EP1154389A1 - Procédé de détermination de l'état du trafic sur un réseau routier - Google Patents

Procédé de détermination de l'état du trafic sur un réseau routier Download PDF

Info

Publication number
EP1154389A1
EP1154389A1 EP01110502A EP01110502A EP1154389A1 EP 1154389 A1 EP1154389 A1 EP 1154389A1 EP 01110502 A EP01110502 A EP 01110502A EP 01110502 A EP01110502 A EP 01110502A EP 1154389 A1 EP1154389 A1 EP 1154389A1
Authority
EP
European Patent Office
Prior art keywords
traffic
queue
edge
route
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01110502A
Other languages
German (de)
English (en)
Other versions
EP1154389B1 (fr
Inventor
Boris Prof. Dr. Kerner
Hubert Dr. Rehborn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1154389A1 publication Critical patent/EP1154389A1/fr
Application granted granted Critical
Publication of EP1154389B1 publication Critical patent/EP1154389B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the invention relates to a method for determining the traffic situation on the basis of traffic data that is in itself in the Moving registration vehicles are won for a Traffic network with traffic-regulated network nodes and connecting them Track edges.
  • Procedure for determining the current as well as the future Traffic conditions to be expected are mainly for road networks known in many forms and win because of the steadily growing volume of traffic is becoming increasingly important.
  • Common traffic forecasting methods can be roughly divide into two types, namely historical progression forecasts and dynamic traffic forecasts.
  • the former are based on previously obtained traffic situation data, from which an archive of so-called Hydrographs is created, based on which then from current Traffic situation data through a so-called matching process, where a best fitting gait line is selected is concluded on the future development of the traffic situation becomes.
  • the dynamic traffic forecast is based on detection traffic objects or traffic conditions, such as free Traffic, synchronized traffic and traffic jam, from current traffic measurements and on the dynamic tracking of these individualized Traffic conditions. You can also use both forecasting methods can be used in combination.
  • German patent application 199 40 957.9 describes a traffic forecasting method which is especially for metropolitan transport networks is suitable.
  • This traffic forecasting method is based on an acquisition of current, through the free and interruption phases the traffic-regulated network node time-discretized traffic state parameters based on how the current vehicle drain a queue, the current inflow of vehicles into the queue and the current number of vehicles in the queue. From the current, time-discretized traffic condition parameters become effective continuous traffic condition parameters determined, including at least one effective continuous vehicle drain from a queue and / or an effective continuous flow of vehicles into the Queue, based on which one or more traffic parameters based on dynamic macroscopic modeling traffic forecast, e.g.
  • FCD floating car data
  • This process involves special extraction from FCD, i.e. of dynamic individual or registration vehicle data, which contain timestamp information, each of which designate a reporting time that is not earlier than that Time of leaving a relevant track edge and no later than the time at which the registration vehicle a section of a track edge traversed thereafter in front of a next considered network node reached.
  • the route of the reporting or FCD vehicles tracked can be determined, if necessary individually for each of several directional track sets of the same.
  • the term "directional track quantity" denotes the Amount of the different direction traces of a track edge, which can each include one or more lanes and are defined by the one or more lanes a respective directional track set equal to the Vehicles can be used to connect the network node to continue in one or more assigned target directions happen.
  • this FCD traffic data extraction method as a preferred one Basis for determining travel times for each Track edge can serve, as used here the content of this earlier application is also described herein in fully incorporated by reference.
  • the invention is a technical problem of providing based on a method of the type mentioned at the beginning, with which one or more traffic parameters indicative of the traffic situation comparatively using FCD information can be determined well, especially for transport networks of metropolitan areas.
  • the invention solves this problem by providing a Traffic situation determination method with the features of the claim 1.
  • a Traffic situation determination method with the features of the claim 1.
  • route edge-specific travel times determines one or more traffic situation parameters, namely the average number of vehicles in a queue of each Route edge in front of a traffic-regulated network node, the average number of vehicles in total on the track edge, the average vehicle speed on the track edge before a possible queue, i.e. between the Beginning of the route edge to the upstream end of the queue, the mean waiting time in the respective queue and / or the average vehicle density on the track edge the queue.
  • the current traffic situation especially for traffic networks in metropolitan areas where traffic dynamics dominated by the traffic control measures at the network nodes is determined with sufficient accuracy, i.e. based on the FCD to reconstruct.
  • Other recorded traffic data e.g. of stationary detectors, can also be taken into account however, this is not mandatory.
  • the determined or reconstructed current traffic situation can then in turn as Basis for building a gangue database and further for route-based and / or for dynamic traffic forecasts serve. For such traffic forecasts about the expected Traffic situation on a metropolitan traffic network is the knowledge of the time-dependent queue lengths at the traffic-regulated network nodes and the time-dependent number of Vehicles on the respective track edge important by the method according to the invention can be obtained.
  • the Travel times and the traffic situation parameter (s) specifically one for each of possibly several directional track sets respective route edge determined separately.
  • you can significantly improve the accuracy of the traffic situation determination because it takes into account that on a track edge before a traffic-regulated network node generally different long queues for different directional lane quantities form and / or the traffic regulation at the network node mostly is also specific to directional lanes, i.e. different Holding and passage times, also free or interruption phases called, for the different direction trace amounts includes.
  • the determined current traffic information in the form of one one or more, specific to the edge and preferred specially determined traffic situation parameters specific to the directional lane quantity for a continuous generation of historical Graphs related to the average number of vehicles in the respective Queue, the queue length, the middle Waiting time in the respective queue and / or the middle one Number of vehicles used on the respective track edge.
  • Another determined traffic situation parameter is the direction-specific quantity Vehicle turn rate at the respective network node taken into account, i.e. it determines how many vehicles at the respective point in time on average of a respective one Direction trace quantity of a terminating in an associated network node Line edge over the network node in a respective Directional track quantity of a line edge continuing from the network node drive in. This can be done by collecting appropriately Determine FCD by e.g. the recorded FCD information about the direction of travel or change of direction selected at the network node contain.
