EP1115904A1 - Rohmaterial oder rohling mit superhydrophober beschichtung - Google Patents

Rohmaterial oder rohling mit superhydrophober beschichtung

Info

Publication number
EP1115904A1
EP1115904A1 EP99968687A EP99968687A EP1115904A1 EP 1115904 A1 EP1115904 A1 EP 1115904A1 EP 99968687 A EP99968687 A EP 99968687A EP 99968687 A EP99968687 A EP 99968687A EP 1115904 A1 EP1115904 A1 EP 1115904A1
Authority
EP
European Patent Office
Prior art keywords
coating
raw material
plasma
raw materials
blanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99968687A
Other languages
English (en)
French (fr)
Inventor
Italo Corzani
Saswati Datta
Paul Amaat Raymond Gerard France
Gianfranco Palumbo
Arseniy Valerevich Radomyselskiy
Riccardo D'agostino
Pietro Favia
Ritalba Lamendola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP99968687A priority Critical patent/EP1115904A1/de
Publication of EP1115904A1 publication Critical patent/EP1115904A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/153Deposition methods from the vapour phase by cvd by plasma-enhanced cvd

Definitions

  • the present invention relates to raw materials or blanks as for example particulate material such as detergent powder, plastic granulate; toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
  • particulate material such as detergent powder, plastic granulate
  • toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
  • U.S. Pat. No. 3,498,527 teaches that paper board containers for liquids can be waterproofed by application of a waterproofing coating such as wax or polyethylene, and a similar method is shown in U.S. Pat. No. 2,708,645 for waterproofing paper drinking cups and in U.S. Pat. No. 3,212,697 for paper grocery sacks.
  • a waterproofing coating such as wax or polyethylene
  • temporary wet strength is imparted to paper by coating it with a polymeric alcohol-polymeric aldehyde reaction product.
  • a disposable sanitary napkin which consists of an adsorbent layer having a liquid-repellent backing of poiyvinyl alcohol or similar material capable of initially repelling water but eventually solubilizing.
  • the degree of water-repellency therefore the lifetime of the napkin, is controlled by varying the thickness of the backing. Because the necessary life of the napkin cannot be predicted by manufacturer or user, the backing must be sufficiently thick to take account of all normal contingencies.
  • 3,542,028 is directed to a flushable sanitary napkin consisting of a cellulosic sheet treated with a fluoropolymer coating.
  • U.S. Pat. No. 3,559,650 teaches the preparation of a sanitary napkin having two flush-disposable sides separated by a waterproof film too thin to support itself once both faces of the napkin have disintegrated upon disposal.
  • Analogous to the process of coating a surface with a waterproofing substance is the concept of reacting a surface with another material so as to form a reaction product on the surface which has water-repellent properties.
  • U.S. Pat. Nos. 2,130,212 and 3,137,540 teach that materials such as polymeric alcohols may be reacted with other materials to increase their water-repellent properties.
  • the latter patent teaches treating poiyvinyl alcohol articles with an aqueous emulsion of an aldehyde to impart water-repellency thereto.
  • U.S. Pat. No. 3,626,943 teaches that disposable diapers can be made from poiyvinyl alcohol and waterproofed on one side by reaction with formaldehyde.
  • reaction-type coating processes suffer from drawbacks. They are carried out in the aqueous phase which is complicated and requires relatively large quantities of reagents. Most of the processes which employ some form of in situ chemical reaction to produce a water-repellent surface are carried out in the liquid phase, some vapor phase treatments are taught by U.S. Pat. Nos. 2,306,222; 2,961 ,388; and 3,017,290.
  • a known method of water and oil repellent finishing of textiles includes plasma treatment in a glow discharge in an atmosphere of inorganic gases, followed by treatment with a fluorine containing acrylic monomer in gas phase.
  • Another prior method of achieving film plasma polymerization described in U.S. Pat. No. 4,188,426, includes treatment in a glow discharge of per-fluoro-cyclo-butane or hexafluoroethane to reduce the friction coefficient and to improve the surface hydrophobia of organic and inorganic substrates (e.g. polyethylene films, metals).
  • organic and inorganic substrates e.g. polyethylene films, metals.
  • Plasma-deposited fluorocarbon coatings are often cited in the literature as "teflon- like coatings" because their CFx (0 ⁇ x ⁇ 2) composition and surface energy can be made very close to that of polytetrafluoroethylene (PTFE,-(CF 2 -CF 2 -) n ), known on the market as Teflon®.
