EP1131400B1 - Verfahren zur herstellung von tensidgranulaten - Google Patents

Verfahren zur herstellung von tensidgranulaten Download PDF

Info

Publication number
EP1131400B1
EP1131400B1 EP99963299A EP99963299A EP1131400B1 EP 1131400 B1 EP1131400 B1 EP 1131400B1 EP 99963299 A EP99963299 A EP 99963299A EP 99963299 A EP99963299 A EP 99963299A EP 1131400 B1 EP1131400 B1 EP 1131400B1
Authority
EP
European Patent Office
Prior art keywords
aqueous
surfactant
fluidized bed
granules
anionic surfactants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99963299A
Other languages
English (en)
French (fr)
Other versions
EP1131400A1 (de
Inventor
Karl-Heinz Schmid
Christoph Breucker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Publication of EP1131400A1 publication Critical patent/EP1131400A1/de
Application granted granted Critical
Publication of EP1131400B1 publication Critical patent/EP1131400B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/044Hydroxides or bases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads

Definitions

  • the invention relates to a process for the preparation of surfactant granules containing anionic surfactants by granulation and simultaneous drying in the fluidized bed, which is carried out in the presence of volatile bases, and their use for the preparation of particular pH-neutral detergents, dishwashing detergents and cleaning agents and oral hygiene products.
  • Anionic surfactants such as alkyl sulfates and alkyl ether sulfates are common surfactants, which find a wide application in cleaning processes of all kinds due to their high washing power. Due to their manufacturing process, these are usually obtained in salt form as aqueous solutions or pastes, which are converted into their powder or granules, for example, by conventional drying technology, especially in the spray tower or in granulating. At the drying temperatures prevailing there, however, pH-neutral solutions or pastes of the alkyl (ether) sulfate would decompose autocatalytically into the corresponding olefinic base and the corresponding salts of hydrogen sulfate, which themselves act as acid in aqueous solution.
  • such pastes according to the prior art are provided with a so-called alkali reserve, ie such pastes are mixed with an excess of free hydroxides, in particular of sodium hydroxide.
  • the sodium hydroxide is then able to trap the possibly formed by autocatalysis acid and so stop the decomposition process.
  • the alkali reserve is added in excess, usually in such amounts that, for example, a fatty alcohol sulfate paste has a pH above 10, small residual amounts of unused sodium hydroxide always remain in the aqueous solution or paste of the alkyl (ether) sulfates.
  • the residual amounts of the alkali reserve are present as minor constituents of the anionic surfactants.
  • these residual alkali components in the anionic surfactants cause problems in a number of applications, as they may cause odors and color shifts, for example due to undesirable interactions with perfume raw materials or dyes.
  • there are a number of application fields for example in cosmetics or in the field of so-called pH-neutral detergents, dishwashing detergents and cleaners for which pH-neutral anionic surfactants are desired.
  • From the DE 197 07 649 C1 discloses a process for producing detergent raw materials by simultaneous drying and granulation of aqueous pastes in a thin film evaporator.
  • the drying of these pastes is carried out at a temperature in the range of 120-130 ° C in the presence of a Alkalicarbonatzusatzes to paste and / or an alkaline gas stream.
  • the autocatalytic decomposition of the anionic surfactants during their drying should continue to be effectively prevented.
  • no disturbing residual amounts of alkaline substances should be present in the resulting surfactant granules.
  • it was within the scope of the invention desired to produce anionic surfactants as granules with a high bulk density, which have only slightly dusty shares.
  • the object has been achieved by adding to the aqueous, anionic surfactant (in salt form) containing surfactant pastes before and / or during the granulation and simultaneous drying in the fluidized bed with volatile bases.
  • the invention includes the finding that anionic surfactant granules which have no or lower residual amounts of alkaline substances are obtainable with the method according to the invention, so that they do not cause any undesired interactions with perfume or dyes. Furthermore, the invention includes the knowledge that by the ubiquitous presence of the volatile bases in the fluidized bed are effectively reduced even at the most remote locations of the apparatus, for example in the filter, decomposition of already formed dried anionic surfactants under thermal stress and Wandandbackept the decomposed product can be reduced.
  • An object of the present invention therefore relates to a process for the preparation of surfactant granules, wherein after dissolving the surfactant granules in water, the aqueous solution has a pH value between 7 and 9.5, by granulation and simultaneous drying of an aqueous, anionic surfactant in salt form containing surfactant the fluidized bed, characterized in that prior to or during the granulation and simultaneous drying volatile bases in amounts of 0.05 to 5 wt .-% - based on the active substance of the anionic surfactants in aqueous surfactant preparation in the form
  • aqueous surfactant preparations containing anionic surfactants are used for the process.
  • these are aqueous surfactant preparations which contain exclusively anionic surfactants.
  • These are preferably used in the form of aqueous pastes, in particular with an active substance content of from 25 to 90% by weight, based on aqueous anionic surfactant paste.
  • anionic surfactants are fatty alcohol sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates and alkyl oligoglucoside sulfates. If the anionic surfactants contain polyglycol ether chains, they may have a conventional, but preferably a narrow homolog distribution.
  • fatty alcohol sulfates and / or fatty alcohol ether sulfates as anionic surfactants.
  • Particularly suitable are those which follow the formula (I) , R 1 O- (CH 2 CH 2 O) m SO 3 X (I) in which R 1 is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms, m is 0 or numbers from 1 to 10 and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • sulfates based on technical C 12/14 - or C 12/18 alcohol fractions , based on natural oils and fats such as coconut oil, palm kernel oil, palstearin or tallow or even based on Ziegleralkoholen bwz. also of oxo alcohols in the range of C8 to C15 (or mixtures thereof of the abovementioned linear alcohols of natural oils and fats or Ziegleralkoholen with oxo alcohols) in the form of their sodium, potassium and / or magnesium salts.
  • Typical examples of ether sulfates of alcohols ethoxylated with on average 1 to 10 and in particular 2 to 5 moles of ethylene oxide are selected from the group caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, Elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, in the form of their sodium and / or magnesium salts.
  • the ether sulfates may have both a conventional and a narrow homolog distribution.
  • aqueous surfactant preparations to be used for the purposes of the invention may contain, in addition to the anionic surfactants necessarily contained, optionally further surfactants or also additives which are preferably ingredients of detergents and cleaners.
  • Nonionic surfactants are preferably present in the aqueous surfactant preparations as further surfactants.
  • Suitable nonionic surfactants are liquid alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 9 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, wherein the underlying alcohols may be methyl-branched linearly or in the 2-position, or linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • the nonionic surfactants of the type described are derived from linear alcohols of natural origin having 12 to 18 C atoms, such as coconut oil, tallow fatty acid or oleyl alcohol.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, nre).
  • alcohol ethoxylates are preferred which have on average 2 to 8 ethylene oxide groups.
  • the preferred ethoxylated alcohols include, for example, C 9 -C 11 -oxoalcohol with 7 EO, C 13 -C 15 -oxoalcohol with 3 EO, 5 EO or 7 EO and in particular C 12 -C 14 -alcohol with 3 EO or 4 EO, C 12 -C 18 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 EO and C 12 -C 18 -alcohol with 5 EO.
  • alkyl glycosides of the general formula RO- (G) X in which R is a primary straight-chain or methyl-branched in the 2-position aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms, G is a symbol which represents a glycose unit having 5 or 6 carbon atoms, and the degree of oligomerization x is between 1 and 10, preferably between 1 and 2, and in particular less than 1.4, to be contained in the aqueous Tensidzurungsformen.
  • nonionic surfactants are present in the aqueous surfactant preparations with the anionic surfactants, their amount used can vary within wide ranges. As a rule, the nonionic surfactants are present in amounts of up to 50% by weight, calculated as the active substance and based on the active substance of the surfactants, in the aqueous surfactant preparations.
  • the aqueous surfactant preparation may contain additives, which are preferably ingredients of detergents and cleaners, preferably in amounts of from 0.001 to 80% by weight, based on the active substance of the aqueous surfactant preparation.