  • the method according to claim 5 is a distinguishing detection of the state of undersaturation on the one hand and the supersaturation, on the other hand, using an appropriate one Travel time criterion provided, in which the determined Travel time is compared with a threshold, which among other things the length of the track edge, a typical free vehicle speed on the same as the holding and the The duration of the traffic regulation depends on the network node.
  • a threshold which among other things the length of the track edge, a typical free vehicle speed on the same as the holding and the The duration of the traffic regulation depends on the network node.
  • a method developed according to claim 7 allows one special, advantageous determination of the number of vehicles on one Track edge and the effective continuous inflow of vehicles to the track edge and also to a queue of the same, if suitable traffic data of two or there are more corresponding FCD vehicles that the relevant Drive through the edge of the track at intervals.
  • a development of the method according to claim 8 enables the detection of the state of total overfilling of a track edge, i.e. of a state where the queue is over the entire route edge and possibly still upstream further across the network node there into others Line edges extends into it.
  • a method developed according to claim 9 is taken into account Inflow and outflow sources of vehicles, such as those e.g. in downtown areas are formed by parking garages and parking lots.
  • a "thinned out" traffic network in terms of traffic situation determination considered that only part of all of the vehicles contains drivable route edges of an overall traffic network, e.g. only track edges of certain track types, such as Main roads. The remaining line edges are and sources of runoff from vehicles.
  • the procedure is suitable to determine or reconstruct the traffic situation in one Traffic network with traffic-regulated network nodes, especially in a road network in a metropolitan area. That took into account Traffic network can correspond to an entire traffic network, all the track edges that can be driven by the associated vehicles of a certain area, or in one "Thinned out” form only part of the route edges of the overall traffic network included, e.g. only roads from a certain one Street type minimum size, such as major roads.
  • the process begins with the acquisition of traffic data reporting vehicles moving in traffic (step 1), i.e. of FCD (floating car data).
  • FCD floating car data
  • FCD is preferably obtained by the in the above-mentioned, parallel German patent application (our file: P033150 / DE / 1) described procedures, which can be referred to for further details.
  • the FCD can thereby via permanently installed terminal devices on the vehicle, however also e.g. recorded via mobile phones carried by the vehicle or forwarded.
  • each directional track set k, m can consist of one or more lanes exist from vehicles can be used equally on the network node to continue in one or more specific directions. For example, which a directional track set of a confluent Track edge include one or more lanes, from continue straight ahead via the network node or can be turned to the right while the other direction set may include one or more lanes which can be turned left.
  • FCD extraction process according to the parallel German
  • the patent application is characterized in that data acquisition processes at least for successive network nodes not before leaving one of the respective network nodes confluent route edge j are triggered and in the respective Data acquisition process as FCD a timestamp information is obtained, one on the relevant network node related reporting time, which is not earlier than the time leaving the relevant line edge j and not later than the time at which the registration vehicle arrives Section of a route edge i traversed thereafter in front of a reached the next considered network node or in a queue of the next track edge i taken into account.
  • a queue is often formed at the end of a line edge leading into an associated network node.
  • 3 schematically shows an exemplary snapshot from the area of a network node K, into which, among other things, a route edge St opens, at the end of which a queue W with an associated number N q of vehicles has formed in front of the network node K.
  • the downstream queue end lies on a terminating line or stop line An, which represents the boundary line of the line edge St at the junction with the network node K.
  • FCD1, FCD2, FCD3 Three FCD vehicles FCD1, FCD2, FCD3 are illustrated by way of example, which have left the queue W of the route edge St in question and continue in different directions via the network node K. Specifically, a first FCD vehicle FCD1 continues straight ahead, a second FCD vehicle FCD2 is turned to the right, and a third FCD vehicle FCD3 is turned to the left. Boundary lines En1, En2, En3 are drawn in, at which the further route edges begin.
  • the FCD obtained in this way and containing node-related reporting time information are particularly well suited, among other things, for them to use them to calculate the currently expected travel time t tr (j, k) for the respective route edge j according to their directional track quantities k to investigate. This is explained in more detail there and therefore does not require repeated explanation here.
  • the determination of the travel times t tr (j, k) for the one or more directional track sets k of the respective route edge j is the next step (2) in the course of the present method and can be carried out in accordance with the procedure described in the parallel German patent application.
  • these currently expected travel times t tr (j, k) can also be determined using any other conventional algorithm based on the FCD obtained for this purpose, if and to the extent that such is known to the person skilled in the art.
  • the present method is independent of the manner in which the travel times t tr (j, k) for the different route edges j of the traffic network are determined on the basis of recorded FCDs.
  • the determined current travel times t tr (j, k) for the directional track quantities k of the route edges j of the traffic network are then used to determine whether a condition of undersaturation or oversaturation exists for the respective route edge j, possibly differentiated according to its different direction track amounts k (step 3).
  • the state of undersaturation is defined here by the fact that the queue which arises during a hold or interruption phase, for example a red phase of a light signal system, at the end of the line edge is completely resolved by the subsequent pass or free phase, for example the green phase of a light signal system, what can be seen as behavior analogous to the state of free traffic on expressways.
  • the state of supersaturation is defined by the fact that the queue that arises during an interruption phase is no longer completely resolved by the subsequent free phase, which can be regarded as behavior analogous to the state of heavy traffic on expressways.
  • is the mean vehicle density from outside the queue, ie between the beginning of the line and the beginning of the queue, moving vehicles and with v free ( ⁇ ) the average vehicle speed outside the queue, which is dependent on the vehicle density ⁇ .
  • the average vehicle speed v free outside the queue can be approximated by a constant v eff , which corresponds to a typical value of v free that is predetermined independently of the density.
  • the constant ⁇ is greater than zero and less than one and is usually at or near the value 0.5.
  • the quantities q sat , T G , T R and thus T are predefined parameters or functions of the other traffic-indicative quantities.
  • all traffic-related variables mentioned here are mostly time-dependent functions, as is understood by the person skilled in the art and which is therefore also not explicitly stated in the size descriptions for the sake of clarity.
  • the parameters b and q sat depend on the type of vehicle, in particular on the relative proportions of vehicles of different lengths on average, such as passenger cars and trucks.