  • PTFE polytetrafluoroethylene
  • Plasma coating processes of metals, polymers, and other substrates, with fluorocarbon films are known in the art. As an example, it is known from USP
  • Glow discharges treatments are also considered in US-A-5 462 781 for improving the bondabiiity of an implantable polymer medical device or for changing the wettability of a polymer fabric.
  • Several of the references discussed in this patent confirm non modulated, continuous plasma treatments as a means for varying the inherent WCA of a surface.
  • US-A-5 034 265 discloses a non modulated, continuous plasma treatment for improving the biocompatibility of vascular grafts with a CF ⁇ fluorocarbon coating deposited at the inside wall of the grafts in a proper plasma reactor fed with tetrafluoroethylene (C 2 F 4 , TFE) at 0.2 Torr.
  • C 2 F 4 , TFE tetrafluoroethylene
  • U.S. Pat No 5,328,576 discloses a method for imparting water and oil repellent surface properties to fabrics or paper that includes pretreatment in a low pressure oxygen plasma in the presence of water vapor followed by plasma polymerization of methane in a high frequency glow discharge carried out in the same treatment chamber. This method doesn't deliver durable, permanent coatings with a WCA higher than about 120°.
  • U.S. Pat. No. 5,262,208 discloses an gas plasma treatment for archival preservation of paper manuscripts by a thin film protective polymer film.
  • the treatment time is ranging from 30-3600 seconds.
  • Other methods have been used to obtain thin coatings on the web materials with short treatment periods.
  • Providing surface treatment is disclosed in US Patent No. 4,842,893 and 4,954,371 which describe a process for high speed coating of substrates with a complete and uniformly adhering layer and using electron beam radiation curing of the vapor deposited monomers for multilayer capacitators.
  • U.S. Pat. No. 4,842,893 discloses high speed coating process including flash vaporization system and electron beam curing. Both of these electron beam disclosures are incorporated herein by reference.
  • Other uses of electron beam coatings in the electronic industry field have been reported by Westinghouse science & technology center USA (Adv. Mat. Newsletter Volume 13, No 9, 1991 page 4).
  • the present invention relates ⁇ to raw materials or blanks as for example particulate material such as detergent powder, plastic granulate; toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
  • particulate material such as detergent powder, plastic granulate; toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
  • Bodys refers to semi finished products, comparable to intermediates in chemical conversions, which are not substantially altered before being assembled into a finished product.
  • raw material or blanks are referred to as raw materials in particular the present invention relates to raw materials which are coated by means of modulated plasma deposition of fluorocarbons.
  • the present invention having the features mentioned in the annexed claims, relates to raw materials having at least part of their surface coated with a thin, well adherent, nonporous, fluorocarbon coating with super hydrophobic properties, i.e. characterized by static water contact angle (WCA) values, measured on a smooth and plane surface, higher than about 120°, preferably higher than 130°, more preferably higher than 150°.
  • WCA static water contact angle
  • raw materials being treated with this method have their hydrophobicity markedly improved. They can for example provide improvements in water repellency, soil/dirt sticking prevention, reduced build-up on surface, reduced lumping of powders or reduced bacterial build-up .
  • the present invention deals with raw materials having their surface treated i.e. characterized by static water contact angle (WCA) values higher than about 120°, preferably higher than 130°, more preferably higher than 150°.
  • WCA static water contact angle
  • the raw materials are preferably subjected to a modulated glow discharge plasma treatment performed with a fluorocarbon gas or vapor compound fed in a properly configured reactor vessel where the raw materials are positioned.
  • the plasma process deposits a continuous, fluorocarbon thin film with super hydrophobic surface characteristics, tightly bound to the surface of the raw materials.
  • a more conventional thin film coating process followed by high energy surface curing can be used.
  • This is the method of using a high speed vacuum coating process for producing durable and thin water-repellent coatings on a raw material. It uses e.g. a movable support such as rotating drum in a vacuum chamber. The surface of the support is maintained at a temperature sufficient to permit condensation of a vaporized material deposited in the chamber.