  • additives are inorganic builders such as zeolites, SKS6, sodium carbonate, sodium sulfate, Aerosil and / or organic builders such as starch, cellulose, cellulose ethers, microcrystalline cellulose and the like.
  • aqueous pastes are preferred as aqueous surfactant preparations containing as surfactants exclusively anionic surfactants, in particular fatty alcohol sulfates and / or fatty alcohol ether sulfates in the form of their sodium, potassium and / or magnesium salts.
  • Such pastes are commercially available and currently have an addition of aqueous hydroxides as alkali reserve.
  • the aqueous hydroxides are added according to the prior art, usually in amounts such that crizspielswesie Fettalkoholsulfatpasten (measured as 1 wt.% Aqueous solution) a pH above 10 have.
  • the addition of the aqueous hydroxides takes place during the preparation of the fatty alcohol sulfates by means of continuous neutralization.
  • the anionic surfactant pastes have such an amount of alkali reserves that the pH is between 7 and 9.5.
  • Such pH values of the anionic surfactant pastes can already be set in the neutralization step after sulfation of the alcohols by addition of the calculated amount of hydroxides, in particular sodium hydroxide, during the preparation of the sulfates. This is recommended in particular for highly viscous anionic surfactant pastes, in particular those which have active substance contents of 60 to 90% by weight. In the case of low-viscosity anionic surfactant pastes with active substance contents below 30% by weight, the same procedure can be followed.
  • low-viscosity anionic surfactant pastes with high alkali reserves can also be added subsequently, preferably first with customary inorganic and / or organic acids, for example citric acid, phosphoric acid, lactic acid, glycolic acid. Gluconic acid or sulfuric acid, especially citric acid, neutralize, preferably to a pH between 7 and 9.5. If desired, the acids can also be used to set a lower pH below 7, for example in the case of low-viscosity fatty alcohol ether sulfate pastes. In the context of the invention, it is of course also possible to use neutral aqueous pastes of anionic surfactants, which have not additionally been stabilized by the addition of hydroxides with an alkali reserve. For the purposes of the present invention, all anionic surfactants (pastes) having a pH of between 7 and 9.5 are considered to be pH-neutral anionic surfactants (pastes).
  • bases are preferably to be understood as meaning those compounds which, in the sense of the Broenstedt base definition, are capable of taking up protons. These are compounds which are already bases in themselves, such as ammonia or amines, as well as compounds which release by decomposition first bases, such as ammonium carbonate.
  • volatile such bases are referred to in the context of the invention, if they are preferably in the fluidized bed plants prevailing temperatures, especially at 60 ° C and below, are gaseous.
  • Particularly suitable volatile bases are those which are volatile even at room temperature (about 20 ° C.), such as ammonia and / or mono-, di- and trialkylamines having 1 and / or 2 carbon atoms in the alkyl radical. Particularly suitable is ammonia. Ammonia can be used as gas or in the form of its aqueous solutions such as concentrated ammonia.
  • the volatile bases are added preferably in amounts of from 0.05 to 5, in particular 0.1 to 1,% by weight, calculated as the active substance content of base and based on the active substance content of anionic surfactants in the aqueous surfactant preparation.
  • the volatile bases may be added to an embodiment of the present invention corresponding to the anionic surfactant-containing surfactant pastes just prior to their granulation and simultaneous drying.
  • the volatile bases in particular ammonia, in the form of their aqueous solutions, in particular concentrated ammonia, are added to the aqueous anionic surfactant preparations, which may have previously been pH neutral, before they are injected into the fluidized bed apparatus and subjected to granulation and simultaneous drying.
  • the surfactant preparations containing aqueous anionic surfactants may be pre-adjusted to pH neutral, and irrespective of this, to inject an aqueous base solution into the fluidized-bed apparatus.
  • the aqueous surfactant preparations with the anionic surfactants as usual via a nozzle into the fluidized bed apparatus and to inject the aqueous base solutions, in particular concentrated ammonia, preferably above the sieve bottom of the fluidized bed apparatus. Since there is negative pressure above the sieve bottom, the aqueous base solution is simply sucked into the fluidized bed.
  • the volatile bases are added to the fluidizing air supplied for granulation and drying in the fluidized bed apparatus.
  • the aqueous, optionally pH neutral adjusted anionic surfactant preparations are injected here in the fluidized bed apparatus and are only there in the presence of the fluidized air supplied with the volatile bases, preferably ammonia as a gas, granulated and dried.
  • the volatile bases preferably ammonia as a gas
  • aqueous surfactant preparations containing anionic surfactants can be granulated alone or mixed with solid support materials in the fluidized bed and dried at the same time.
  • the water evaporates from the preparation (paste), resulting in dried to dried germs, which are coated with the optionally admixed carrier materials, granulated and dried again at the same time.
  • carrier materials are to be mixed, they are mixed simultaneously with the aqueous surfactant preparations (pastes), but separately from these, preferably via an automatically controlled solids dosage.
  • carrier materials are mixed in the context of the invention, these are preferably inorganic carrier materials and in particular alkali metal carbonates, alkali metal sulphates, crystalline or amorphous alkali metal silicates, crystalline or amorphous sheet silicates and / or zeolites.
  • the proportion of carrier materials to surfactant is not critical and may be in the weight ratio of 0: 100 to 50: 50, preferably 80:20.
  • Preferably used fluidized bed apparatuses have bottom plates (sieve bottom) with a diameter between 0.4 and 5 m, for example 1.2 m or 2.5 m.
  • a bottom plate perforated bottom plates a Contidurplatte (commercial product of the company Hein & Lehmann, Federal Republic of Germany) or perforated bottom plates can be used, the holes (openings) are covered by a mesh with meshes less than 600 microns.
  • the grid can be arranged within or above the passage openings. However, the grid is preferably located directly below the openings of the inflow base.
  • a metal gauze is sintered with the appropriate mesh size.
  • the metal gauze consists of the same material as the distributor plate, in particular of stainless steel.
  • the mesh size of said grid is between 200 and 400 microns.
  • the process is preferably carried out at fluidized air velocities of between 1 and 8 m / s and in particular between 1.5 and 5.5 m / s.
  • the discharge of the granules is advantageously carried out by size classification of the granules. This classification is preferably carried out by means of an opposing air flow (classifier air), which is regulated so that only particles from a certain particle size removed from the fluidized bed and smaller particles are retained in the fluidized bed.
  • the incoming air is composed of the heated or unheated classifier air and the heated floor air.
  • the soil air temperature is preferably between 80 and 400 ° C.
  • the fluidizing air is cooled by heat losses and by the heat of vaporization and is preferably about 5 cm above the bottom plate 60 to 120 ° C, preferably 65 to 90 ° C and especially 70 to 85 ° C.
  • the air outlet temperature is preferably between 60 and 120 ° C, in particular below 80 ° C.
  • a starting material which serves as an initial carrier for the sprayed surfactant paste.
  • Suitable starting compounds are the surfactant granules optionally containing carrier materials themselves, which have already been obtained in a preceding process sequence, or the carrier materials can be used as starting material.
  • surfactant granules obtained with a particle size in the range between 0.1 and 1.6 mm are already used as starting material from one of the preceding process sequences.
  • the granules obtained from the fluidized bed are then preferably cooled in a separate fluidized bed and classified by means of a sieve into granules with particle sizes between 0.1 and 1.6 mm as a good grain fraction and in granules above 1.6 mm as an oversize fraction, while particles below 0, 1 mm already in the fluidized bed in an exhaust filter during drying, separated there from the exhaust air and then fed as seed material back into the fluidized bed.
  • the oversize fraction is ground and also returned to the fluidized bed.
  • the surfactant granules are considered to be dried, provided that the content of free water is preferably below 10% by weight, in particular from 0.1 to 2% by weight, based in each case on the finished granules.
  • surfactant granules are obtained with high bulk density, preferably above 500 g / l and in particular between 550 and 1000 g / l.
  • the active substance content varies depending on the addition of carrier materials used and in particular is more than 50% by weight, preferably between 85 and 98% by weight.