  • the parameters b and q sat each result as the sum of the corresponding relative contributions of the different types, which in turn result as the product of the relative share of the type in question in the total number of vehicles multiplied by the associated type-specific average vehicle distance or saturation outflow.
  • the determined travel time t tr (j, k) is less than the threshold value t s (j, k) defined in this way, the state of under-saturation is inferred, while the transition to the state of oversaturation is assumed if the determined travel time t tr (j , k ) lies above this threshold t s (j, k) .
  • the method then continues with the determination of traffic situation parameters describing the traffic situation on the basis of the determined travel times t tr (j, k) for the directional track quantities k of the route edges j (step 4), the traffic situation parameters for the two states under- and oversaturation are calculated according to different, suitable systems of equations in order to then reconstruct or determine the current traffic situation.
  • This preferably includes, in each case specifically for each directional track quantity k of the respective route edge j, the calculation of the mean total number N of vehicles, the mean number N q of vehicles in the queue, the mean vehicle density ⁇ of the vehicles traveling outside the queue and from this the mean speed V free of the vehicles outside the queue, the mean queue length L q and the mean waiting time t q in the queue.
  • the essential parameters determining vehicle traffic ⁇ , average number of vehicles N, average number N q of vehicles in the queue, average queue length L q and average waiting time t q in can thus be used for both undersaturation and oversaturation determine the queue for each directional lane quantity k of each route edge j of the traffic network on the basis of the FCD-based average travel times t tr (j, k) , that is to say the current traffic situation can be reconstructed on the basis of suitably recorded FCDs which represent traffic data recorded on a sample basis .
  • a procedure can optionally be applied in which the difference ⁇ t tr (j, k) of the travel times t tr (j, k) is used by at least two FCD vehicles which have the same directional track quantity k of the route edge j in one Drive through sufficient time interval ⁇ t (j, k) .
  • This time interval .DELTA.t (j, k) must be equal to or greater than the traffic regulation period T (j, k) , and the average travel time t tr (j, k) for this case is made up of individual travel time values over the queue period T (j, k) averaged. More precisely, the time interval .DELTA.t (j, k) is the time difference between the times at which the FCD vehicles concerned enter the same directional track quantity k of the route edge j.
  • the difference ⁇ t free (j, k) of the travel times from the beginning of the route edge to the beginning of the queue for two Successive FCD vehicles that enter the relevant directional track quantity k of the route edge j at a time interval ⁇ t (j, k) is significantly smaller than the difference ⁇ t q (j, k) of the waiting times of the FCD vehicles in the queue.
  • This relationship also contains the prerequisite that there are no sources and sinks of the vehicle flow on the relevant directional track quantity k of the route edge j.
  • Such sources and sinks can be formed, for example, in inner-city areas of parking garages and parking lots.
  • a corresponding inflow q Q (j, k) and outflow q s (j, k) of vehicles result for the respective directional track quantity k of the route edge j.
  • This can be taken into account, among other things, in the above equation 12 for the mean line edge inflow in that on the left side of the equation the quantity q in (j, k) by the expression q in (j, k) -q s (j, k) + q Q (j, k) is replaced.
  • such sources and sinks of the vehicle flow can also be taken into account as a corresponding traffic flow correction when determining the other parameters relevant to the traffic situation, as described above. If the traffic network considered is a "thinned out" traffic network as mentioned above, the line edges and associated network nodes that are not taken into account are treated as further sources and sinks of the vehicle flow.
  • the free-phase and interruption-phase durations vary depending on the traffic volume, so that, for example, for a direction-lane volume on which a relatively long queue has already formed, the free-phase duration is increased compared to its normal value to shorten the excessively long queue again.
  • the interruption phase duration T R , the free phase duration T G and thus the round trip time T defined by the sum of these two time periods are functions that depend not only on the route edge j, the directional track quantity k and the time, but also on one or more traffic situation indicators Variables such as the flow of vehicles etc.
  • the travel time t tr, crit (j, k) for which this criterion (equation 14) is fulfilled is referred to as the critical travel time.
  • an overfilled directional track quantity k of a route edge j of a metropolitan area traffic network blocks one or more upstream plug edges over one or more corresponding network nodes can then be that in this case the difference tt 2 (j, k) between the current point in time t and the time t 2 (j, k) at which the FCD vehicle in question entered the directional track quantity k of the route edge j is greater than this critical travel time t tr, crit (j, k) .
  • the determination of the traffic situation parameters as explained here and thus the traffic situation can be as desired for use corresponding other applications.
  • the data determined according to the procedure for the average number of vehicles in the respective queue, the queue length, the mean waiting time in the queue and the average number of vehicles on the respective directional lane quantity a track edge and continuously over current turn rates for the generation of historical curve lines over the concerned sizes relevant to the transport warehouse are used.
  • a hydrograph database and a corresponding hydrographic database Traffic forecasting system e.g. to Travel time forecast.
  • a traffic control center with a Memory must be equipped in which the corresponding information about traffic control measures at the network nodes and travel times for all the edges of a metropolitan road network based on a digital road map are saved.
  • a processing unit in the Traffic control center can provide current information about the traffic regulation periods or the free-phase and interruption phases for the traffic-regulated intersections as well via the current FCD-based route edge-specific Receive travel times. Based on this data then a processing unit of the traffic center will be able to automatically Travel time forecasts for any trips on the transport network through a curve-based and / or dynamic Determine traffic forecast (step 5).
  • a dynamic forecast of traffic development is, for example with the older German patent application cited above No. 199 40 957 possible methods described.
  • the predicted traffic data can then be compared with currently available Traffic data are compared, resulting in an error correction for the forecasting process can be derived by the determined current values e.g. for the turn rates and other parameters relevant to the traffic situation and / or the corresponding ones Values of the historical curves depending on any deviations found in the comparison Getting corrected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
EP01110502A 2000-05-10 2001-04-27 Procédé de détermination de l'état du trafic sur un réseau routier Expired - Lifetime EP1154389B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10022812 2000-05-10
DE10022812A DE10022812A1 (de) 2000-05-10 2000-05-10 Verfahren zur Verkehrslagebestimmung auf Basis von Meldefahrzeugdaten für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten

