EP1154389B1 - Procédé de détermination de l'état du trafic sur un réseau routier - Google Patents

Procédé de détermination de l'état du trafic sur un réseau routier Download PDF

Info

Publication number
EP1154389B1
EP1154389B1 EP01110502A EP01110502A EP1154389B1 EP 1154389 B1 EP1154389 B1 EP 1154389B1 EP 01110502 A EP01110502 A EP 01110502A EP 01110502 A EP01110502 A EP 01110502A EP 1154389 B1 EP1154389 B1 EP 1154389B1
Authority
EP
European Patent Office
Prior art keywords
traffic
queue
vehicles
roadway
roadway section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01110502A
Other languages
German (de)
English (en)
Other versions
EP1154389A1 (fr
Inventor
Boris Prof. Dr. Kerner
Hubert Dr. Rehborn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1154389A1 publication Critical patent/EP1154389A1/fr
Application granted granted Critical
Publication of EP1154389B1 publication Critical patent/EP1154389B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the invention relates to a method for traffic position determination on the basis of traffic data, which by itself in the Traffic with moving registration vehicles will be won for a Traffic network with traffic-regulated network nodes and these connecting Track edges.
  • the traffic flow is usually through the traffic control measures at the network node, e.g. in the form of Traffic lights at intersections, determined and barely by the Traffic dynamic effects on the often relatively short line edges between the nodes.
  • a queuing theory can be applied at the length of the queue before each traffic-controlled Network nodes, the durations of fingerphases, during which the traffic is released at the relevant network node, and from Interruption phases during which the traffic at the network node stopped, the speed of vehicles outside the typical queues in front of the network nodes, the tributaries to the queue and the length of the line edges for traffic dynamics are of importance, see, e.g. the publications S.
  • a traffic forecasting method is described, specifically for metropolitan transport networks suitable.
  • This traffic forecasting method is based on a recording from current, through the free and interruption phases the traffic-controlled network node time-discrete traffic condition parameters on, like the current vehicle runoff a queue, the current vehicle inflow into the queue and the current number of vehicles in the queue.
  • time discretized traffic condition parameters become effective continuous traffic condition parameters certainly, including at least one effective continuous vehicle drain from a queue and / or an effective continuous vehicle influx into the Queue based on which one or more traffic parameters based on a dynamic macroscopic modeling of traffic, e.g. at a forecast time Expected travel time for a specific route and / or the traffic situation to be expected at least with regard to the number of queues or outside thereof moving vehicles and / or the expected Length of the respective queue.
  • the route of the registration or FCD vehicles tracked and the expected travel times for the respective line edge are determined, if necessary individually for each of several directional trace amounts thereof.
  • the term "direction lane” here refers to the Amount of different directional tracks of a line edge, each of which may include one or more lanes and are defined by the one or more lanes a respective direction track amount equal to the Vehicles can be used to the network node to continue in one or more associated destinations happen.
  • This FCD traffic data collection method may be considered a preferred one Basis for determining travel times for each respective Serve route edge.
  • the invention is the provision as a technical problem a method of the type mentioned, with the one or more traffic parameters indicative of the traffic situation using FCD information comparatively can be determined well, especially for transport networks of metropolitan areas.
  • the invention solves this problem by providing a Traffic situation determination method with the features of the claim 1.
  • this procedure are by itself in circulation moving registration vehicles for travel times on the track edges indicative traffic data, i. for travel time determination suitable FCD, obtained and based on this traffic data determines the travel times for the track edges.
  • Based on determined route-specific travel times then become one or more traffic parameters determined, namely the average number of vehicles in a queue of a respective one Line edge in front of a traffic-regulated network node, the average number of vehicles in total on the line edge, the average vehicle speed on the line edge before a possible queue, i. between the Beginning of the line edge to the upstream queue end, the mean waiting time in the respective queue and / or the average vehicle density on the line edge the queue.
  • the current traffic situation especially for transport networks in metropolitan areas where the traffic dynamics dominated by the traffic control measures at the network nodes is to determine sufficiently accurately, i. using the FCD to reconstruct.
  • Other detected traffic data e.g. from stationary detectors, can be additionally considered, however, this is not mandatory.
  • the thus determined or reconstructed current traffic situation can then turn as Basis for building a hydrograph database and going further for baseline-based and / or dynamic traffic forecasts serve. For such traffic forecasts about the expected Traffic situation on a metropolitan area traffic network is the knowledge of the time-dependent queue lengths to the traffic-controlled network node and the time-dependent number of Vehicles on the respective route edge important through the inventive method can be obtained.
  • the Travel times and the traffic condition or parameters specific for each of possibly several directional trace amounts of one respective route edge determined separately. This can be significantly improve the accuracy of the traffic situation determination, since it is taken into account that on a line edge in front of a traffic-regulated network node in general different long queues for different directional lane volumes form and / or the traffic control at the network node mostly is also directional track specific, i. different Holding and passage times, including free or interruption phases called, for the different directional trace amounts includes.
  • the determined current traffic information in the form of the one or the plurality of roadway specific and preferred specific traffic lane-specific traffic situation parameters for a continuous generation of historical Hydrographs with respect to the average number of vehicles in the respective Queue, the queue length, the middle one Waiting time in the respective queue and / or the middle Number of vehicles used on the respective route edge.
  • the direction lane specific Vehicle turning rate at the respective network node considered i. It will determine how many vehicles at the respective time in the middle of a respective Direction lane of a branching into an associated network node Route edge over the network node in a respective Direction lane quantity of a line edge continuing from the network node retract. This can be done by suitably raised Determine FCD by e.g. the recorded FCD information via the direction of travel or direction change selected at the network node contain.