  • the surfactant granules obtained by the process of the invention are pH neutral, i. after dissolution of the surfactant granules in water, the aqueous solution has a pH between 7 and 9.5. Furthermore, the surfactant granules are dust-free and pourable and not or barely tacky, so that they are easy to handle in big bags and siliertransport.
  • the granules according to the invention may be present in customary amounts, preferably in the range from 0.1 to 50% by weight, based on average.
  • the surfactant granules produced according to the invention are preferably suitable for the preparation of pH-neutral detergents, dishwashing detergents and cleaners, such as pH-neutral powder cleaners and pH-neutral soaps, and also detergents, such as toilet stones, mixed with dyes.
  • the pH-neutral washing, rinsing and cleaning agents may be in powdery, granulated or particulate form.
  • a 1% aqueous solution of the granules showed a pH of 8.8 at 25 ° C.
  • 500 g of this sodium lauryl sulfate granules were stored at 80 ° C. for 72 hours in a porcelain dish in a drying oven. After this time, no gray specks could be detected in the product.
  • Example 1 10,000 kg of a 65 wt .-% sodium lauryl sulfate (52% C12 / 21% C 14/10% C 16/17% C 18) containing aqueous paste with a free alkali content of 0.1 wt .-% sodium hydroxide continuously injected with 2000 kg per hour at a temperature of 70 ° C in the fluidized bed plant (SKET plant), wherein the drying air had on entering the fluidized bed at a temperature of 180 ° C, at the outlet of 90 ° C.
  • the fluidized bed had a temperature of 70 ° C. 24 kg of a 25% aq.
  • Ammonia solution was mixed by means of a forced-controlled Multi-piston metering pump fed continuously together with the aqueous surfactant paste in the fluidized bed of the SKET system.
  • a 1% aqueous solution of the granules showed a pH of 9.5 at 25 ° C.
  • 500 g of this sodium lauryl sulfate granules were stored at 80 ° C. for 72 hours in a porcelain dish in a drying oven. After this time, no gray specks could be detected in the product.
  • Example 1 10,000 kg of a 65 wt .-% sodium lauryl sulfate (52% C12 / 21% C 14/10% C 16/17% C 18) containing aqueous paste with a free alkali content of 0.1 wt .-% sodium hydroxide continuously injected with 2,000 kg per hour at a temperature of 70 ° C in the fluidized bed plant (SKET plant), wherein the drying air had on entering the fluidized bed at a temperature of 160 ° C, at the outlet of 90 ° C.
  • the fluidized bed had a temperature of 60 ° C.
  • a 1% aqueous solution of the granules showed a pH of 9.2 at 25 ° C.
  • 500 g of this sodium lauryl sulfate granules were stored at 80 ° C. for 72 hours in a porcelain dish in a drying oven. After this time, gray specks appeared isolated in the product, which were isolated and had an acidic pH.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Aniontenside enthaltenden Tensidgranulaten mittels Granulierung und gleichzeitiger Trocknung in der Wirbelschicht, wobei in Gegenwart flüchtiger Basen gearbeitet wird, sowie deren Verwendung zur Herstellung von insbesondere pH-neutralen Wasch-, Spül- und Reinigungsmitteln und Mitteln der Mundhygiene.
  • Aniontenside wie Alkylsulfate und Alkylethersulfate sind gängige Tenside, die aufgrund ihrer hohen Waschkraft eine breite Anwendung in Reinigungsprozessen aller Art finden. Bedingt über deren Herstellverfahren fallen diese meist in Salzform als wäßrige Lösungen oder Pasten an, die beispielsweise durch konventionelle Trocknungstechnik, insbesondere im Sprühturm oder in Granuliervorrichtungen, in ihre Pulver bzw. Granulate überführt werden. Bei den dort herrschenden Trocknungstemperaturen würden jedoch pH-neutrale Lösungen oder Pasten der Alkyl(ether)sulfate autokatalytisch in die entsprechenden olefinischen Grundkörper und die entsprechenden Salze von Hydrogensulfat, welche in wäßriger Lösung selber als Säure wirken, zerfallen. Aus diesem Grund werden derartige Pasten nach dem Stand der Technik mit einer sogenannten Alkalireserve ausgestattet, d.h. man versetzt derartige Pasten mit einem Überschuß an freien Hydroxiden, insbesondere an Natriumhydroxid. Das Natriumhydroxid ist dann in der Lage, die sich ggf. durch Autokatalyse bildende Säure abzufangen und so den Zersetzungsprozeß zu stoppen. Da die Alkalireserve im Überschuß zugegeben wird, in der Regel in solchen Mengen, daß beispielsweise eine Fettalkoholsulfatpaste einen pH-Wert über 10 aufweist, verbleiben stets geringe Restmengen an nicht verbrauchtem Natriumhydroxid in der wäßrigen Lösung oder Paste der Alkyl(ether)sulfate. Auch nach dem Trocknungsprozeß der Lösungen oder Pasten zu den entsprechenden Pulvern oder Granulaten sind die Restmengen der Alkalireserve als Nebenbestandteile der Aniontenside vorhanden. Diese restlichen Alkalibestandteile in den Aniontensiden bereiten jedoch bei einer Reihe von Anwendungen Probleme, da sie beispielsweise aufgrund unerwünschter Wechselwirkungen mit Parfumrohstoffen oder Farbstoffen zu Geruchs- und Farbverschiebungen führen können. Darüber hinaus gibt es eine Reihe von Anwendungsfeldern, beispielsweise in der Kosmetik oder im Bereich der sogenannten pH-neutralen Wasch-, Spül- und Reinigungsmittel, für die pH-neutrale Aniontenside gewünscht werden.
  • Aus der deutschen Offenlegungsschrift DE-A1- 43 04 062 ist ein Verfahren zur Herstellung von Aniontenside enthaltenden Tensidgranulaten bekannt, die mittels Granulation und gleichzeitiger Trocknung aus wäßrigen Pasten hergestellt werden. Dazu werden wäßrige Pasten der anionischen Tenside in der Säureform, sowie eine wäßrige alkalische Lösung getrennt mit einem gasförmigen Medium (Luft, Stickstoff) beaufschlagt und getrennt oder zusammengeführt bei einem hohen Treibgasdruck in die Wirbelschichtanlage versprüht. Mit diesem Verfahren kann der Energiebedarf, der mit der Trocknung der wäßrigen Anionpasten verbunden ist, reduziert werden. Gemäß dieser Offenlegungsschrift werden zur Neutralisation der anionischen Tenside in der Säureform alkalische Lösungen von Hydroxiden, Carbonaten oder Hypochloriten des Natriums oder Kaliums eingesetzt. Diese verbleiben jedoch in den hergestellten Aniongranulaten, so dass auch nach diesem Verfahren die geschilderten Nachteile des Standes der Technik nicht überwunden werden.
  • Aus der DE 197 07 649 C1 ist ein Verfahren zur Herstellung von Waschmittelrohstoffen durch gleichzeitige Trocknung und Granulierung wässriger Pasten in einem Dünnschichtverdampfer bekannt. Die Trocknung dieser Pasten erfolgt bei einer Temperatur im Bereich von 120-130° C in Gegenwart eines Alkalicarbonatzusatzes zur Paste und/oder eines alkalisch eingestellten Gasstroms.
  • Aufgabe der vorliegenden Erfindung war es demgemäß, ein neues Verfahren zur Herstellung von Aniontenside enthaltenden Tensidgranulaten bereitzustellen, das die geschilderten Nachteile des Standes der Technik überwindet. Nach dem neuen Verfahren sollte zum einen weiterhin die autokatalytische Zersetzung der Aniontenside bei deren Trocknung wirkungsvoll verhindert werden. Im Gegensatz zu den bisherigen Verfahren sollten jedoch in den entstehenden Tensidgranulaten keine störenden Restmengen an alkalischen Substanzen mehr vorhanden sein. Weiterhin war es im Rahmen der Erfindung gewünscht, Aniontenside als Granulate mit einem hohen Schüttgewicht herzustellen, die nur wenig staubende Anteile aufweisen.
  • Überraschenderweise wurde die Aufgabe gelöst, indem man die wäßrigen, Aniontenside (in Salzform) enthaltenden Tensidpasten vor und/oder während der Granulation und gleichzeitigen Trocknung in der Wirbelschicht mit flüchtigen Basen versetzt.
  • Die Erfindung schließt die Erkenntnis ein, dass mit dem erfindungsgemäßen Verfahren Aniontensidgranulate zugänglich sind, die keine oder geringere Restmengen an alkalischen Substanzen enthalten, so dass sie keine unerwünschten Wechselwirkungen mit Parfum- oder Farbstoffen bewirken. Weiterhin schließt die Erfindung die Erkenntnis ein, dass durch die allgegenwärtige Anwesenheit der flüchtigen Basen in der Wirbelschicht auch an entferntesten Stellen der Apparatur, beispielsweise im Filter, Zersetzungen von bereits gebildeten getrockneten Aniontensiden unter thermischer Belastung wirkungsvoll vermindert werden und Wandanbackungen des zersetzten Produktes reduziert werden.
  • Ein Gegenstand der vorliegenden Erfindung betrifft daher ein Verfahren zur Herstellung von Tensidgranulaten, wobei nach Auflösen der Tensidgranulate in Wasser die wässerige Lösung einen pH-Wert zwischen 7 und 9,5 aufweist, durch Granulierung und gleichzeitiger Trocknung einer wäßrigen, Aniontenside in Salzform enthaltenden Tensidzubereitung in der Wirbelschicht, dadurch gekennzeichnet, dass vor oder während der Granulierung und gleichzeitigen Trocknung flüchtige Basen in Mengen von 0,05 bis 5 Gew.-% - bezogen auf Aktivsubstanz der Aniontenside in wäßriger Tensidzubereitung in Form
  • Im Sinne der vorliegenden Erfindung werden für das Verfahren wäßrige, Aniontenside enthaltende Tensidzubereitungen eingesetzt. Im einfachsten Fall handelt es sich dabei um wäßrige Tensidzubereitungen, die ausschließlich Aniontenside enthalten. Vorzugsweise werden diese in Form wäßriger Pasten, insbesondere mit einem Aktivsubstanzgehalt von 25 bis 90 Gew.% - bezogen auf wäßrige Aniontensid-Paste - eingesetzt.
  • Typische Beispiele für anionische Tenside sind Fettalkoholsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate und Alkyloligoglucosidsulfate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können sie eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
  • Bevorzugt im Sinne der Erfindung werden als anionische Tenside Fettalkoholsulfate und/oder Fettalkoholethersulfate eingesetzt. Insbesondere geeignet sind solche, die der Formel (I) folgen,