  • the material is a curable monomer with a relatively low molecular weight.
  • the monomer vapor is created using a flash vaporizer.
  • the desired amount of curable monomer is metered to a heated flash vaporizer system where the material is vaporized. It is then transported e.g.
  • the raw material is then transported to a curing means such as an energy source which emits an electron beam, UV-light radiation or exposure to an electro magnetic field.
  • a curing means such as an energy source which emits an electron beam, UV-light radiation or exposure to an electro magnetic field.
  • the curable monomer can also be transferred into radicals by passing through a plasma zone (zone of high voltage discharge).
  • the curing of the monomer by the curing means then provides a coating on the raw material surface which has a static water contact angle of more than 120°.
  • the method for delivering the curable monomer to the raw material for minimizing the amount of monomers can use an ultrasonic atomizer producing micro droplets of curable monomer. They are released into a vaporization tube heated by band heaters. The atomized droplets impinge on the inner wall of the vaporization tube and are instantaneously vaporized, i.e., flash vaporized. This reduces the opportunity for polymerization prior to being deposited on the raw material.
  • “Plasma,” as used herein, is used in the sense of "low-temperature plasma” or “cold plasma” produced by igniting a glow discharge in a low pressure gas through a power supply.
  • Glow discharges contain a variety of species chemically active and energetic enough to cause chemical reactions with surfaces exposed, i.e. covalent bonding to a suitable substrate material.
  • Cold plasmas, or glow discharges are generally produced with high frequency (from KHz to MHz and GHz) power supply (HF plasmas). Electrons, positive and negative ions, atoms, excited molecules, free radicals, and photons of various energies are formed in a cold plasma.
  • Modemated plasma means a non continuos plasma, HF plasma, i.e. a glow discharge whose driving power is pulsed between a maximum value and zero (ON/OFF pulse) or a fraction of it, at a certain frequency, with a proper pulse generator connected to the main power supply.
  • ON/OFF pulsed systems the time ON and time OFF values are among the experimental parameters of the process.
  • superimposing a triggering ON/OFF pulse to the main high frequency field which generally drives a glow discharge alternates short continuous discharges with plasma OFF time intervals where active species still exists in the gas phase, but the effects of ions and electrons are strongly reduced. This alternating exposure to two different processes leads to unique surface modifications of the raw materials, which can be very different from those of continuous plasma process, as it will be shown.
  • Plasma deposition or “plasma polymerization” is the plasma process that leads to the formation of thin (0.01 - 2 ⁇ m), partly crosslinked, void-free, continuous coatings well adherent to surfaces.
  • the molecules of the gas phase are fragmented by energetic electrons, which are able to break chemical bonds; this process leads to radicals and other chemical species which are able to deposit at surfaces inside the vacuum chamber and form a thin, uniform film.
  • the action of the plasma may also affect the surface of a polymer material in the early deposition time; energetic species may break bonds in the surface with possible evolution of gas products, such as hydrogen, and formation of free radical sites which contribute to form covalent bonds between the growing film and the raw material.
  • the present invention thus refers to raw materials coated with fluorocarbon films characterized by a WCA value higher than 120°, preferably higher than 130°, more preferably higher than 150°.
  • fluorocarbon coatings with F/C ratio from about 1.50 to about 2.00 deposited on different raw materials and characterized by WCA values higher than about 120°, such as between about 155° and about 165° find useful application.
  • the F/C ratio could be theoretically up to 3, if the coating would be formed only by a mono-molecular layer of CF 3 groups.
  • the formation of intermolecular cross-links and the formation of claims (containing CF 2 fragments) which are grafted onto the surface lowers the above theoretical value so that the obtained coatings, notwithstanding the fact that they contain many CF 3 groups, have a general F/C ratio in the range of about 1.50 to about 2.00.