  • the method according to claim 5 is a discriminating detection of the state of supersaturation on the one hand and the supersaturation on the other hand, using a suitable Travel time criterion provided in which the determined Travel time is compared with a threshold, among others from the track edge length, a typical free vehicle speed on the same as the holding and the Transmission duration of the traffic control at the network node depends.
  • a further developed according to claim 7 method allows a special, advantageous determination of the number of vehicles on one Line edge as well as the effective continuous vehicle inflow to the line edge and also to a queue of the same, if suitable traffic data of two or more appropriate FCD vehicles are available, which the relevant Passing the track edge at a time interval.
  • a development of the method according to claim 8 allows the detection of the state of total overfilling of a line edge, i.e. a state in which the queue over the entire route edge and possibly still upstream continue over the local network node away in others Line edges extends into it.
  • a further developed according to claim 9 method considered Inflow and outflow sources of vehicles, e.g. in inner city areas be formed by parking garages and parking lots.
  • the method is suitable for determining or reconstructing the traffic situation in one Traffic network with traffic-regulated network nodes, in particular in a road network of a metropolitan area. That took into account Transport network can correspond to an entire transport network, all the road edges passable by the associated vehicles of a particular area, or in one "thinned out” form only part of the route edges of the overall traffic network contained, e.g. only roads from a certain Road type minimum size, such as major roads.
  • the Procedure begins with the extraction of traffic data by in traffic moving registration vehicles (step 1), i. from FCD (floating car data).
  • FCD recovery preferably takes place by the parallel German patent application mentioned above (DE 100 18 562) described method, which can be referred to for further details.
  • the FCD can while on-board permanently installed devices, but also e.g. taken on vehicle-mounted mobile phones or forwarded.
  • the said FCD extraction method is characterized in that data acquisition operations at least for successively operated network nodes in each case not before leaving one in the respective network node opening track edge j are triggered and in the respective Data acquisition process as FCD timestamp information is gained, the one on the relevant network node reporting date that is not earlier than the time leaving the respective line edge j and not later than the time at which the reporting vehicle has a Section of a subsequently traveled route edge i in front of a the next considered node reached or queued the next considered route edge i retracts.
  • FIG. 3 schematically shows an exemplary snapshot from the area of a network node K into which inter alia a route edge St terminates, at the end of which a queue W with an associated number Nq of vehicles has formed in front of the network node K.
  • the downstream queue end is at a stop line An, which represents the boundary line of the line edge St at the junction to the node K.
  • Vehicles with a traffic flow q in, q enter the queue W and drive vehicles with a traffic flow q out out of it and into the network node K, in order to drive from there to one of the opening route edges.
  • three FCD vehicles FCD1, FCD2, FCD3 are illustrated, which have left the queue W of the relevant line edge St and continue via the network node K in different directions. Specifically, a first FCD vehicle FCD1 continues straight ahead, a second FCD vehicle FCD2 turns right, and a third FCD3 vehicle FCD3 turns left, with the corresponding start and boundary lines En1, En2, En3 drawn, where the continuing route edges begin.
  • the FCD thus obtained, network node-related reporting time information are particularly well suited for them from the currently expected travel time t tr (j, k) for each route edge j separated according to their directional trace amounts k to determine. This is explained in more detail there and therefore does not require repeated explanation here.
  • the determination of the travel times t tr (j, k) for the one or more directional lane quantities k of the respective route edge j is the next step (2) in the course of the present method and can be carried out according to the procedure described in the parallel German patent application.
  • the determination of these currently expected travel times t tr (j, k) on the basis of FCD obtained for this purpose can also be done with any other, conventional algorithm, if and to the extent that the person skilled in the art is aware of such.
  • the present method is independent of the way in which the travel times t tr (j, k) for the different route edges j of the traffic network are determined on the basis of recorded FCD.
  • the determined current travel times t tr (j, k) for the directional lane amounts k of the route edges j of the traffic network are then used to determine whether there is a state of subsaturation or supersaturation for the respective route edge j, possibly differentiated according to their different directional lane sets k (step 3).
  • the state of supersaturation is here defined by the fact that during a holding or interruption phase, for example, a red phase of a traffic signal at the end of the route edge resulting queue by the subsequent passage or free phase, such as the green phase of a traffic signal system, completely dissolved, what can be regarded as a state-free traffic on highways analogous behavior.
  • the state of supersaturation is defined by the fact that the queue arising during an interruption phase is no longer completely resolved by the subsequent free phase, which can be regarded as behavior analogous to the state of dense traffic on freeways.
  • the mean vehicle density is designated from outside the queue, ie between the edge edge start and the queue start, moving vehicles and with v free ( ⁇ ), the vehicle density ⁇ dependent, average vehicle speed outside the queue.
  • the average vehicle speed v free outside the queue can in many cases be approximated by a constant v eff , which corresponds to a typical, density-independent predefined value of v free .
  • the constant ⁇ is greater than or equal to zero and less than one and is usually at or near the value of 0.5.
  • the quantities q sat , T G , T R and thus T are predefined parameters or functions of the other traffic-condition-indicative variables. Furthermore, all of the traffic-related variables mentioned here are mostly time-dependent functions, as will be understood by a person skilled in the art and therefore also not explicitly indicated in the size designations for the sake of clarity.
  • the parameters b and q sat depend in the application of road traffic on the vehicle type, in particular the relative shares of average different long vehicles, such as passenger cars and trucks.
  • the parameters b and q sat each result as a sum of the corresponding relative contributions of the different types, each of which is a product of the relative share of that type in the total number of vehicles multiplied by the associated type-specific mean vehicle separation or saturation outflow.