            R1O-(CH2CH2O)mSO3X     (I)

    in der R1 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, m für 0 oder Zahlen von 1 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht.
  • Besonders bevorzugt ist der Einsatz von Sulfaten auf Basis von technischen C12/14- bzw. C12/18-Alkoholfraktionen, basierend auf natürlichen Ölen und Fetten wie Kokosöl, Palmkernöl, Palstearin oder Talg bzw. auch basierend auf Ziegleralkoholen bwz. auch von Oxoalkoholen im Bereich von C8 bis C15 (oder deren Mischungen aus den zuvor genannten linearen Alkoholen aus natürlichen Ölen und Fetten bzw. Ziegleralkoholen mit Oxoalkoholen) in Form ihrer Natrium-, Kalium- und/oder Magnesiumsalze.
  • Typische Beispiele für Ethersulfate von mit durchschnittlich 1 bis 10 und insbesondere 2 bis 5 Mol Ethylenoxid ethoxylierte Alkohole sind ausgewählt aus der Gruppe Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, in Form ihrer Natrium- und/oder Magnesiumsalze. Die Ethersulfate können dabei sowohl eine konventionelle als auch eine eingeengte Homologenverteilung aufweisen.
  • Die im Sinne der Erfindung einzusetzenden wäßrigen Tensidzubereitungen können neben den zwingend enthaltenen Aniontensiden fakultativ weitere Tenside oder aber auch Zusatzstoffe, die vorzugsweise Inhaltsstoffe von Wasch- und Reinigungsmitteln sind, enthalten.
  • Bevorzugt sind in den wäßrigen Tensidzubereitungen als weitere Tenside nichtionische Tenside enthalten. Als nichtionische Tenside eignen sich flüssige alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 9 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol, wobei die zugrundeliegenden Alkohole linear oder in 2-Stellung methylverzweigt sein können, bzw. lineare und methylverzweigte Reste im Gemisch enthalten, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere leiten sich die nichtionischen Tenside der geschilderten Art von linearen Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, wie von Kokos-, Talgfett- oder Oleylalkohol, ab. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung (narrow range ethoxylates, nre) auf. Insbesondere sind Alkoholethoxylate bevorzugt, die durchschnittlich 2 bis 8 Ethylenoxidgruppen aufweisen.
  • Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C9-C11-Oxoalkohol mit 7 EO, C13-C15-Oxoalkohol mit 3 EO, 5 EO oder 7 EO und insbesondere C12-C14-Alkohol mit 3 EO oder 4 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 5 EO.
  • Weiterhin können als nichtionische Tenside Alkylglykoside der allgenmeinen Formel R-O-(G)X, in der R einen primären geradkettigen oder in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet, G ein Symbol ist, das für eine Glykose-Einheit mit 5 oder 6 C-Atomen steht, und der Oligomerisierungsgrad x zwischen 1 und 10, vorzugsweise zwischen 1 und 2 liegt und insbesondere kleiner als 1,4 ist, in den wäßrigen Tensidzubereitungsformen enthalten sein.
  • Sofern nichtionische Tenside in den wäßrigen Tensidzubereitungen mit den Aniontensiden enthalten sind, kann deren Einsatzmenge in weiten Bereichen variieren. In der Regel sind die nichtionischen Tenside in Mengen bis zu 50 Gew.% - berechnet als Aktivsubstanz und bezogen auf Aktivsubstanz der Tenside - in den wäßrigen Tensidzubereitungen enthalten.
  • Als weitere Bestandteile kann die wäßrige Tensidzubereitung Zusatzstoffe, die vorzugsweise Inhaltsstoffe von Wasch- und Reinigungsmitteln sind, enthalten, vorzugsweise in Mengen von 0,001 bis 80 Gew.-%, bezogen auf Aktivsubstanz der wäßrigen Tensidzubereitung. Besonders bevorzugte Zusatzstoffe sind anorganische Buildersubstanzen wie Zeolithe, SKS6, Natriumcarbonat, Natriumsulfat, Aerosil und/oder organische Buildersubstanzen wie Stärke, Cellulose, Celluloseether, mikrokristalline Cellulose und ähnliches.
  • Im Sinne der Erfindung werden als wäßrige Tensidzubereitungen wäßrige Pasten bevorzugt, die als Tenside ausschließlich Aniontenside, insbesondere Fettalkoholsulfate und/oder Fettalkoholethersufate in Form von ihrer Natrium-, Kalium- und/oder Magnesiumsalze enthalten. Derartige Pasten sind kommerziell erhältlich und verfügen zur Zeit über einen Zusatz von wäßrigen Hydroxiden als Alkalireserve. Um die unerwünschte Autokatalyse zu vermeiden, werden die wäßrigen Hydroxide nach dem bisherigen Stand der Technik meist in solchen Mengen zugegeben, daß beispielswesie Fettalkoholsulfatpasten (gemessen als 1 gew.%ige wäßrige Lösung) einen pH-Wert über 10 aufweisen. Die Zugabe der wäßrigen Hydroxide erfolgt bei der Herstellung der Fettalkoholsulfate mittels Konti-Neutralisation.
  • Nach der vorliegenden Erfindung ist es nun möglich, sowohl hochkonzentrierte als auch niedrigkonzentrierte Pasten von Aniontensiden mit geringeren Mengen an Alkalireserven einzusetzen. In der Regel weisen die Aniontensidpasten eine solche Menge an Alkalireserven auf, daß der pH-Wert zwischen 7 und 9,5 liegt. Derartige pH-Werte der Aniontensidpasten können schon bei der Herstellung der Sulfate im Neutralisationsschritt nach erfolgter Sulfierung der Alkohole durch Zugabe der berechneten Menge an Hydroxiden, insbesondere Natriumhydroxid, eingestellt werden. Dies empfiehlt sich insbesondere für hochviskose Aniontensidpasten, insbesondere solchen, die Aktivsubstanzgehalte von 60 bis 90 Gew.% aufweisen. Bei niedrigviskosen Aniontensidpasten mit Aktivsubstanzgehalten unter 30 Gew.% kann auf die gleiche Weise verfahren werden. Man kann aber auch kommerziell erhältliche niedrigviskose Aniontensidpasten mit hohen Alkalireserven nachträglich, vorzugsweise zunächst mit üblichen anorganischen und/oder organischen Säuren, beispielsweise Citronensäure, Phosphorsäure, Milchsäure, Glykolsäure. Gluconsäure oder Schwefelsäure, insbesondere Citronensäure, neutralisieren, vorzugsweise bis zu einem pH-Wert zwischen 7 und 9,5. Falls gewünscht, kann mit den Säuren auch ein niederer pH-Wert unter 7 eingestellt werden, beispielsweise bei niedrigviskosen Fettalkoholethersulfatpasten. Im Rahmen der Erfindung ist es natürlich auch möglich, neutrale wäßrige Pasten von Aniontensiden einzusetzen, die nicht zusätzlich durch einen Zusatz von Hydroxiden mit einer Alkalireserve stabilisiert worden sind. Im Sinne der vorliegenden Erfindung gelten alle Aniontensid(pasten), die einen pH-Wert zwischen 7 und 9,5 aufweisen als pH-neutrale Aniontensid(pasten).