  • the thickness of the coatings depends on the duration of the plasma process at different conditions, and can be kept between 0.01 and 2 ⁇ m. It has been found that the nature of the raw materials does not influence the chemical composition or the thickness of the coatings. Coatings with WCA values up to about 165° (e.g. 165° ⁇ 5°) were obtained. Raw materials to be treated are subjected to modulated plasma gas discharge in the presence of at least one fluorocarbon gas or vapor.
  • fluorocarbon gases or vapors such as tetrafluoroethylene (TFE,C 2 F 4 ), hexafluoropropene (HFP,C 3 F 6 ), perfluoro-(2-trifluoromethyl-)pentene, perfluoro-(2-methylpent-2-ene) or its trimer may be used, TFE being the presently preferred choice.
  • the plasma deposition process is preferably performed by positioning the raw material in a properly arranged plasma reactor, connecting the reactor to a source of a fluorocarbon gas or vapor, regulating flow and pressure of the gas inside the reactor, and sustaining a glow discharge in the reactor with a high frequency electric field in a pulsed (modulated) mode by means of a suitable pulsed power supply.
  • a pulsed (modulated) mode by means of a suitable pulsed power supply.
  • an agitation action in form of a fluidized bed of simple mixer can be beneficial.
  • the parameters which define the glow discharge treatment includes the feed gas or vapor, its flow rate, its pressure, the position of the raw material inside the reactor, the design of the reactor, the exciting frequency of the power supply, the input power, the time ON and the time OFF of the pulsing system.
  • Raw material may be positioned in the "glow" region of the discharge, i.e. directly exposed to the plasma, or in the "afterglow” region, i.e. downstream in respect to the visible glow.
  • the two positions generally result in coatings with different composition and properties; treating the raw material with modulated glow discharge results also in different coatings respect to continuous treatments.
  • FIG. 2 portrays a typical scheme of a plasma reactor adapted for use within the context of the invention
  • FIG. 3 shows a C1s ESCA signal of an uncoated polyethylene raw material wherein the signal is due only to C-H, C-C bonds of the substrate;
  • FIG. 4 shows a C1 s ESCA signal of a PE raw material coated with a fluorocarbon coating deposited as described in example 1 (glow position, continuous mode), with WCA'of 100 ⁇ 5°; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination;
  • FIG. 5 shows a C1s ESCA signal of a PE raw material coated with a fluorocarbon coating deposited as described in example 1 (afterglow position, continuous mode), with WCA of 120 ⁇ 5°; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination; and
  • FIG. 6 shows a C1s ESCA signal of a PE raw material coated with a fluorocarbon coating deposited as described in example 1 (glow position, modulated mode), with WCA of 165 ⁇ 5°; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination.
  • Figure 1 compares a conventional "continuous" plasma (figure 1a) with the modulated process of the invention, (figure 1b) showing pulsed alternating plasma ON with plasma OFF (i.e. no plasma) times.
  • the two processes are schematized by referring to their driving signals.
  • the reactor 1 schematically shown in figure 2 was utilized not exclusively for developing the deposition method object of the present invention.
  • the reactor vacuum chamber 1 is made of Pyrex glass, is provided with an external RF powered electrode 2 and an internal grounded electrode 3.
  • the external electrode is connected to a power supply 4 (typically a radiofrequency generator operating at e.g. 13.56 MHz) through a matching network and an ON/OFF pulse generator 5.
  • the raw material can be treated in the "glow” region of the reactor, onto the grounded electrode 3, as well as in its "afterglow” position i.e. at an afterglow raw material holder 6.
  • the gas/vapor is fed through a proper mass flowmeter through a gas/vapor feeding manifold 7, and its pressure, measured at the pump out exit 8 of the reactor, kept at a certain constant value with a manual valve on the vacuum connection between the reactor and its pumping unit.
  • the deposition process is performed with an RF (13.56 MHz) generator.
  • the RF power delivered to the external electrode of the reactor is kept in the 1-500 Watts range for a power density of 0.02-10 Watt/cm 2 .
  • the reactor is fed with a fluorocarbon compound at a 1-100 seem flow rate and is kept at a constant pressure of 50-1000 mTorr during the process.
  • the glow discharges are modulated through the pulse generator, preferably at 1-500 ms time ON and 1-1000 ms time OFF values, with respective values of about 10 ms and about 190 ms being the most preferred choice at present.