  • the supersaturation state is assumed, while the transition to the supersaturation state is assumed when the determined travel time t tr (j , k) is above this threshold value t s (j, k) .
  • the method continues with the determination of the traffic situation parameters describing the traffic situation on the basis of the determined travel times t tr (j, k) for the directional lane quantities k of the route edges j (step 4), wherein the traffic situation parameters for the two states undersaturation or supersaturation be calculated according to different, suitable systems of equations, to then reconstruct or determine the current traffic situation.
  • this includes, in each case specific for each directional lane set k of the respective route edge j, the calculation of the average total number N of vehicles, the average number N q of vehicles in the queue, the average vehicle density ⁇ of the vehicles driving out of the queue and, therefrom, the average speed v free of the vehicles out of the queue, the average queue length L q and the mean waiting time t q in the queue.
  • the maximum waiting time t q, max N max T / (T G q sat ) in a queue extending over the entire path edge.
  • the main traffic-determining parameters average vehicle density ⁇ , average number of vehicles N, average number N q of vehicles in the queue, average queue length L q and average waiting time t q in can thus be determined both for the subsaturation and supersaturation cases the queue for each directional lane k of each route edge j of the transport network on the basis of FCD-based average travel times t tr (j, k) determine, ie it can thus the current traffic situation alone on the basis of suitably recorded FCD, the sampled recorded traffic data, be reconstructed ,
  • the number of vehicles N (j, k) on the respective directional lane k of the line edge j and effective continuous inflow q in (j, k) into the relevant directional lane k of the line edge j and effective continuous inflow q in, q (j, k ) in the queue in question if appropriate, a procedure be used in which the difference .DELTA.t tr (j, k) travel times t tr (j, k) is used by at least two FCD vehicles, the same direction lane k of the route edge j in one pass through sufficient time interval ⁇ t (j, k) .
  • This time interval .DELTA.t (j, k) must be equal to or greater than the traffic control period T (j, k) , and the average travel time t tr (j, k) for this case from individual travel time values on the queue period T (j, k) averaged. More specifically, the time interval .DELTA.t (j, k) is the time difference between the times at which the respective FCD vehicles enter the same directional lane k of the line edge j.
  • the path edge inflow q in specific for the respective directional lane k of the path edge j by the relationship q in (J, k) (1 + ⁇ t tr (J, k) / .DELTA.t (J, k) ) q sat (J, k) T G (J, k) / T (J, k) using the approximation ⁇ t free (j, k) ⁇ ⁇ t (j, k) , which is usually well justified in metropolitan areas, ie the difference ⁇ t free (j, k) of the travel times from the beginning of the line to the beginning of the queue two consecutive FCD vehicles traveling at a time interval ⁇ t (j, k) into the relevant directional lane k of the line edge j is significantly smaller than the difference ⁇ t q (j, k) of the waiting times of the FCD vehicles in the queue , Furthermore, this relationship contains the assumption that there are no sources and sinks of the
  • Such sources and sinks may be formed, for example, in inner city areas of parking garages and parking lots.
  • a corresponding inflow q Q (j, k) and outflow q S (j, k) of vehicles results for the respective directional lane set k of the line edge j.
  • This can be taken into account, inter alia, in equation 12 above for the mean edge inflow, in that on the left equation side the quantity q in (j, k) is expressed by the expression q in (j, k) -q S (j, k) + q Q (j, k) is replaced.
  • such sources and sinks of the vehicle flow can also be taken into account as the corresponding traffic flow correction in the determination of the other traffic-related parameters, as described above. If the considered transport network is a "thinned out" transport network as mentioned above, the disregarded route edges and associated network nodes are treated as further sources and sinks of the vehicle flow.
  • the free-phase and interruption phase durations vary depending on the traffic volume, so that, for example, for a directional lane on which a relatively long queue has already formed, the free-phase duration is increased from its normal value to shorten the excessively long queue again.
  • the interruption phase duration T R , the free-phase duration T G and thus the round trip time T defined by the sum of these two time periods are functions that depend not only on the path edge j, the directional lane k and the time but also on one or more traffic situation indicators Variables, such as the vehicle flow, etc.
  • the open or interruption periods and the circulation times ie the traffic control period durations to be used, which are obtained by averaging over time intervals which are much larger than a typical round trip time without traffic volume influence.
  • K (j) as the number of directional track amounts of the line edge j
  • b (j) as the average vehicle length. If q sat (j, k) and T (j, k) have the same values for all directional lane sets k of a line edge j, the above equation 19 simplifies accordingly.
  • the travel time t tr, crit (j, k) for which this criterion (equation 14) is fulfilled is called critical travel time.
  • the determination of traffic situation parameters as explained herein and thus the traffic situation can be adjusted according to your wishes use corresponding additional applications.
  • a hydrograph database and a corresponding baseline-based Traffic prediction system e.g. to Travel time prediction.
  • This can be a traffic center with a Memory equipped in which the corresponding information about the traffic regulation measures at the network nodes and travel times for all the route edges of a metropolitan area road network based on a digital road map are stored.
  • a processing unit in the Traffic center can provide up-to-date information about the traffic regulation period or the free-phase and interruption phase durations for the traffic regulated intersections as well on the current FCD-based, route-specific Travel times received. Based on this data is then a computing unit of the traffic center will be able to automatically Travel time forecasts for any journeys on the transport network through a gangway-based and / or dynamic Traffic forecast to determine (step 5).
  • a dynamic forecast of traffic development is for example with the older German patent application cited above No. 199 40 957 possible.
  • the Predicted traffic data can then be available with currently available Traffic data are compared, resulting in an error correction for the forecasting method can be derived by the determined current values e.g. for the turn rates and other traffic-related parameters and / or the corresponding traffic-related parameters Values of the historical hydrographs depending on the differences, if any, found during the comparison Getting corrected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Claims (10)