Publications (2)

Publication Number Publication Date
EP1154389A1 true EP1154389A1 (fr) 2001-11-14
EP1154389B1 EP1154389B1 (fr) 2004-06-02

Family

ID=7641474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01110502A Expired - Lifetime EP1154389B1 (fr) 2000-05-10 2001-04-27 Procédé de détermination de l'état du trafic sur un réseau routier

Country Status (5)

Country Link
US (1) US6470262B2 (fr)
EP (1) EP1154389B1 (fr)
JP (1) JP3501773B2 (fr)
DE (2) DE10022812A1 (fr)
ES (1) ES2220617T3 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650853A1 (fr) * 2011-01-19 2013-10-16 Zenrin Co., Ltd. Système d'analyse d'informations concernant des règles de circulation
CN103413433A (zh) * 2013-07-26 2013-11-27 浙江工业大学 一种基于流量信息的交通拥堵时的公交换乘方法
CN104200650A (zh) * 2014-08-27 2014-12-10 浙江工业大学 一种城市拥堵时段的多模式公交换乘方法
CN105261206A (zh) * 2015-09-29 2016-01-20 无锡高联信息技术有限公司 一种公共交通服务系统和计算公共交通路径的方法
DE10334140B4 (de) * 2002-07-24 2016-01-21 Österreichisches Forschungs- und Prüfzentrum Arsenal Ges. m.b.H. Verfahren und System zur Ermittlung von Verkehrsdaten
CN106897791A (zh) * 2017-01-06 2017-06-27 南京邮电大学 一种公交地铁复合网络模型构建方法
CN106935040A (zh) * 2017-04-05 2017-07-07 河海大学 一种十字型交叉口交通信号灯设置的判别方法
CN107331166A (zh) * 2017-07-25 2017-11-07 中南大学 一种基于路径分析的动态限行方法
CN107507415A (zh) * 2017-07-06 2017-12-22 广东交通职业技术学院 车联网下基于mfd和排队长度的路网边界限流控制方法
CN108510008A (zh) * 2018-04-11 2018-09-07 国交空间信息技术(北京)有限公司 一种基于浮动车轨迹点空间关系和分布的路网提取方法
CN108847042A (zh) * 2018-08-24 2018-11-20 讯飞智元信息科技有限公司 一种路况信息发布方法及装置
CN109087509A (zh) * 2018-09-04 2018-12-25 重庆交通大学 一种路网交通运行状态预测方法
CN116137103A (zh) * 2023-02-20 2023-05-19 东南大学 基于图元学习和深度强化学习的大规模交通灯信号控制方法
CN116246466A (zh) * 2023-03-13 2023-06-09 长安大学 考虑自动驾驶多模式特性的混合交通流管理方法及系统
CN117765738A (zh) * 2024-02-21 2024-03-26 云南省公路科学技术研究院 道路交通车流量分流控制优化方法、系统、终端及介质

