16 Vantico Ag Particulas nucleo-cascara (core-shell) y composiciones que contienen estas resinas epoxireticulables.
US5792996A (en) * 1996-09-27 1998-08-11 Electric Power Research Institute Aging resistant, high voltage non-ceramic insulation

Also Published As

Publication number Publication date
JP2002075056A (ja) 2002-03-15
CA2350369A1 (fr) 2001-12-20
US20020007959A1 (en) 2002-01-24
DE50013562D1 (de) 2006-11-16
EP1168372A1 (fr) 2002-01-02
US6548763B2 (en) 2003-04-15
CA2350369C (fr) 2009-08-18

Similar Documents

Publication Publication Date Title
EP1168372B1 (fr) Résine pour isolation électrique
EP1303567B2 (fr) Masse de remplissage a modification de volume a base de resine a matrice polymere
DE3854031T2 (de) Härtbare Harzzusammensetzung, die Siloxankautschuk in Form von Mikropartikeln enthält.
EP1300439A1 (fr) Charge de renforcement et son utilisation dans des isolateurs électriques
DE3687998T2 (de) Wärmehärtbare Harzzusammensetzung.
DE3854185T2 (de) Organopolysiloxanelastomere mit guten elektrischen Eigenschaften und damit beschichtete Isolierstoffe.
DE60301926T2 (de) Epoxyharzzusammensetzung
DE19523897A1 (de) Verwendung von Silicon-modifizierten Epoxidharzen als Vergußmassen für elektrotechnische oder elektronische Bauteile
DE2915874A1 (de) Verfahren und verbesserung der elektrischen isolierwirkung einer aussenflaeche eines festen elektrischen isolators
EP0412425A1 (fr) Résines de coulée ignifugées comme matière à mouler
DE2734697A1 (de) Isoliermaterialien fuer hohe spannungen
EP1337588B1 (fr) Formulations de caoutchouc silicone et leur utilisation
EP1341847A1 (fr) Masse de remplissage
EP3844218A1 (fr) Équipement électrique doté d'un système d'isolation, ainsi que procédé pour la production du système d'isolation
EP1162640A1 (fr) Matière d'extinction d'arc
DE102020211111A1 (de) Pulverlack-Formulierung für ein Isolationssystem einer elektrischen Maschine, elektrische Maschine mit einem solchen Isolationssystem und Verfahren zum Herstellen eines solchen Isolationssystems
EP1354916A1 (fr) Résine époxyde autodurcissante pour la fabrication d' isolants électriques
EP1336642A1 (fr) Masses de scellement autocicatrisantes pour la production d'isolations éléctriques
EP3963605A1 (fr) Formulation d'imprégnation, matériau isolant, procédé de fabrication d'un matériau isolant et machine électrique pourvue d'un matériau isolant
EP1568733A1 (fr) Particules de charge inorganique poreuses revêtues d'un polyorganosiloxane et leur utilisation pour la fabrication de résines à couler durcissables
WO2015090935A1 (fr) Composition de résine coulable résistant aux décharges disruptives et au contournement
DE1171614B (de) Giessmassen
DE60007481T2 (de) Silikonkautschukzusammensetzung für Hochspannungsisolatoren
DE1066737B (de) Wärmehärtbare Massen aus Vinyl gruppen und siliciumgebundenen Wasserstoff enthaltenden Organopolysiloxanharzen
EP1278213A1 (fr) Compositions durcissables de résines de polysiloxane pour matière d'isolation électrique auto-cicatrisante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020510

AKX Designation fees paid

Free format text: CH DE FR GB LI

17Q First examination report despatched

Effective date: 20050208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50013562

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070103

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120622

Year of fee payment: 13

Ref country code: CH

Payment date: 20120622

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120705

Year of fee payment: 13

Ref country code: GB

Payment date: 20120622

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130620

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013562

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130620

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701