  1. Procédé de détermination des conditions de circulation en fonction de données de circulation, collectées par le biais de véhicules de signalisation se déplaçant dans le flot de circulation, pour un réseau routier comportant des noeuds de réseau régulés en fonction de la circulation ainsi que des tronçons de routes reliant ces noeuds, caractérisé en ce que
    pour les temps de trajet (ttr (j,k)) sur les tronçons de route (j, k), on collecte des données de circulation indicatives par le biais de véhicules de signalisation se déplaçant dans le flot de circulation,
    à l'aide des données de circulation collectées, on calcule les temps de trajet pour les tronçons de route et
    à l'aide des temps de trajet calculés de façon spécifique pour les différents tronçons de route, on détermine un ou plusieurs des paramètres suivants relatifs aux conditions de circulation :
    (i) le nombre moyen (Nq (j,k)) de véhicules présents dans une file d'attente du tronçon de route respectif (j, k), avant un noeud de réseau associé régulé en fonction de la circulation,
    (ii) le nombre moyen (N(j, k)) de véhicules présents sur le tronçon de route (j, k) respectif,
    (iii) la vitesse moyenne (vfree (j, k)) des véhicules présents sur le tronçon de route respectif (j, k), entre le début du tronçon de route et le début de la file d'attente,
    (iv) le temps d'attente moyen (tq (j, k)) dans une file d'attente du tronçon de route (j, k) respectif, avant un noeud de réseau, et/ou (v) la densité moyenne (ρ(j, k)) de véhicules sur le tronçon de route respectif (j, k), entre le début du tronçon de route et le début de la file d'attente.
  2. Procédé selon la revendication 1, en outre caractérisé en ce que l'on détermine les temps de trajet (ttr (j, k)) et le ou les paramètres relatifs aux conditions de circulation de façon spécifique pour chaque ensemble de voie directionnelle (k) du tronçon de route respectif (j).
  3. Procédé selon la revendication 1 ou 2, en outre caractérisé en ce que la ou les valeurs des paramètres relatifs aux conditions de circulation déterminés à l'aide des temps de trajet calculés de façon spécifique pour les différents tronçons de route, sont ensuite utilisées pour la génération de diagrammes d'historique détaillant le nombre moyen de véhicules présents dans une file d'attente respective, la longueur de la file d'attente, le temps d'attente moyen dans la file d'attente et/ou le nombre moyen de véhicules présents sur le tronçon de route respectif (j, k).
  4. Procédé selon l'une des revendications 1 à 3, en outre caractérisé en ce que l'on utilise des taux d'abandon de la route principale en tant que paramètres supplémentaires relatifs aux conditions de circulation, déterminés à l'aide des temps de trajet calculés de façon spécifique pour les différents tronçons de route, ces taux d'abandon de la route principale indiquant respectivement le taux de véhicules quittant un ensemble de voie directionnelle par le biais des noeuds de réseau pour s'engager sur un ensemble de voie directionnelle débouchant sur ce noeud.
  5. Procédé selon l'une des revendications 1 à 4, en outre caractérisé en ce que pour opérer une distinction entre un état de sous-saturation d'une part et un état de sur-saturation d'autre part, on prédétermine une valeur de seuil (ts (j, k)) conformément à la relation ts (j, k) = L(j, k) / vfree (j, k)(j, k)) + β(j, k) (TR (j, k) - γ(j, k)TG (j, k)TR (j, k) / T(j, k))    et pour le tronçon de route respectif (j, k), on conclut à une sous-saturation lorsque le temps de trajet calculé (ttr (j, k)) est inférieur à la valeur de seuil (ts (j, k)) tandis que l'on conclut à une sur-saturation lorsque le temps de trajet calculé est supérieur à la valeur de seuil, où L(j, k) désigne la longueur du tronçon de route (j, k), TR (j, k) désigne la durée des phases d'interruption de la régulation de la circulation, TG (j, k) désigne la durée des phases libres de la régulation de la circulation, T(j, k) = TG (j, k) + TR (j, k) désigne la durée de la période de régulation de la circulation, vfree (j, k)(j, k)) désigne la vitesse moyenne des véhicules en fonction de la densité de véhicules dans la zone située à l'extérieur de la file d'attente et β(j, k) désigne une constante pouvant être prédéterminée, supérieure ou égale à zéro et inférieure à un, et γ(j, k) = qsat (j, k)b(j, k) / [n(j, k)vfree (j, k)(j, k))] où qsat (j, k) désigne l'écoulement de la saturation dans les files d'attente des tronçons de route respectifs (j, k), b(j, k) désigne la distance moyenne entre les véhicules dans la file d'attente et n(j, k) désigne le nombre de voies de circulation.
  6. Procédé selon l'une des revendication 1 à 5, en outre caractérisé en ce que les paramètres relatifs aux conditions de circulation, spécifiques aux différents tronçons de route, que sont la densité moyenne de véhicules (ρ(j, k)) à l'extérieur de la file d'attente, le nombre moyen de véhicules (N(j, k)), le nombre moyen de véhicules présents dans la file d'attente (Nq (j, k)), la longueur de la file d'attente (Lq (j, k)) et le temps d'attente dans la file d'attente (tq (j, k)) sont déterminés, pour l'état de sous-saturation, par le système d'équation suivant : ρ(j,k) = N (j,k) - N (j,k) q n (j,k) (L (j,k) - L (j,k) q )
    Figure 00360001
    Figure 00360002
    L (j,k) q = b (j,k) N (j,k) q / n (j,k)
    Figure 00360003
    et sont déterminés, pour l'état de sur-saturation, par le système d'équation suivant : ρ (j,k) = N (j,k) - N (j,k) q n (j,k)(L (j,k) - L (j,k) q ) N (j,k) = t (j,k) tr q (j,k) sat T (j,k) G / T (j,k)
    Figure 00360004
    L (j,k) q = b (j,k) N (j,k) q / n (j,k) t (j,k) q = N (j,k) q T (j,k) /(T (j,k) G q (j,k) sat avec γ(j, k)=qsat (j, k)b(j, k) / [n(j, k) vfree (j, k)(j, k))] et γ1 (j, k)(j, k)TG (j, k)/T(j, k), où respectivement, pour l'ensemble de voie directionnelle k du tronçon de route j, L désigne la longueur totale de la route, TR désigne la durée des phases d'interruption ou phases rouges, TG désigne la durée des phases libres ou phases vertes, T=TG+TR désigne la durée de la période de régulation de la circulation associée, qsat désigne un écoulement prédéterminé de la saturation hors de la file d'attente, b désigne une distance moyenne entre les véhicules dans les files d'attente, n désigne le nombre de voies de circulation, vfree désigne la vitesse moyenne des véhicules en-dehors de la file d'attente, en fonction de la densité de véhicules, et β désigne une constante prédéterminée appropriée.
  7. Procédé selon l'une des revendications 1 à 6, en outre caractérisé en ce que
    les paramètres relatifs aux conditions de circulation que sont le nombre moyen de véhicules (N(j, k)), l'afflux effectif continu sur le tronçon de route (qin (j, k)) et l'afflux effectif continu dans la file d'attente (qin/q (j, k)), sont déterminés à l'aide de données de circulation provenant d'au moins deux véhicules de signalisation qui, au sein d'un intervalle de temps (Δt(j, k)) supérieur ou égal à la durée de la période de régulation de la circulation (T(j, k)), roulent sur le même tronçon de route (j, k), en utilisant la différence (Δttr (j, k)) entre les temps de trajet calculés pour ces véhicules de signalisation et
    dans ce contexte, pour la détermination de l'afflux effectif continu sur le tronçon de route (qin (j, k)), on utilise la relation qin (j, k)=(1+Δttr (j, k) /Δt(j, k))qsat (j, k)TG (j, k) /T(j,k) ainsi que l'approximation Δtfree (j, k)<<Δt(j, k), où Δtfree désigne la différence de temps de trajet à partir du début du tronçon de route jusqu'au début de la file d'attente.
  8. Procédé selon l'une des revendications 1 à 7, en outre caractérisé en ce que l'on conclut à un tronçon de route surchargé lorsqu'un véhicule de signalisation se trouve sur le tronçon de route concerné (j, k) depuis une période supérieure à un temps de trajet critique (ttr/crit (j, k)), où le temps de trajet critique correspond au temps de trajet calculé, qui répond à la relation implicite b(j, k)Nq (j, k) /n(j, k)=L(j, k)    où le nombre moyen de véhicules présents dans la file d'attente (Nq (j, k)) correspond à celui déterminé dans le cas de sur-saturation.
  9. Procédé selon l'une des revendications 1 à 8, en outre caractérisé en ce que l'augmentation et la baisse du flux de véhicules sur le réseau routier sont pris en compte lors de la détermination des paramètres relatifs aux conditions de circulation, par le biais d'afflux (qQ (j, k)) et d'écoulements (qS (j, k)) correspondants vers ou hors du tronçon de route respectif (j, k).
  10. Procédé selon la revendication 9, en outre caractérisé en ce que le réseau routier pris en compte pour la détermination des conditions de circulation ne forme qu'une partie pouvant être prédéterminée de tous les tronçons de route et noeuds de réseau d'un réseau routier total et en ce que les tronçons de route et noeuds de réseau non pris en compte sont traités en tant qu'augmentation et baisse du flux de véhicules sur le réseau routier pris en compte.
EP01110502A 2000-05-10 2001-04-27 Procédé de détermination de l'état du trafic sur un réseau routier Expired - Lifetime EP1154389B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10022812A DE10022812A1 (de) 2000-05-10 2000-05-10 Verfahren zur Verkehrslagebestimmung auf Basis von Meldefahrzeugdaten für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten
DE10022812 2000-05-10