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025039C2 (de) * 2000-05-20 2003-09-04 Daimler Chrysler Ag Verfahren zur Ermittlung von Verkehrsregelungsphasendauern
JP3849435B2 (ja) * 2001-02-23 2006-11-22 株式会社日立製作所 プローブ情報を利用した交通状況推定方法及び交通状況推定・提供システム
US6693557B2 (en) 2001-09-27 2004-02-17 Wavetronix Llc Vehicular traffic sensor
US6580997B2 (en) * 2001-09-27 2003-06-17 International Business Machines Corporation Hierarchical traffic control system which includes vehicle roles and permissions
JP3937011B2 (ja) * 2002-03-20 2007-06-27 国土交通省国土技術政策総合研究所長 交通情報処理方法及び交通情報処理システム
KR100459476B1 (ko) * 2002-04-04 2004-12-03 엘지산전 주식회사 차량의 대기 길이 측정 장치 및 방법
US7499949B2 (en) * 2002-08-07 2009-03-03 Navteq North America, Llc Method and system for obtaining recurring delay data using navigation systems
US7433889B1 (en) 2002-08-07 2008-10-07 Navteq North America, Llc Method and system for obtaining traffic sign data using navigation systems
JP3980455B2 (ja) * 2002-09-13 2007-09-26 パイオニア株式会社 通信端末装置、その接続制御方法、そのプログラム
DE10249618A1 (de) * 2002-10-21 2004-05-13 DDG GESELLSCHAFT FüR VERKEHRSDATEN MBH Verfahren zur Generierung impliziter Informationen aus FC-Daten
DE10261172B4 (de) * 2002-12-20 2005-05-25 Daimlerchrysler Ag Verfahren und System zur zentralenbasierten, zeitlich vorausschauende Störungserkennung durch Störflanken-Detektion mittels abschnittsbezogener Reisezeitenschätzung
US7426450B2 (en) * 2003-01-10 2008-09-16 Wavetronix, Llc Systems and methods for monitoring speed
JP2005049138A (ja) * 2003-07-30 2005-02-24 Pioneer Electronic Corp 交通状況報知装置、そのシステム、その方法、そのプログラム、および、そのプログラムを記録した記録媒体
DE10359977B4 (de) * 2003-12-18 2009-02-12 Siemens Ag Verfahren zum Ermitteln einer Reisezeit
US20070138347A1 (en) * 2004-12-16 2007-06-21 Ehlers Gregory A System and method for providing information to an operator of a vehicle
US7174153B2 (en) * 2003-12-23 2007-02-06 Gregory A Ehlers System and method for providing information to an operator of an emergency response vehicle
US7702427B1 (en) * 2004-07-30 2010-04-20 The United States Of America As Represented By The National Aeronautics And Space Administration (Nasa) Air traffic management evaluation tool
US7236881B2 (en) * 2005-02-07 2007-06-26 International Business Machines Corporation Method and apparatus for end-to-end travel time estimation using dynamic traffic data
US8248272B2 (en) * 2005-10-31 2012-08-21 Wavetronix Detecting targets in roadway intersections
US8665113B2 (en) 2005-10-31 2014-03-04 Wavetronix Llc Detecting roadway targets across beams including filtering computed positions
US7953544B2 (en) 2007-01-24 2011-05-31 International Business Machines Corporation Method and structure for vehicular traffic prediction with link interactions
US8755991B2 (en) 2007-01-24 2014-06-17 Tomtom Global Assets B.V. Method and structure for vehicular traffic prediction with link interactions and missing real-time data
US20080262710A1 (en) * 2007-04-23 2008-10-23 Jing Li Method and system for a traffic management system based on multiple classes
JP5003546B2 (ja) * 2007-06-07 2012-08-15 住友電気工業株式会社 交通信号制御システム、交通信号制御装置及び方法、並びに、交通指標算出装置
JP4858380B2 (ja) * 2007-09-19 2012-01-18 住友電気工業株式会社 交通パラメータ算出システム、算出方法及びコンピュータプログラム
US8050854B1 (en) * 2007-11-26 2011-11-01 Rhythm Engineering, LLC Adaptive control systems and methods
DE102008022349A1 (de) 2008-05-02 2009-11-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Ermittlung von Rückstaulängen an Lichtsignalanlagen
US7973674B2 (en) * 2008-08-20 2011-07-05 International Business Machines Corporation Vehicle-to-vehicle traffic queue information communication system and method
WO2010042973A1 (fr) * 2008-10-15 2010-04-22 National Ict Australia Limited Suivi du nombre de véhicules dans une file d’attente
DE102009033431B4 (de) 2009-07-15 2011-05-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur dynamischen Steuerung einer Signalanlage
CN102063789B (zh) * 2009-11-16 2014-07-30 高德软件有限公司 一种交通信息质量评估方法和装置
US8738289B2 (en) 2011-01-04 2014-05-27 International Business Machines Corporation Advanced routing of vehicle fleets
US8554456B2 (en) * 2011-07-05 2013-10-08 International Business Machines Corporation Intelligent traffic control mesh
CN102376162B (zh) * 2011-09-28 2013-12-11 东南大学 交叉口出口道的路内停车带与交叉口最佳距离设置方法
US20130101159A1 (en) * 2011-10-21 2013-04-25 Qualcomm Incorporated Image and video based pedestrian traffic estimation