  • the deposition process may range from a few seconds to many hours; during this time a uniform fluorocarbon coating is deposited on the raw materials positioned in the glow as well as on those in the afterglow region.
  • the deposition rate a typical one being in the 20 - 400 A/min range, was measured by weighing (weight/time) the raw material before and after the discharge, or by measuring the thickness of the coatings (thickness/time) with an Alpha Step profilometer.
  • the deposition rate and the chemical composition of the coating depend on the experimental conditions (pressure, power, material position, time ON, time OFF, gas feed and flow rate) of the discharge.
  • the coatings obtained are uniform over the entire surface of the raw material; when deposited on flat (i.e. plane) smooth surfaces, their hydrophobic character has been estimated through their static WCA value, as measured with a WCA goniometer. The measurement is done on a flat, i.e. plane, and smooth surface of a substrate after coating.
  • the term smooth as used herein for water contact angle measurements refers to a roughness of no more than 5 microns in accordance with standard roughness measurements on continuous surfaces.
  • WCA values in the range about 120° to about 165°, corresponding to a critical surface tension lower than that of PTFE (18 dynes/cm) have been measured for fluorocarbon CFx coatings, when x ranges between about 1.50 and about 2.00.
  • the chemical composition of coatings is preferably determined by Electron Spectroscopy for Chemical Analysis (ESCA) within the sampling depth of the technique (about 100 A). The adherence of the coating to the raw material is very good.
  • the RF generator was connected to the reactor and allowed to sustain the discharge with 50 Watt of input power for 90 min, then switched off.
  • the substrates were extracted from the reactor and their WCA measured.
  • the WCA values shown in Table 1 were found, which are compared to the WCA values of the unprocessed substrates.
  • a deposition rate of 30 ⁇ 5 A min was measured for the coatings deposited in the modulated mode.
  • the method of thin film coating with a monomer followed by surface curing can be used.
  • the coating formed by the method of the present invention has a thickness of less than 5 microns, and preferably less than 2 microns and most preferably in the range of 0.001 to 1 microns.
  • the coatings are formed by depositing a vapor of curable monomer, under vacuum, on a movable raw material which is mounted in thermal contact with a support, for continuos processing preferably a rotating drum, which is maintained at a temperature below the boiling point of the vaporized monomer under the environmental conditions in vacuum chamber . As a result of this temperature differential, the monomer vapor condenses on the surface of the raw material.
  • the monomer materials utilized in the present invention are relatively low in molecular weight, between 150 and 1000 Atomic Mass Units (AMU) , and preferably in the range 200 to 300 AMU.
  • AMU Atomic Mass Unit
  • Polyfunctional flurocarbons and especially fluoroacrylates or mixtures of monofunctional fluoroacryiates and polyfunctional fluoroacrylates are preferred.
  • the monomers or monomer mixtures employed have an average of about two or more double bonds (i.e., a plurality of olefinic groups) and have a vapor pressure such that they condense on the raw material surface.
  • Such vapor pressures are for example pressure between about 1.33 10 "6 mbar and 1.33 10 "1 mbar, most preferably a vapor pressure of approximately 1.33 10 "2 mbar at standard temperature and pressure, (i.e., relatively low boiling materials) are selected.
  • high-vapor-pressure monomers can be flash vaporized already at low temperatures and thus are not degraded (cracked) by the heating process.
  • the absence or low amount of unreactive degradation products results in coatings with a reduced levels of volatile components in which substantially all of the deposited monomer is reactive and will cure to form an integral film when exposed to a source of radiation.
  • These properties make it possible to provide a substantially continuous coating despite the fact that the deposited film is very thin.
  • the cured films exhibit excellent adhesion and are resistant to chemical attack by organic solvents and inorganic salts.
  • the high speed vacuum coating process require a curable monomer component.
  • the curable monomer for obtaining water-repellent coatings comprises fluoro-containing group.
  • any suitable fluoromonomer may be used, including, but not limited to, fluoroacrylate monomers, fluoro olefin monomers, fluorostyrene monomers, fluoroalkylene oxide monomers (e.g., perfluoropropylene oxide, perfluorocyclohexene oxide), fluorinated vinyl alkyl ether monomers, and the copolymers thereof with suitable comonomers, wherein the comonomers are fluorinated or unfluorinated. Fluoromonomers which are polymerized by a free radical polymerization process are preferred.