Publications (2)

Publication Number Publication Date
EP1154389A1 EP1154389A1 (fr) 2001-11-14
EP1154389B1 true EP1154389B1 (fr) 2004-06-02

Family

ID=7641474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01110502A Expired - Lifetime EP1154389B1 (fr) 2000-05-10 2001-04-27 Procédé de détermination de l'état du trafic sur un réseau routier

Country Status (5)

Country Link
US (1) US6470262B2 (fr)
EP (1) EP1154389B1 (fr)
JP (1) JP3501773B2 (fr)
DE (2) DE10022812A1 (fr)
ES (1) ES2220617T3 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063789A (zh) * 2009-11-16 2011-05-18 高德软件有限公司 一种交通信息质量评估方法和装置
CN102881060A (zh) * 2012-10-17 2013-01-16 潍柴动力股份有限公司 一种实现车辆典型工况获取的方法及系统
CN104821086A (zh) * 2015-05-26 2015-08-05 中南大学 一种定位大规模交通网络中低效路段组合的方法
CN105261217A (zh) * 2015-10-03 2016-01-20 上海大学 一种基于密度聚类算法的城市交通拥堵状态检测方法
CN105702019A (zh) * 2016-04-12 2016-06-22 东南大学 一种获取城市大型活动的道路限速值的方法