  • Im Sinne der Erfindung ist es nun vorteilhaft, daß derart pH-neutrale Aniontensid enthaltende Tensidpasten in Gegenwart von flüchtigen Basen granuliert und getrocknet werden. Unter dem Begriff der Basen sind im Rahmen der Verbindungen vorzugsweise solche Verbindungen zu verstehen, die im Sinne der Basendefinition nach Broenstedt in der Lage sind, Protonen aufzunehmen. Hierunter sind Verbindungen zu verstehen, die an sich schon Basen sind, wie Ammoniak oder Amine, als auch Verbindungen, die durch Zersetzung erst Basen freisetzen wie Ammoniumcarbonat. Als flüchtig werden solche Basen im Sinne der Erfindung bezeichnet, wenn sie vorzugsweise bei den in den Wirbelschichtanlagen herrschenden Temperaturen, insbesondere bei 60°C und darunter, gasförmig sind. Insbesondere sind als flüchtige Basen solche geeignet, die bereits bei Zimmertemperatur (etwa 20°C) flüchtig sind wie Ammoniak und/oder Mono-, Di- und Trialkylamine mit 1 und/oder 2 Kohlenstoffatomen im Alkylrest. Insbesondere geeignet ist Ammoniak. Ammoniak kann dabei als Gas oder in Form seiner wäßrigen Lösungen wie konzentrierter Ammoniak eingesetzt werden. Im Sinne der vorliegenden Erfindung werden die flüchtigen Basen vorzugsweise in Mengen von 0,05 bis 5, insbesondere 0,1 bis 1 Gew.% - berechnet als Aktivsubstanzgehalt an Base und bezogen auf den Aktivsubsanzgehalt an Aniontensiden in der wäßrigen Tensidzubereitung - zugesetzt.
  • Die flüchtigen Basen können einer Ausführungsform der vorliegenden Erfindung entsprechend den Aniontensid enthaltenden Tensidpasten direkt vor deren Granulierung und gleichzeitiger Trocknung zugesetzt werden. Die flüchtigen Basen, insbesondere Ammoniak, werden in Form ihrer wäßrigen Lösungen, insbesondere als konzentrierter Ammoniak, den wäßrigen, Aniontenside enthaltenen ggf. vorher pH-neutral eingestellten Tensidzubereitungen zugesetzt, bevor diese in die Wirbelschichtapparatur eingedüst und der Granulierung und gleichzeitigen Trocknung unterworfen werden. Es ist aber auch möglich, die wäßrigen Aniontenside enthaltenen ggf. vorher pH-neutral eingestellten Tensidzubereitungen und unabhängig davon, eine wäßrige Basenlösung mit in die Wirbelschichtapparatur einzudüsen. Dies kann entweder parallel mit Hilfe einer Mehrkolbenpumpe erfolgen. Man kann aber auch die wäßrigen Tensidzubereitungen mit den Aniontensiden wie üblich über eine Düse in die Wirbelschichtapparatur einspeisen und die wäßrigen Basen-Lösungen, insbesondere konzentrierter Ammoniak, vorzugsweise oberhalb des Siebbodens der Wirbelschichtapparatur eindüsen. Da oberhalb des Siebbodens Unterdruck vorliegt, wird die wäßrige Basen-Lösung auf einfache Weise in die Wirbelschicht eingesaugt. Einer zweiten Ausführungsform der vorliegenden Erfindung entsprechend werden die flüchtigen Basen der für die Granulierung und Trocknung in den Wirbelschichtapparat zugeführten Wirbelluft zugesetzt. Zweckmäßigerweise werden nach dieser Ausführungsform die wäßrigen, ggf. pH-neutral eingestellten, Aniontenside enthaltenen Tensidzubereitungen hierbei in die Wirbelschichtapparatur eingedüst und werden erst dort in Gegenwart der mit der Wirbelluft zugeführten flüchtigen Basen, vorzugsweise Ammoniak als Gas, granuliert und getrocknet. Es ist im Rahmen der Erfindung natürlich auch möglich, zwei oder mehrere der beschriebenen Ausführungsformen miteinander zu kombinieren.
  • Die wäßrigen, Aniontenside enthaltenden Tensidzubereitungen, vorzugsweise die wäßrigen Aniontensidpasten, können alleine oder unter Zumischung von festen Trägermaterialien in der Wirbelschicht granuliert und gleichzeitig getrocknet werden. In der Wirbelschicht verdampft das Wasser aus der Zubereitung (Paste), wodurch angetrocknete bis getrocknete Keime entstehen, die mit den ggf. zugemischten Trägermaterialien umhüllt, granuliert und wiederum gleichzeitig getrocknet werden. Sofern Trägermaterialien zugemischt werden sollen, werden diese gleichzeitig mit den wäßrigen Tensidzubereitungen (Pasten), aber separat von diesen, vorzugsweise über eine automatisch geregelte Feststoffdosierung zugemischt. Sofern im Sinne der Erfindung Trägermaterialien zugemischt werden, handelt es sich vorzugsweise um anorganische Trägermaterialien und insbesondere um Alkalicarbonate, Alkalisulfate, kristalline oder amorphe Alkalisilikate, kristalline oder amorphe Schichtsilikate und/oder Zeolithe. Der Anteil an Trägermaterialien zu Tensid ist nicht kritisch und kann im Gewichtsverhältnis zwischen 0 : 100 bis 50 : 50, vorzugsweise bis 80 : 20 liegen.
  • Bevorzugt im Sinne der vorliegenden Erfindung erfolgt die Granulierung und gleichzeitige Trocknung in der kontinuierlichen Wirbelschicht, nach dem sogenannten SKET-Verfahren. Bevorzugt eingesetzte Wirbelschichtapparate besitzen Bodenplatten (Siebboden) mit einem Durchmesser zwischen 0,4 und 5 m, beispielsweise 1,2 m oder 2,5 m. Als Bodenplatte können Lochbodenplatten, eine Contidurplatte (Handelsprodukt der Firma Hein & Lehmann, Bundesrepublik Deutschland) oder Lochbodenplatten eingesetzt werden, deren Löcher (Durchtrittsöffnungen) von einem Gitternetz mit Maschenweiten kleiner als 600 µm bedeckt sind. Dabei kann das Gitternetz innerhalb oder oberhalb der Durchtrittsöffnungen angeordnet sein. Vorzugsweise liegt das Gitternetz jedoch unmittelbar unterhalb der Durchtrittsöffnungen des Anströmbodens. Vorteilhafterweise ist dies so realisiert, daß eine Metall-Gaze mit der entsprechenden Maschenweite aufgesintert ist. Vorzugsweise besteht die Metallgaze aus dem gleichen Material wie der Anströmboden, insbesondere aus Edelstahl. Vorzugsweise liegt die Maschenweite des genannten Gitternetzes zwischen 200 und 400 µm.
  • Bevorzugt im Sinne der Erfindung wird das Verfahren bei Wirbelluftgeschwindigkeiten zwischen 1 und 8 m/s und insbesondere zwischen 1,5 und 5,5 m/s durchgeführt. Der Austrag der Granulate erfolgt vorteilhafterweise über eine Größenklassierung der Granulate. Diese Klassierung erfolgt bevorzugt mittels einem entgegengeführten Luftstrom (Sichterluft), der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. Die einströmende Luft setzt sich aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei vorzugsweise zwischen 80 und 400 °C. Die Wirbelluft kühlt sich durch Wärmeverluste und durch die Verdampfungswärme ab und beträgt vorzugsweise etwa 5 cm oberhalb der Bodenplatte 60 bis 120 °C, vorzugsweise 65 bis 90 °C und insbesondere 70 bis 85 °C. Die Luftaustrittstemperatur liegt vorzugsweise zwischen 60 und 120 °C, insbesondere unterhalb 80 °C. Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens finden sich in der zur Zeit noch unveröffentlichten deutschen Patentanmeldung P 197 504 24.8 sowie in der europäischen Patentschrift EP-B-603 207.