  • fluorostyrenes and fluorinated vinyl alkyl ether monomers which may be used in the method of the present invention include, but are not limited to, ⁇ -fluorostyrene; ⁇ -fluorostyrene; ⁇ , ⁇ -difluorostyrene; ⁇ , ⁇ - difluorostyrene; ⁇ , ⁇ , ⁇ -trifluorostyrene; ⁇ -trifluoromethylstyrene; 2,4,6-Tris (trifluoromethyl)styrene; 2,3,4, 5,6-pentafluorostyrene; 2,3,4, 5,6-pentafluoro- ⁇ - methylstyrene; and 2, 3,4, 5,6-pentafluoro- ⁇ -methylstyrene.
  • tetrafluoroethylene can also be used in the method of the present invention and include, but are not limited to, tetrafluoroethylene- hexafluoropropylene copolymers, tetrafluoroethylene-perfluorovinyl ether copolymers (e.g., copolymers of tetrafluoroethylene with perfluoropropyl vinyl ether), tetrafluoroethylene-ethylene copolymers, and perfluorinated ionomers (e.g., perfluorosulfonate ionomers; perfluorocarboxylate ionomers).
  • tetrafluoroethylene- hexafluoropropylene copolymers etrafluoroethylene-perfluorovinyl ether copolymers
  • tetrafluoroethylene-perfluorovinyl ether copolymers e.g., copolymers of tetrafluoroethylene
  • fluorocarbon elastomers are a group of fluoro olefin polymers which can also be used in the process of the present invention and include, but are not limited to, poly(vinylidene fluoride-co-hexafluoropropylene); poly(vinylidene fluoride-co-hexafluoropropylene-co-tetrafluoroethylene); poly[vinylidene fluoride- co-tetrafluoroethylene-co-perfluoro(methyl vinyl ether)]; poly[tetrafluoroethylene- co-perfluoro(methyl vinyl ether)]; poly(tetrafluoroethylene-co-propylene; and poly(vinylidene fluoride-co-chlorotrifluoroethylene).
  • fluoroacrylates are particularly useful monomeric materials.
  • R 2 is a C, to C 8 perfluoroalkyl or - CH 2 - NR 3 - S0 2 - R 4 , wherein R 3 is C ⁇ C;, alkyl and R 4 is C 1 to C 8 perfluoroalkyl.
  • perfluorinated means that all or essentially all hydrogen atoms on an organic group are replaced with fluorine.
  • EtFOSEA 2-(N-ethylperfluorooctanesulfonamido) ethyl acrylate
  • EtFOSEMA 2-(N-ethylperflooctanesulfonamido) ethyl methacrylate
  • MeFOSEA 2-(N-methyiperfluorooctanesulfonamido) ethyl acrylate
  • MeFOSEMA 2-(N-methylperflooctanesulfonamido) ethyl methacrylate
  • the curable monomer component can also include polyfunctional acrylates, which are set forth in U.S. Patent 4,842,893.
  • particulate or granule materials can be small single particles or agglomerates while granules are relatively large and typically not agglomerated
  • the relative moveability between particles is significantly increased. This provides a much better flow performance of such materials due to reduced sticking to each other. In addition their flowability relative to another surface is also improved and the probability of the material sticking to a hard surface is reduced.
  • detergent powder usually agglomerated particles
  • the superhydrophobicity can be provided to reduce the probability of bacterial build up and soiling build up on the surfaces.
  • the mechanism is to increase the speed at which water can be shaken from the toothbrush head after brushing. This increased speed will also increase the probability of bacteria to be removed from the toothbrush head.
  • the surface energy situation at the bottom of the bristles where they enter the toothbrush blank is such that no liquid will remain there (which was previously the case due to the capillary attraction between the bristles in each bundle of bristles) such that a reduced or even no bacterial growth can be observed at the toothbrush head.
  • a silver or golden (or other metal having antibacterial properties without toxic side effects) electrode in the plasma coating system in addition to the hydrophobic coating an effective amount of antibacterial metal can be deposited on the blanks and bristles or other surfaces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Sanitary Device For Flush Toilet (AREA)
EP99968687A 1998-09-07 1999-09-07 Rohmaterial oder rohling mit superhydrophober beschichtung Withdrawn EP1115904A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99968687A EP1115904A1 (de) 1998-09-07 1999-09-07 Rohmaterial oder rohling mit superhydrophober beschichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98116895A EP0985741A1 (de) 1998-09-07 1998-09-07 Modulierte Plasma-Glimmentladung-Behandlungen zur Herstellung super-hydrophober Substrate
EP98116895 1998-09-07
PCT/US1999/020925 WO2000014299A1 (en) 1998-09-07 1999-09-07 Raw materials or blanks having super hydrophobic coating
EP99968687A EP1115904A1 (de) 1998-09-07 1999-09-07 Rohmaterial oder rohling mit superhydrophober beschichtung