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025039C2 (de) * 2000-05-20 2003-09-04 Daimler Chrysler Ag Verfahren zur Ermittlung von Verkehrsregelungsphasendauern
JP3849435B2 (ja) * 2001-02-23 2006-11-22 株式会社日立製作所 プローブ情報を利用した交通状況推定方法及び交通状況推定・提供システム
US6580997B2 (en) * 2001-09-27 2003-06-17 International Business Machines Corporation Hierarchical traffic control system which includes vehicle roles and permissions
US6693557B2 (en) 2001-09-27 2004-02-17 Wavetronix Llc Vehicular traffic sensor
JP3937011B2 (ja) * 2002-03-20 2007-06-27 国土交通省国土技術政策総合研究所長 交通情報処理方法及び交通情報処理システム
KR100459476B1 (ko) * 2002-04-04 2004-12-03 엘지산전 주식회사 차량의 대기 길이 측정 장치 및 방법
AT412594B (de) * 2002-07-24 2005-04-25 Oesterreichisches Forschungs U Verfahren und system zur ermittlung von verkehrsdaten
US7499949B2 (en) * 2002-08-07 2009-03-03 Navteq North America, Llc Method and system for obtaining recurring delay data using navigation systems
US7433889B1 (en) 2002-08-07 2008-10-07 Navteq North America, Llc Method and system for obtaining traffic sign data using navigation systems
JP3980455B2 (ja) * 2002-09-13 2007-09-26 パイオニア株式会社 通信端末装置、その接続制御方法、そのプログラム
DE10249618A1 (de) * 2002-10-21 2004-05-13 DDG GESELLSCHAFT FüR VERKEHRSDATEN MBH Verfahren zur Generierung impliziter Informationen aus FC-Daten
DE10261172B4 (de) * 2002-12-20 2005-05-25 Daimlerchrysler Ag Verfahren und System zur zentralenbasierten, zeitlich vorausschauende Störungserkennung durch Störflanken-Detektion mittels abschnittsbezogener Reisezeitenschätzung
US7426450B2 (en) * 2003-01-10 2008-09-16 Wavetronix, Llc Systems and methods for monitoring speed
JP2005049138A (ja) * 2003-07-30 2005-02-24 Pioneer Electronic Corp 交通状況報知装置、そのシステム、その方法、そのプログラム、および、そのプログラムを記録した記録媒体
DE10359977B4 (de) * 2003-12-18 2009-02-12 Siemens Ag Verfahren zum Ermitteln einer Reisezeit
US7174153B2 (en) * 2003-12-23 2007-02-06 Gregory A Ehlers System and method for providing information to an operator of an emergency response vehicle
US20070138347A1 (en) * 2004-12-16 2007-06-21 Ehlers Gregory A System and method for providing information to an operator of a vehicle
US7702427B1 (en) * 2004-07-30 2010-04-20 The United States Of America As Represented By The National Aeronautics And Space Administration (Nasa) Air traffic management evaluation tool
US7236881B2 (en) * 2005-02-07 2007-06-26 International Business Machines Corporation Method and apparatus for end-to-end travel time estimation using dynamic traffic data
US8248272B2 (en) * 2005-10-31 2012-08-21 Wavetronix Detecting targets in roadway intersections
US8665113B2 (en) 2005-10-31 2014-03-04 Wavetronix Llc Detecting roadway targets across beams including filtering computed positions
US7953544B2 (en) 2007-01-24 2011-05-31 International Business Machines Corporation Method and structure for vehicular traffic prediction with link interactions
US8755991B2 (en) 2007-01-24 2014-06-17 Tomtom Global Assets B.V. Method and structure for vehicular traffic prediction with link interactions and missing real-time data
US20080262710A1 (en) * 2007-04-23 2008-10-23 Jing Li Method and system for a traffic management system based on multiple classes
JP5003546B2 (ja) * 2007-06-07 2012-08-15 住友電気工業株式会社 交通信号制御システム、交通信号制御装置及び方法、並びに、交通指標算出装置
JP4858380B2 (ja) * 2007-09-19 2012-01-18 住友電気工業株式会社 交通パラメータ算出システム、算出方法及びコンピュータプログラム
US8103436B1 (en) 2007-11-26 2012-01-24 Rhythm Engineering, LLC External adaptive control systems and methods
DE102008022349A1 (de) 2008-05-02 2009-11-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Ermittlung von Rückstaulängen an Lichtsignalanlagen
US7973674B2 (en) * 2008-08-20 2011-07-05 International Business Machines Corporation Vehicle-to-vehicle traffic queue information communication system and method
AU2009304571A1 (en) * 2008-10-15 2010-04-22 National Ict Australia Limited Tracking the number of vehicles in a queue
DE102009033431B4 (de) 2009-07-15 2011-05-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur dynamischen Steuerung einer Signalanlage
US8738289B2 (en) 2011-01-04 2014-05-27 International Business Machines Corporation Advanced routing of vehicle fleets
JP5315362B2 (ja) 2011-01-19 2013-10-16 株式会社ゼンリン 規制情報解析システム
US8554456B2 (en) * 2011-07-05 2013-10-08 International Business Machines Corporation Intelligent traffic control mesh
CN102376162B (zh) * 2011-09-28 2013-12-11 东南大学 交叉口出口道的路内停车带与交叉口最佳距离设置方法
US20130101159A1 (en) * 2011-10-21 2013-04-25 Qualcomm Incorporated Image and video based pedestrian traffic estimation
CN102509454B (zh) * 2011-11-03 2013-09-11 安徽科力信息产业有限责任公司 基于fcd与地磁检测器的道路状态融合方法
JP2013211364A (ja) * 2012-03-30 2013-10-10 Disco Abrasive Syst Ltd ウェーハの収容方法
US8914225B2 (en) * 2012-12-04 2014-12-16 International Business Machines Corporation Managing vehicles on a road network
CN103000027B (zh) * 2012-12-19 2014-12-10 安徽科力信息产业有限责任公司 基于浮动车在拥堵状态下的智能交通诱导方法
CN103050006B (zh) * 2012-12-26 2014-12-10 福建工程学院 一种基于浮动车技术的城市高架桥识别方法
US9412271B2 (en) 2013-01-30 2016-08-09 Wavetronix Llc Traffic flow through an intersection by reducing platoon interference
CN103336999B (zh) * 2013-06-07 2016-08-10 同济大学 一种基于多蚁群的组合交通疏散优化方法
CN103413433B (zh) * 2013-07-26 2015-08-05 浙江工业大学 一种基于流量信息的交通拥堵时的公交换乘方法
CN103413263B (zh) * 2013-08-28 2016-03-16 北京交通发展研究中心 旅行时间指数熵交通运行评价方法
CN103680127A (zh) * 2013-08-29 2014-03-26 中国科学院地理科学与资源研究所 一种利用低采样率浮动车数据计算信号灯控制道路交叉口延误的方法
CN103700255B (zh) * 2013-12-30 2015-10-07 复旦大学 一种基于时空关联数据挖掘的交通流预测方法
CN103927866B (zh) * 2013-12-31 2016-02-10 北京航空航天大学 基于gps的车辆等待红绿灯时间预测方法
DE102014206937A1 (de) * 2014-04-10 2015-10-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Steuerung von Verkehrsströmen an Knotenpunkten
CN104112361B (zh) * 2014-04-25 2016-08-31 浙江大学 路网交通中常发瓶颈和偶发瓶颈的识别方法
CN103996289B (zh) * 2014-06-06 2016-08-17 北方工业大学 一种流量-速度匹配模型及行程时间预测方法及系统
CN104183119B (zh) * 2014-08-19 2016-08-24 中山大学 基于路段od反推的实时交通流分布预测方法
CN104200650B (zh) * 2014-08-27 2017-01-18 浙江工业大学 一种城市拥堵时段的多模式公交换乘方法