  • Für die Granulierung und Trocknung in der Wirbelschicht ist es günstig, daß zu Beginn des Verfahrens eine Startmasse vorhanden ist, die als anfänglicher Träger für die eingesprühte Tensidpaste dient. Als Startmasse eignen sich die ggf. Trägermaterialien enthaltenden Tensidgranulate selber, die bereits bei einem vorangegangenen Verfahrensablauf erhalten wurden oder die Trägermaterialien können als Startmasse eingesetzt werden. Insbesondere werden bereits aus einem der vorangegangenen Verfahrensablauf erhaltenen Tensidgranulate mit einer Korngröße im Bereich zwischen 0,1 und 1,6 mm als Startmasse eingesetzt.
  • Bevorzugt werden die aus der Wirbelschicht erhaltenen Granulate anschließend in einem separaten Wirbelbett abgekühlt und mittels eines Siebes klassiert in Granulate mit Korngrößen zwischen 0,1 und 1,6 mm als Gutkornfraktion und in Granulate über 1,6 mm als Überkornfraktion, während Partikel unter 0,1 mm bereits während der Trocknung in der Wirbelschicht in einen Abluft-Filter gelangen, dort von der Abluft separiert und dann als Keimmaterial wieder in die Wirbelschicht zugeführt werden. Die Überkornfraktion wird gemahlen und ebenfalls in die Wirbelschicht zurückgeführt.
  • Im Sinne der vorliegenden Erfindung werden die Tensidgranulate als getrocknet betrachtet, sofern der Gehalt an freiem Wasser vorzugsweise unter 10 Gew.%, insbesondere von 0,1 bis 2 Gew.%, jeweils bezogen auf die fertigen Granulate, beträgt.
  • Nach dem erfindungsgemäßer Verfahren werden Tensidgranulate mit hohem Schüttgewicht erhalten, vorzugsweise oberhalb 500 g/l und insbesondere zwischen 550 und 1000 g/l. Der Aktivsubstanzgehalt schwankt je nach Zusatz von eingesetzten Trägermaterialien und liegt insbesondere über 50 Gew.%, vorzugsweise zwischen 85 und 98 Gew.%.
  • Die nach dem erfindungsgemäßen Verfahren erhaltenen Tensidgranulate sind pH-neutral, d.h. nach Auflösen der Tensidgranulate in Wasser zeigt die wäßrige Lösung einen pH-Wert zwischen 7 und 9,5. Des weiteren sind die Tensidgranulate staubfrei und rieselfähig und nicht bzw. kaum klebrig, so dass sie gut in big bags handhabbar und silierfähig sind.
  • In den Wasch-, Spül- und Reinigungsmitteln können die erfindungsgemäßen Granulate in üblichen Mengen, vorzugsweise im Bereich von 0,1 bis 50 Gew.% - bezogen auf Mittel - enthalten sein. Vorzugsweise eignen sich die erfindungsgemäß hergestellten Tensidgranulate für die Herstellung von pH-neutralen Wasch-, Spül- und Reinigungsmitteln wie pH-neutrale Pulverreiniger und pH-neutrale Seifen als auch für mit Farbstoffe versetzte Reinigungsmittel wie Toilettensteine. Die pH-neutralen Wasch-, Spül- und Reinigungsmittel können in pulvriger, granulierter oder stückiger Form vorliegen.
  • Beispiele Herstellung von pH-neutralen Fettalkoholsulfat-Granulaten Beispiel 1
  • 10.000 kg einer 65 Gew.-% Natrium-laurylsulfat (52 % C 12 / 21 % C 14 / 10 % C 16 / 17 % C 18) enthaltenden wäßrigen Paste mit einem Gehalt an freiem Alkali von 0,1 Gew.-% Natriumhydroxid wurden kontinuierlich mit 2.000 kg pro Stunde bei einer Temperatur von 70 °C in die Wirbelschichtanlage (SKET-Anlage) eingedüst, wobei die Trocknungsluft bei Eintritt in die Wirbelschicht eine Temperatur von 170 °C, bei Austritt von 100 °C aufwies. In der Wirbelschicht herrschte eine Temperatur von 60 °C. Während der kontinuierlichen Einspeisung der Tensidpaste wurden kontinuierlich über dem Siebboden der SKET-Anlage 12 kg einer 25 %-igen wäßr. Ammoniaklösung mittels einer Dosierpumpe in die Wirbelschicht eingespeist.
  • Nach 5 Stunden wurden 6.600 kg Natrium-laurylsulfat als Granulat mit einer Partikelgröße im Bereich von 0,1 - 1,6 mm, einem Schüttgewicht von 620 g/Liter und einem Wassergehalt von 1,5 Gew.-% erhalten.
  • Eine 1 % -ige wäßrige Lösung des Granulats zeigte bei 25 °C einen pH-Wert von 8,8. 500 g dieses Natrium-laurylsulfat -Granulats wurden bei 80 °C während 72 Stunden in einer Porzellanschale in einem Trockenschrank gelagert. Nach dieser Zeit konnten keinerlei graue Stippen im Produkt festgestellt werden.
  • Beispiel 2
  • Wie in Beispiel 1 wurden 10.000 kg einer 65 Gew.-% Natrium-laurylsulfat (52 % C12 / 21 % C 14 / 10 % C 16 / 17 % C 18) enthaltenden wäßrigen Paste mit einem Gehalt an freiem Alkali von 0,1 Gew.-% Natriumhydroxid kontinuierlich mit 2.000 kg pro Stunde bei einer Temperatur von 70 °C in die Wirbelschichtanlage (SKET-Anlage) eingedüst, wobei die Trocknungsluft bei Eintritt in die Wirbelschicht eine Temperatur von 180 °C, bei Austritt von 90 °C aufwies. In der Wirbelschicht herrschte eine Temperatur von 70 °C. 24 kg einer 25 %-igen wäßr. Ammoniaklösung wurden parallel mittels einer zwangsgesteuerten Mehrkolben-Dosierpumpe zusammen mit der wäßrigen Tensidpaste kontinuierlich in die Wirbelschicht der SKET-Anlage eingespeist.
  • Nach 5 Stunden wurden 6.580 kg Natrium-laurylsulfat als Granulat mit einer Partikelgröße im Bereich von 0,1 - 1,6 mm, einem Schüttgewicht von 590 g/Liter und einem Wassergehalt von 1,3 Gew.-% erhalten.
  • Eine 1 % -ige wäßrige Lösung des Granulats zeigte bei 25 °C einen pH-Wert von 9,5. 500 g dieses Natrium-laurylsulfat -Granulats wurden bei 80 °C während 72 Stunden in einer Porzellanschale in einem Trockenschrank gelagert. Nach dieser Zeit konnten keinerlei graue Stippen im Produkt festgestellt werden.
  • Vergleichsbeispiel 1
  • Wie in Beispiel 1 wurden 10.000 kg einer 65 Gew.-% Natrium-laurylsulfat (52 % C12 / 21 % C 14 / 10 % C 16 / 17 % C 18) enthaltenden wäßrigen Paste mit einem Gehalt an freiem Alkali von 0,1 Gew.-% Natriumhydroxid kontinuierlich mit 2.000 kg pro Stunde bei einer Temperatur von 70 °C in die Wirbelschichtanlage (SKET-Anlage) eingedüst, wobei die Trocknungsluft bei Eintritt in die Wirbelschicht eine Temperatur von 160 °C, bei Austritt von 90 °C aufwies. In der Wirbelschicht herrschte eine Temperatur von 60 °C.
  • Nach 5 Stunden wurden 6.580 kg Natrium-laurylsulfat als Granulat mit einer Partikelgröße im Bereich von 0,1 - 1,6 mm, einem Schüttgewicht von 600 g/Liter und einem Wassergehalt von 1,2 Gew.-% erhalten.
  • Eine 1 % -ige wäßrige Lösung des Granulats zeigte bei 25 °C einen pH-Wert von 9,2. 500 g dieses Natrium-laurylsulfat -Granulats wurden bei 80 °C während 72 Stunden in einer Porzellanschale in einem Trockenschrank gelagert. Nach dieser Zeit zeigten sich im Produkt vereinzelt graue Stippen, welche isoliert wurden und einen sauren pH-Wert aufwiesen.