CN102509454B (zh) * 2011-11-03 2013-09-11 安徽科力信息产业有限责任公司 基于fcd与地磁检测器的道路状态融合方法
JP2013211364A (ja) * 2012-03-30 2013-10-10 Disco Abrasive Syst Ltd ウェーハの収容方法
CN102881060B (zh) * 2012-10-17 2015-03-11 潍柴动力股份有限公司 一种实现车辆典型工况获取的方法及系统
US8914225B2 (en) * 2012-12-04 2014-12-16 International Business Machines Corporation Managing vehicles on a road network
CN103000027B (zh) * 2012-12-19 2014-12-10 安徽科力信息产业有限责任公司 基于浮动车在拥堵状态下的智能交通诱导方法
CN103050006B (zh) * 2012-12-26 2014-12-10 福建工程学院 一种基于浮动车技术的城市高架桥识别方法
US9412271B2 (en) 2013-01-30 2016-08-09 Wavetronix Llc Traffic flow through an intersection by reducing platoon interference
CN103336999B (zh) * 2013-06-07 2016-08-10 同济大学 一种基于多蚁群的组合交通疏散优化方法
CN103413263B (zh) * 2013-08-28 2016-03-16 北京交通发展研究中心 旅行时间指数熵交通运行评价方法
CN103680127A (zh) * 2013-08-29 2014-03-26 中国科学院地理科学与资源研究所 一种利用低采样率浮动车数据计算信号灯控制道路交叉口延误的方法
CN103700255B (zh) * 2013-12-30 2015-10-07 复旦大学 一种基于时空关联数据挖掘的交通流预测方法
CN103927866B (zh) * 2013-12-31 2016-02-10 北京航空航天大学 基于gps的车辆等待红绿灯时间预测方法
DE102014206937A1 (de) * 2014-04-10 2015-10-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Steuerung von Verkehrsströmen an Knotenpunkten
CN104112361B (zh) * 2014-04-25 2016-08-31 浙江大学 路网交通中常发瓶颈和偶发瓶颈的识别方法
CN103996289B (zh) * 2014-06-06 2016-08-17 北方工业大学 一种流量-速度匹配模型及行程时间预测方法及系统
CN104183119B (zh) * 2014-08-19 2016-08-24 中山大学 基于路段od反推的实时交通流分布预测方法
CN105788249B (zh) * 2014-12-16 2018-09-28 高德软件有限公司 一种交通流量预测方法、预测模型生成方法及装置
CN104731963B (zh) * 2015-04-03 2018-06-15 重庆邮电大学 一种基于车联网的网格化路径推荐方法及系统
CN105894802A (zh) * 2015-04-10 2016-08-24 杭州远眺科技有限公司 一种基于gps数据的交通拥堵传播路径计算方法
CN104821086B (zh) * 2015-05-26 2017-02-01 中南大学 一种定位大规模交通网络中低效路段组合的方法
CN105185107A (zh) * 2015-07-23 2015-12-23 合肥革绿信息科技有限公司 一种基于gps的交通运行趋势推测方法
WO2017035663A1 (fr) 2015-09-03 2017-03-09 Miovision Technologies Incorporated Système et procédé de détection et suivi d'objets
CN105261217B (zh) * 2015-10-03 2017-12-22 上海大学 一种基于密度聚类算法的城市交通拥堵状态检测方法
US10126135B2 (en) 2015-12-15 2018-11-13 Nissan North America, Inc. Traffic signal timing estimation using an artificial neural network model
CN105489013B (zh) * 2016-01-11 2017-10-10 天津大学 一种基于安全域的交通网络安全评价方法
CN105678034B (zh) * 2016-03-14 2018-10-02 东南大学 行人过街时间模型及信号交叉口人行横道宽度优化方法
CN105702019B (zh) * 2016-04-12 2018-01-02 东南大学 一种获取城市大型活动的道路限速值的方法
EP3465657A4 (fr) * 2016-05-24 2020-05-27 Vaudrin, Francois Commande et gestion d'un système de feux de circulation avec des vanet
US10115305B2 (en) 2016-09-30 2018-10-30 Nissan North America, Inc. Optimizing autonomous car's driving time and user experience using traffic signal information
US10181263B2 (en) * 2016-11-29 2019-01-15 Here Global B.V. Method, apparatus and computer program product for estimation of road traffic condition using traffic signal data
DE102017201665A1 (de) * 2017-02-02 2018-08-02 Robert Bosch Gmbh Verfahren zur Einbindung eines dynamischen Objektes in eine digitale Karte eines hochautomatisierten Fahrzeugs (HAF)
DE102017221011B4 (de) * 2017-11-23 2022-11-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum dynamischen Steuern einer Lichtsignalanlage
CN111788532B (zh) 2018-02-28 2022-05-10 北美日产公司 用于自主运载工具决策的运输网络基础设施
CN109345840A (zh) * 2018-11-30 2019-02-15 东南大学 一种交通信号灯的绿灯时间确定方法及系统
DE102018010003A1 (de) * 2018-12-27 2020-07-02 Volkswagen Aktiengesellschaft Rückstauerkennung aus Bewegungsdaten
CN110222875B (zh) * 2019-05-15 2022-10-25 华南理工大学 一种基于交通匹配曲线的路网均衡性指标体系构建方法
US11489792B2 (en) 2020-01-10 2022-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicular micro clouds for on-demand vehicle queue analysis
CN113132415A (zh) * 2021-05-10 2021-07-16 安徽思珀特信息科技有限公司 一种基于网络流量分析的威胁发现系统
CN116343488B (zh) * 2023-05-31 2023-07-28 山东高速信息集团有限公司 一种公路收费广场的上游流量调节方法、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011138A1 (fr) * 1988-05-11 1989-11-16 Alex Frauchiger Procede pour resorber ou prevenir les embouteillages de tous genres
WO1994011839A1 (fr) * 1992-11-19 1994-05-26 Kjell Olsson Procede de prevision de parametres de circulation
US5684475A (en) * 1995-04-28 1997-11-04 Inform Institut Fur Operations Research Und Management Gmbh Method for recognizing disruptions in road traffic
EP0884708A2 (fr) * 1997-06-12 1998-12-16 MANNESMANN Aktiengesellschaft Procédé et dispositif de pronostic de l'état du trafic
EP0915445A2 (fr) * 1997-10-06 1999-05-12 Siemens Aktiengesellschaft Système de transmission de données de circulation