CN105788249B (zh) * 2014-12-16 2018-09-28 高德软件有限公司 一种交通流量预测方法、预测模型生成方法及装置
CN104731963B (zh) * 2015-04-03 2018-06-15 重庆邮电大学 一种基于车联网的网格化路径推荐方法及系统
CN105894802A (zh) * 2015-04-10 2016-08-24 杭州远眺科技有限公司 一种基于gps数据的交通拥堵传播路径计算方法
CN105185107A (zh) * 2015-07-23 2015-12-23 合肥革绿信息科技有限公司 一种基于gps的交通运行趋势推测方法
CA2995866A1 (fr) 2015-09-03 2017-03-09 Miovision Technologies Incorporated Systeme et procede de detection et suivi d'objets
CN105261206A (zh) * 2015-09-29 2016-01-20 无锡高联信息技术有限公司 一种公共交通服务系统和计算公共交通路径的方法
US10126135B2 (en) 2015-12-15 2018-11-13 Nissan North America, Inc. Traffic signal timing estimation using an artificial neural network model
CN105489013B (zh) * 2016-01-11 2017-10-10 天津大学 一种基于安全域的交通网络安全评价方法
CN105678034B (zh) * 2016-03-14 2018-10-02 东南大学 行人过街时间模型及信号交叉口人行横道宽度优化方法
JP2019526092A (ja) * 2016-05-24 2019-09-12 ヴォードリン,フランソワ Vanetを用いた交通信号システムの制御と管理
US10115305B2 (en) * 2016-09-30 2018-10-30 Nissan North America, Inc. Optimizing autonomous car's driving time and user experience using traffic signal information
US10181263B2 (en) * 2016-11-29 2019-01-15 Here Global B.V. Method, apparatus and computer program product for estimation of road traffic condition using traffic signal data
CN106897791B (zh) * 2017-01-06 2020-05-12 南京邮电大学 一种公交地铁复合网络模型构建方法
DE102017201665A1 (de) * 2017-02-02 2018-08-02 Robert Bosch Gmbh Verfahren zur Einbindung eines dynamischen Objektes in eine digitale Karte eines hochautomatisierten Fahrzeugs (HAF)
CN106935040A (zh) * 2017-04-05 2017-07-07 河海大学 一种十字型交叉口交通信号灯设置的判别方法
CN107507415B (zh) * 2017-07-06 2020-12-18 广东交通职业技术学院 车联网下基于mfd和排队长度的路网边界限流控制方法
CN107331166B (zh) * 2017-07-25 2018-06-19 中南大学 一种基于路径分析的动态限行方法
DE102017221011B4 (de) * 2017-11-23 2022-11-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum dynamischen Steuern einer Lichtsignalanlage
WO2019168530A1 (fr) 2018-02-28 2019-09-06 Nissan North America, Inc. Infrastructure de réseau de transport en vue d'une prise de décision de véhicule autonome
CN108510008B (zh) * 2018-04-11 2021-05-14 国交空间信息技术(北京)有限公司 一种基于浮动车轨迹点空间关系和分布的路网提取方法
CN108847042B (zh) * 2018-08-24 2021-04-02 讯飞智元信息科技有限公司 一种路况信息发布方法及装置
CN109087509B (zh) * 2018-09-04 2020-03-31 重庆交通大学 一种路网交通运行状态预测方法
CN109345840A (zh) * 2018-11-30 2019-02-15 东南大学 一种交通信号灯的绿灯时间确定方法及系统
DE102018010003A1 (de) * 2018-12-27 2020-07-02 Volkswagen Aktiengesellschaft Rückstauerkennung aus Bewegungsdaten
CN110222875B (zh) * 2019-05-15 2022-10-25 华南理工大学 一种基于交通匹配曲线的路网均衡性指标体系构建方法
US11489792B2 (en) 2020-01-10 2022-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicular micro clouds for on-demand vehicle queue analysis
CN113132415A (zh) * 2021-05-10 2021-07-16 安徽思珀特信息科技有限公司 一种基于网络流量分析的威胁发现系统
CN116137103B (zh) * 2023-02-20 2023-12-08 东南大学 基于图元学习和深度强化学习的大规模交通灯信号控制方法
CN116246466B (zh) * 2023-03-13 2024-01-23 长安大学 考虑自动驾驶多模式特性的混合交通流管理方法及系统
CN116343488B (zh) * 2023-05-31 2023-07-28 山东高速信息集团有限公司 一种公路收费广场的上游流量调节方法、设备及介质
CN117765738B (zh) * 2024-02-21 2024-04-26 云南省公路科学技术研究院 道路交通车流量分流控制优化方法、系统、终端及介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011138A1 (fr) * 1988-05-11 1989-11-16 Alex Frauchiger Procede pour resorber ou prevenir les embouteillages de tous genres
US5173691A (en) * 1990-07-26 1992-12-22 Farradyne Systems, Inc. Data fusion process for an in-vehicle traffic congestion information system
US5845227A (en) * 1991-02-01 1998-12-01 Peterson; Thomas D. Method and apparatus for providing shortest elapsed time route and tracking information to users
US5296852A (en) * 1991-02-27 1994-03-22 Rathi Rajendra P Method and apparatus for monitoring traffic flow
SE9203474L (sv) * 1992-11-19 1994-01-31 Kjell Olsson Sätt att prediktera trafikparametrar
WO1996029688A1 (fr) * 1995-03-23 1996-09-26 Detemobil Deutsche Telekom Mobilnet Gmbh Procede et dispositif de determination d'informations dynamiques sur la circulation
DE59602517D1 (de) * 1995-04-28 1999-09-02 Inform Inst Operations Res & M Verfahren zur Störungserkennung im Strassenverkehr
US5926113A (en) * 1995-05-05 1999-07-20 L & H Company, Inc. Automatic determination of traffic signal preemption using differential GPS
US6259405B1 (en) * 1995-06-06 2001-07-10 Wayport, Inc. Geographic based communications service
US5878368A (en) * 1996-09-13 1999-03-02 Magellan Dis, Inc. Navigation system with user definable cost values
US6169902B1 (en) * 1997-04-09 2001-01-02 Sony Corporation Information terminal, processing method by information terminal, information providing apparatus and information network system
DE19725556A1 (de) * 1997-06-12 1998-12-24 Mannesmann Ag Verfahren und Vorrichtung zur Verkehrszustandsprognose
DE59812892D1 (de) * 1997-10-06 2005-08-04 Siemens Ag System zur Ermittlung von Verkehrsinformationen
DE19753034A1 (de) * 1997-11-18 1999-06-17 Ddg Ges Fuer Verkehrsdaten Mbh Verfahren zur Prognose eines den Zustand eines Systems repräsentierenden Parameters, insbesondere eines den Zustand eines Verkehrsnetzes repräsentierenden Verkehrsparameters und Vorrichtung zum Durchführen des Verfahrens
DE19940957C2 (de) * 1999-08-28 2001-10-18 Daimler Chrysler Ag Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten
US6615130B2 (en) * 2000-03-17 2003-09-02 Makor Issues And Rights Ltd. Real time vehicle guidance and traffic forecasting system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063789A (zh) * 2009-11-16 2011-05-18 高德软件有限公司 一种交通信息质量评估方法和装置
CN102063789B (zh) * 2009-11-16 2014-07-30 高德软件有限公司 一种交通信息质量评估方法和装置
CN102881060A (zh) * 2012-10-17 2013-01-16 潍柴动力股份有限公司 一种实现车辆典型工况获取的方法及系统
CN102881060B (zh) * 2012-10-17 2015-03-11 潍柴动力股份有限公司 一种实现车辆典型工况获取的方法及系统
CN104821086A (zh) * 2015-05-26 2015-08-05 中南大学 一种定位大规模交通网络中低效路段组合的方法
CN105261217A (zh) * 2015-10-03 2016-01-20 上海大学 一种基于密度聚类算法的城市交通拥堵状态检测方法
CN105261217B (zh) * 2015-10-03 2017-12-22 上海大学 一种基于密度聚类算法的城市交通拥堵状态检测方法
CN105702019A (zh) * 2016-04-12 2016-06-22 东南大学 一种获取城市大型活动的道路限速值的方法
CN105702019B (zh) * 2016-04-12 2018-01-02 东南大学 一种获取城市大型活动的道路限速值的方法