Publications (1)

Publication Number Publication Date
EP1115904A1 true EP1115904A1 (de) 2001-07-18

Family

ID=8232590

Family Applications (5)

Application Number Title Priority Date Filing Date
EP98116895A Withdrawn EP0985741A1 (de) 1998-09-07 1998-09-07 Modulierte Plasma-Glimmentladung-Behandlungen zur Herstellung super-hydrophober Substrate
EP99945652A Withdrawn EP1115902A1 (de) 1998-09-07 1999-09-07 Gegenstände mit harten oberflächen, die mit einer super-hydrophoben schicht beschichtet sind
EP99945559A Expired - Lifetime EP1112391B1 (de) 1998-09-07 1999-09-07 Modulierte plasma-glimmentladung-behandlungen zur herstellung von super-hydrophoben substraten
EP99968687A Withdrawn EP1115904A1 (de) 1998-09-07 1999-09-07 Rohmaterial oder rohling mit superhydrophober beschichtung
EP99968690A Withdrawn EP1112404A1 (de) 1998-09-07 1999-09-07 Textilprodukte oder kleidung mit superhydrophober beschichtung

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP98116895A Withdrawn EP0985741A1 (de) 1998-09-07 1998-09-07 Modulierte Plasma-Glimmentladung-Behandlungen zur Herstellung super-hydrophober Substrate
EP99945652A Withdrawn EP1115902A1 (de) 1998-09-07 1999-09-07 Gegenstände mit harten oberflächen, die mit einer super-hydrophoben schicht beschichtet sind
EP99945559A Expired - Lifetime EP1112391B1 (de) 1998-09-07 1999-09-07 Modulierte plasma-glimmentladung-behandlungen zur herstellung von super-hydrophoben substraten

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP99968690A Withdrawn EP1112404A1 (de) 1998-09-07 1999-09-07 Textilprodukte oder kleidung mit superhydrophober beschichtung

Country Status (9)