Claims (7)

  1. Verfahren zur Herstellung von Tensidgranulaten, wobei nach Auflösen der Tensidgranulate in Wasser die wässerige Lösung einen pH-Wert zwischen 7 und 9,5 aufweist, durch Granulierung und gleichzeitiger Trocknung einer wäßrigen, Aniontenside in Salzform enthaltenden Tensidzubereitung in der Wirbelschicht, dadurch gekennzeichnet, dass vor oder während der Granulierung und gleichzeitigen Trocknung flüchtige Basen in Mengen von 0,05 bis 5 Gew.% - bezogen auf Aktivsubstanz der Aniontenside in wäßriger Tensidzubereitung in Form wässeriger Lösungen zugesetzt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als wäßrige Tensidzubereitungen wäßrige Pasten von Aniontensiden mit einem Aktivtensidgehalt von 25 bis 90 Gew.% - bezogen auf Paste - eingesetzt werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Aniontenside Sulfate von Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, in Form ihrer Salze eingesetzt werden.
  4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Aniontenside Sulfate von Oxoalkoholen mit 6 bis 15 Kohlenstoffatomen, in Form ihrer Salze eingesetzt werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als flüchtigen Basen konzentrierter wäßriger Ammoniak verwendet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Granulierung und gleichzeitige Trocknung unter Zumischung eines oder mehrerer anorganischer und/oder organischer Feststoffe durchgeführt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Granulierung und gleichzeitige Trocknung in der kontinuierlichen Wirbelschicht (SKET-Verfahren) durchgeführt wird, wobei der Austrag der Granulate aus der Wirbelschicht über eine Größenklassierung erfolgt.
EP99963299A 1998-11-23 1999-11-13 Verfahren zur herstellung von tensidgranulaten Expired - Lifetime EP1131400B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19853893 1998-11-23
DE19853893A DE19853893A1 (de) 1998-11-23 1998-11-23 Verfahren zur Herstellung von Tensidgranulaten
PCT/EP1999/008763 WO2000031230A1 (de) 1998-11-23 1999-11-13 Verfahren zur herstellung von tensidgranulaten