Also Published As

Publication number Publication date
JP3501773B2 (ja) 2004-03-02
DE50102456D1 (de) 2004-07-08
ES2220617T3 (es) 2004-12-16
US6470262B2 (en) 2002-10-22
EP1154389A1 (fr) 2001-11-14
JP2002008183A (ja) 2002-01-11
DE10022812A1 (de) 2001-11-22
US20020026277A1 (en) 2002-02-28

Similar Documents

Publication Publication Date Title
EP1154389B1 (fr) Procédé de détermination de l&#39;état du trafic sur un réseau routier
EP1497618B1 (fr) Procede et systeme de guidage dynamique d&#39;un vehicule
EP1212738B1 (fr) Procede de surveillance de l&#39;etat du trafic sur un reseau routier comprenant des reductions effectives de trafic
DE19904909C2 (de) Verfahren und Vorrichtung zur Bereitstellung von Verkehrsinformationen
DE19835979B4 (de) Verfahren zur Verkehrszustandsüberwachung und Fahrzeugzuflußsteuerung in einem Straßenverkehrsnetz
DE19647127C2 (de) Verfahren zur automatischen Verkehrsüberwachung mit Staudynamikanalyse
DE102008003039A1 (de) Verfahren zur Verkehrszustandsbestimmung in einem Fahrzeug
DE69631629T2 (de) Erfassung und Vorhersage von Verkehrsbehinderungen
EP0884708A2 (fr) Procédé et dispositif de pronostic de l&#39;état du trafic
DE102011107663B4 (de) Verfahren und Vorrichtung zur dynamischen Steuerung einer Signalanlage
DE102007056225A1 (de) Verfahren und Vorrichtung zum Steuern eines Verkehrsflusses an einer Kreuzung
DE19940957C2 (de) Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten
DE19833614B4 (de) Verfahren zur Verkehrsqualitätserkennung und Fahrzeug als Mittel dazu
DE10025039C2 (de) Verfahren zur Ermittlung von Verkehrsregelungsphasendauern
DE102008062766B4 (de) Verfahren zur Verkehrsbeeinflussung
DE102005055244A1 (de) Verfahren zur verkehrsdatenbasierten Unfallerkennung
DE102015206593A1 (de) Fahrzeug, Anordnung und Verfahren zur Analyse eines Verhaltens einer Lichtsignalanlage
DE102005002872B4 (de) Vorrichtung und Verfahren zur Fahrzeugzielführung
DE10336590A1 (de) Verfahren zur fahrzeugindividuellen Verkehrsprognose
EP2887332B1 (fr) Procédé et système de détermination d&#39;une situation de trafic sur une voie de circulation
DE10013603C1 (de) Verfahren zur Bereitstellung von Verkehrsinformationen
DE102018000016A1 (de) Verfahren und System zum Abschätzen von Verkehrsfluss
DE10359977B4 (de) Verfahren zum Ermitteln einer Reisezeit
EP1528524B1 (fr) Procédé de pronostic du trafic basé sur des données historiques
DE102008024781A1 (de) Technik zur Reisezeitprognose

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020116

AKX Designation fees paid

Free format text: DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50102456

Country of ref document: DE

Date of ref document: 20040708

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040825

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2220617

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050412

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050418

Year of fee payment: 5

Ref country code: ES

Payment date: 20050418

Year of fee payment: 5

Ref country code: DE

Payment date: 20050418

Year of fee payment: 5

26N No opposition filed

Effective date: 20050303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060427

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070427