DE19940957A1 (de) * 1999-08-28 2001-03-08 Daimler Chrysler Ag Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173691A (en) * 1990-07-26 1992-12-22 Farradyne Systems, Inc. Data fusion process for an in-vehicle traffic congestion information system
US5845227A (en) * 1991-02-01 1998-12-01 Peterson; Thomas D. Method and apparatus for providing shortest elapsed time route and tracking information to users
US5296852A (en) * 1991-02-27 1994-03-22 Rathi Rajendra P Method and apparatus for monitoring traffic flow
ES2142053T5 (es) * 1995-03-23 2007-03-16 T-Mobile Deutschland Gmbh Procedimiento y dispositivo para la determinacion de informacion dinamica del trafico.
US5926113A (en) * 1995-05-05 1999-07-20 L & H Company, Inc. Automatic determination of traffic signal preemption using differential GPS
US6259405B1 (en) * 1995-06-06 2001-07-10 Wayport, Inc. Geographic based communications service
US5878368A (en) * 1996-09-13 1999-03-02 Magellan Dis, Inc. Navigation system with user definable cost values
US6169902B1 (en) * 1997-04-09 2001-01-02 Sony Corporation Information terminal, processing method by information terminal, information providing apparatus and information network system
DE19753034A1 (de) * 1997-11-18 1999-06-17 Ddg Ges Fuer Verkehrsdaten Mbh Verfahren zur Prognose eines den Zustand eines Systems repräsentierenden Parameters, insbesondere eines den Zustand eines Verkehrsnetzes repräsentierenden Verkehrsparameters und Vorrichtung zum Durchführen des Verfahrens
US6615130B2 (en) * 2000-03-17 2003-09-02 Makor Issues And Rights Ltd. Real time vehicle guidance and traffic forecasting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011138A1 (fr) * 1988-05-11 1989-11-16 Alex Frauchiger Procede pour resorber ou prevenir les embouteillages de tous genres
WO1994011839A1 (fr) * 1992-11-19 1994-05-26 Kjell Olsson Procede de prevision de parametres de circulation
US5684475A (en) * 1995-04-28 1997-11-04 Inform Institut Fur Operations Research Und Management Gmbh Method for recognizing disruptions in road traffic
EP0884708A2 (fr) * 1997-06-12 1998-12-16 MANNESMANN Aktiengesellschaft Procédé et dispositif de pronostic de l'état du trafic
EP0915445A2 (fr) * 1997-10-06 1999-05-12 Siemens Aktiengesellschaft Système de transmission de données de circulation
DE19940957A1 (de) * 1999-08-28 2001-03-08 Daimler Chrysler Ag Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334140B4 (de) * 2002-07-24 2016-01-21 Österreichisches Forschungs- und Prüfzentrum Arsenal Ges. m.b.H. Verfahren und System zur Ermittlung von Verkehrsdaten
EP2650853A1 (fr) * 2011-01-19 2013-10-16 Zenrin Co., Ltd. Système d'analyse d'informations concernant des règles de circulation
EP2650853A4 (fr) * 2011-01-19 2014-03-05 Zenrin Co Ltd Système d'analyse d'informations concernant des règles de circulation
US9430940B2 (en) 2011-01-19 2016-08-30 Zenrin Co., Ltd. Regulation information analysis system
CN103413433A (zh) * 2013-07-26 2013-11-27 浙江工业大学 一种基于流量信息的交通拥堵时的公交换乘方法
CN103413433B (zh) * 2013-07-26 2015-08-05 浙江工业大学 一种基于流量信息的交通拥堵时的公交换乘方法
CN104200650A (zh) * 2014-08-27 2014-12-10 浙江工业大学 一种城市拥堵时段的多模式公交换乘方法
CN104200650B (zh) * 2014-08-27 2017-01-18 浙江工业大学 一种城市拥堵时段的多模式公交换乘方法
CN105261206A (zh) * 2015-09-29 2016-01-20 无锡高联信息技术有限公司 一种公共交通服务系统和计算公共交通路径的方法
CN106897791A (zh) * 2017-01-06 2017-06-27 南京邮电大学 一种公交地铁复合网络模型构建方法
CN106897791B (zh) * 2017-01-06 2020-05-12 南京邮电大学 一种公交地铁复合网络模型构建方法
CN106935040A (zh) * 2017-04-05 2017-07-07 河海大学 一种十字型交叉口交通信号灯设置的判别方法
CN107507415A (zh) * 2017-07-06 2017-12-22 广东交通职业技术学院 车联网下基于mfd和排队长度的路网边界限流控制方法
CN107507415B (zh) * 2017-07-06 2020-12-18 广东交通职业技术学院 车联网下基于mfd和排队长度的路网边界限流控制方法
CN107331166A (zh) * 2017-07-25 2017-11-07 中南大学 一种基于路径分析的动态限行方法
CN108510008B (zh) * 2018-04-11 2021-05-14 国交空间信息技术(北京)有限公司 一种基于浮动车轨迹点空间关系和分布的路网提取方法
CN108510008A (zh) * 2018-04-11 2018-09-07 国交空间信息技术(北京)有限公司 一种基于浮动车轨迹点空间关系和分布的路网提取方法
CN108847042A (zh) * 2018-08-24 2018-11-20 讯飞智元信息科技有限公司 一种路况信息发布方法及装置
CN108847042B (zh) * 2018-08-24 2021-04-02 讯飞智元信息科技有限公司 一种路况信息发布方法及装置
CN109087509A (zh) * 2018-09-04 2018-12-25 重庆交通大学 一种路网交通运行状态预测方法
CN116137103A (zh) * 2023-02-20 2023-05-19 东南大学 基于图元学习和深度强化学习的大规模交通灯信号控制方法
CN116137103B (zh) * 2023-02-20 2023-12-08 东南大学 基于图元学习和深度强化学习的大规模交通灯信号控制方法
CN116246466A (zh) * 2023-03-13 2023-06-09 长安大学 考虑自动驾驶多模式特性的混合交通流管理方法及系统
CN116246466B (zh) * 2023-03-13 2024-01-23 长安大学 考虑自动驾驶多模式特性的混合交通流管理方法及系统
CN117765738A (zh) * 2024-02-21 2024-03-26 云南省公路科学技术研究院 道路交通车流量分流控制优化方法、系统、终端及介质
CN117765738B (zh) * 2024-02-21 2024-04-26 云南省公路科学技术研究院 道路交通车流量分流控制优化方法、系统、终端及介质