Publications (2)

Publication Number Publication Date
EP1131400A1 EP1131400A1 (de) 2001-09-12
EP1131400B1 true EP1131400B1 (de) 2010-12-22

Family

ID=7888656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99963299A Expired - Lifetime EP1131400B1 (de) 1998-11-23 1999-11-13 Verfahren zur herstellung von tensidgranulaten

Country Status (5)

Country Link
EP (1) EP1131400B1 (de)
AT (1) ATE492626T1 (de)
DE (2) DE19853893A1 (de)
ES (1) ES2357380T3 (de)
WO (1) WO2000031230A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022238210A1 (en) 2021-05-10 2022-11-17 Basf Se Ether sulfates based on isomeric tridecyl alcohol mixtures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801606A1 (de) * 2013-05-07 2014-11-12 The Procter and Gamble Company Sprühgetrocknete Partikel enthaltend Sulfat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216629A1 (de) * 1992-05-20 1993-11-25 Henkel Kgaa Verfahren zur Herstellung aniontensidhaltiger Wasch- und Reinigungsmittel
DE4304062A1 (de) * 1993-02-11 1994-08-18 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
DE19707649C1 (de) * 1997-02-26 1998-10-22 Henkel Kgaa Verfahren zur Herstellung von Waschmittelrohstoffen
DE19710152C2 (de) * 1997-03-12 1999-04-22 Henkel Kgaa Verfahren zur Herstellung von Aniontensidgranulaten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022238210A1 (en) 2021-05-10 2022-11-17 Basf Se Ether sulfates based on isomeric tridecyl alcohol mixtures

Also Published As

Publication number Publication date
ES2357380T3 (es) 2011-04-25
DE59915230D1 (de) 2011-02-03
ATE492626T1 (de) 2011-01-15
DE19853893A1 (de) 2000-05-25
WO2000031230A1 (de) 2000-06-02
EP1131400A1 (de) 2001-09-12

Similar Documents

Publication Publication Date Title
EP0474915B2 (de) Waschmittel
EP0603207B1 (de) Verfahren zur herstellung von tensidgranulaten
EP0725813B1 (de) Verwendung von detergensgemischen zur herstellung von toilettensteinen
EP0541608B1 (de) Verfahren zur herstellung wasch- und reinigungsaktiver granulate
EP0632826B1 (de) Verfahren zur herstellung rieselfähiger wasch- und reinigungsmittelgranulate und/oder -teilgranulate
WO1993015180A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
EP0966515B1 (de) Verfahren zur herstellung von waschmittelrohstoffen
DE19524464C2 (de) Verfahren zur Herstellung von Zuckertensidgranulaten
EP0796318B1 (de) Feste, rieselfähige zubereitungen
WO1992013938A1 (de) Pulverförmige tensidmischung
EP1131400B1 (de) Verfahren zur herstellung von tensidgranulaten
EP1078029B1 (de) Alkylsulfat-granulate
EP0457965B1 (de) Schwachschäumende Maschinen-Waschmittel
EP0859048A2 (de) Verfahren zur Herstellung von Tensidgranulaten
DE19806495C1 (de) Verfahren zur Herstellung wasser- und staubfreier Aniontensidgranulate
EP0876454B1 (de) Flüssige vorprodukte für wasch-, spül- und reinigungsmittel
WO2001046375A1 (de) Verfahren zur herstellung von zuckertensidgranulaten
WO1999010470A1 (de) Verwendung von fettsäurepolyglycolestersulfaten
DE19817509C2 (de) Verwendung von Fettsäurepolyglycolestersulfaten
EP0929647B1 (de) Verfahren zur herstellung wasser- und staubfreier aniontensidgranulate
WO1999036495A1 (de) Homogene tensidgranulate für die herstellung von stückigen wasch- und reinigungsmitteln
DE19520105A1 (de) Verfahren zur Herstellung wasserfreier, rieselfähiger Tensidpulver
WO1996020271A1 (de) Verfahren zur herstellung von wasserfreien tensiden
EP1007613A1 (de) Verfahren zur herstellung wasser- und staubfreier aniontensidgranulate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

17Q First examination report despatched

Effective date: 20060628

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 1/29 20060101ALN20100504BHEP

Ipc: C11D 1/28 20060101ALN20100504BHEP

Ipc: C11D 1/14 20060101ALN20100504BHEP

Ipc: C11D 11/04 20060101ALI20100504BHEP

Ipc: C11D 17/06 20060101ALI20100504BHEP

Ipc: C11D 11/00 20060101AFI20100504BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 11/04 20060101ALI20100713BHEP

Ipc: C11D 17/06 20060101ALI20100713BHEP

Ipc: C11D 11/00 20060101AFI20100713BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 59915230

Country of ref document: DE

Date of ref document: 20110203

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 59915230

Country of ref document: DE

Effective date: 20110203

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2357380

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110422

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

26N No opposition filed

Effective date: 20110923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 59915230

Country of ref document: DE

Effective date: 20110923

BERE Be: lapsed

Owner name: COGNIS IP MANAGEMENT G.M.B.H.

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 492626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181218

Year of fee payment: 20

Ref country code: FR

Payment date: 20181127

Year of fee payment: 20

Ref country code: GB

Payment date: 20181130

Year of fee payment: 20

Ref country code: IT

Payment date: 20181122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190131

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59915230

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191114