Also Published As

Publication number Publication date
JP3501773B2 (ja) 2004-03-02
US6470262B2 (en) 2002-10-22
EP1154389B1 (fr) 2004-06-02
JP2002008183A (ja) 2002-01-11
ES2220617T3 (es) 2004-12-16
US20020026277A1 (en) 2002-02-28
DE50102456D1 (de) 2004-07-08
DE10022812A1 (de) 2001-11-22

Similar Documents

Publication Publication Date Title
EP1154389B1 (fr) Procédé de détermination de l'état du trafic sur un réseau routier
EP1497618B1 (fr) Procede et systeme de guidage dynamique d'un vehicule
DE19904909C2 (de) Verfahren und Vorrichtung zur Bereitstellung von Verkehrsinformationen
DE19944075C2 (de) Verfahren zur Verkehrszustandsüberwachung für ein Verkehrsnetz mit effektiven Engstellen
DE19647127C2 (de) Verfahren zur automatischen Verkehrsüberwachung mit Staudynamikanalyse
DE10133945A1 (de) Verfahren und Vorrichtung zum Austausch und zur Verarbeitung von Daten
DE102005024558A1 (de) Verfahren zur Bestimmung der Geometrie eines Streckenabschnittes
DE102008003039A1 (de) Verfahren zur Verkehrszustandsbestimmung in einem Fahrzeug
EP2116981B1 (fr) Procédé et dispositif de détermination de longueurs de retenue à hauteur de signaux lumineux
DE69631629T2 (de) Erfassung und Vorhersage von Verkehrsbehinderungen
DE10057796A1 (de) Verfahren zur fahrzeugindividuellen Verkehrszustandsprognose
DE10062856A1 (de) Verfahren zur fahrzeugindividuellen Verkehrsprognose
DE102015218942A1 (de) Verfahren zum Steuern einer Anzeige einer Restzeit
DE102007056225A1 (de) Verfahren und Vorrichtung zum Steuern eines Verkehrsflusses an einer Kreuzung
DE19940957C2 (de) Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten
DE10051777A1 (de) Verfahren zur dynamischen Verkehrszustandsprognose
DE10108611A1 (de) Verfahren zur Simulation und Prognose der Bewegung von Einzelfahrzeugen auf einem Verkehrswegenetz
DE10018562C1 (de) Verfahren zur Gewinnung von Verkehrsdaten für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten durch Meldefahrzeuge
DE102008062766B4 (de) Verfahren zur Verkehrsbeeinflussung
DE102005055244A1 (de) Verfahren zur verkehrsdatenbasierten Unfallerkennung
DE10336590A1 (de) Verfahren zur fahrzeugindividuellen Verkehrsprognose
DE102015206593A1 (de) Fahrzeug, Anordnung und Verfahren zur Analyse eines Verhaltens einer Lichtsignalanlage
DE102005002872B4 (de) Vorrichtung und Verfahren zur Fahrzeugzielführung
DE10025039A1 (de) Verfahren zur Ermittlung von Verkehrsregelungsphasendauern
DE102015209056A1 (de) Computer-implementiertes Verfahren, System, und Computer-lesbares Medium zur Bestimmung eines Verkehrsmittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020116

AKX Designation fees paid

Free format text: DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50102456

Country of ref document: DE

Date of ref document: 20040708

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040825

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2220617

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050412

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050418

Year of fee payment: 5

Ref country code: ES

Payment date: 20050418

Year of fee payment: 5

Ref country code: DE

Payment date: 20050418

Year of fee payment: 5

26N No opposition filed

Effective date: 20050303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060427

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070427