Country Link
EP (5) EP0985741A1 (de)
JP (4) JP2003514984A (de)
CN (1) CN1322264A (de)
AU (4) AU6035599A (de)
BR (1) BR9913497A (de)
CA (4) CA2342330A1 (de)
DE (1) DE69916468T2 (de)
ES (1) ES2220112T3 (de)
WO (4) WO2000014297A1 (de)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635801B1 (en) 1999-05-14 2003-10-21 The Procter & Gamble Company Disposable absorbent article combining low viscosity liquid handling and high viscosity liquid handling
US7033340B1 (en) 1999-05-14 2006-04-25 The Procter & Gamble Company Disposable absorbent article having reduced impact on surface tension of acquired liquid
US6692603B1 (en) 1999-10-14 2004-02-17 Kimberly-Clark Worldwide, Inc. Method of making molded cellulosic webs for use in absorbent articles
US6617490B1 (en) 1999-10-14 2003-09-09 Kimberly-Clark Worldwide, Inc. Absorbent articles with molded cellulosic webs
US6786894B2 (en) 1999-11-29 2004-09-07 The Procter & Gamble Company Absorbent article having liquid handling member which collapses under high pressures
EP1112728A1 (de) 1999-12-23 2001-07-04 The Procter & Gamble Company Vorrichtung zum Entfernen von Flüssigkeit die eine verbesserte Trocknung der Anwendungsfläche erlaubt
DE10019816A1 (de) * 2000-04-20 2001-10-31 Asten Ag Eupen Verfahren zur Beschichtung eines Garns sowie dadurch hergestelltes textiles Flächengebilde
RU2190484C1 (ru) * 2001-06-04 2002-10-10 Бугров Глеб Эльмирович Способ плазменного осаждения полимерных покрытий и способ генерации плазмы
US7887889B2 (en) 2001-12-14 2011-02-15 3M Innovative Properties Company Plasma fluorination treatment of porous materials
US6878419B2 (en) 2001-12-14 2005-04-12 3M Innovative Properties Co. Plasma treatment of porous materials
GB0206930D0 (en) 2002-03-23 2002-05-08 Univ Durham Method and apparatus for the formation of hydrophobic surfaces
US7381666B2 (en) 2002-12-20 2008-06-03 Kimberly-Clark Worldwide, Inc. Breathable film and fabric having liquid and viral barrier
JP3836797B2 (ja) * 2003-02-18 2006-10-25 株式会社東芝 粒子堆積層形成装置及び粒子堆積層形成方法
DE10330394A1 (de) * 2003-07-04 2005-01-27 Sustech Gmbh & Co. Kg Verfahren zur Herstellung oberflächenbeschichteter nanoskaliger Teilchen durch Polymerbeschichtung in der Gasphase
EP2287394B1 (de) * 2003-07-25 2014-01-01 Universita' Degli Studi di Milano-Bicocca Verfahren zur Verarbeitung polymerischer und anorganischer Materialien mit Plasma
US7811949B2 (en) 2003-11-25 2010-10-12 Kimberly-Clark Worldwide, Inc. Method of treating nonwoven fabrics with non-ionic fluoropolymers
US7931944B2 (en) 2003-11-25 2011-04-26 Kimberly-Clark Worldwide, Inc. Method of treating substrates with ionic fluoropolymers
ITPD20030312A1 (it) * 2003-12-30 2005-06-30 Geox Spa Suola traspirante ed impermeabile per calzature
FR2866643B1 (fr) * 2004-02-24 2006-05-26 Saint Gobain Substrat, notamment verrier, a surface hydrophobe, avec une durabilite amelioree des proprietes hydrophobes
US7213309B2 (en) 2004-02-24 2007-05-08 Yunzhang Wang Treated textile substrate and method for making a textile substrate
WO2008014607A1 (en) * 2006-07-31 2008-02-07 Tekna Plasma Systems Inc. Plasma surface treatment using dielectric barrier discharges
JP4949480B2 (ja) 2006-11-22 2012-06-06 ザ プロクター アンド ギャンブル カンパニー 有益組成物及び方法
GB0810326D0 (en) * 2008-06-06 2008-07-09 P2I Ltd Filtration media
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
WO2010042191A1 (en) 2008-10-07 2010-04-15 Ross Technology Corporation Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US20100252047A1 (en) * 2009-04-03 2010-10-07 Kirk Seth M Remote fluorination of fibrous filter webs
US8987632B2 (en) 2009-10-09 2015-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modification of surface energy via direct laser ablative surface patterning
WO2011056742A1 (en) 2009-11-04 2011-05-12 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern and methods of making the same
BR112012023312A2 (pt) 2010-03-15 2019-09-24 Ross Tech Corporation desentupidor e métodos de produção de superfícies hidrofóbicas
AU2012220798B2 (en) 2011-02-21 2016-04-28 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
DE102011085428A1 (de) 2011-10-28 2013-05-02 Schott Ag Einlegeboden
WO2013090939A1 (en) 2011-12-15 2013-06-20 Ross Technology Corporation Composition and coating for superhydrophobic performance
US10259258B2 (en) 2011-12-15 2019-04-16 3M Innovative Properties Company Adhesive film and method of making a graphic
US9237973B2 (en) 2012-01-31 2016-01-19 Kimberly-Clark Worldwide, Inc. Treated apertures
US9278374B2 (en) 2012-06-08 2016-03-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modified surface having low adhesion properties to mitigate insect residue adhesion
CA2878189C (en) 2012-06-25 2021-07-13 Ross Technology Corporation Elastomeric coatings having hydrophobic and/or oleophobic properties
AU2013328745A1 (en) * 2012-10-09 2015-08-20 Europlasma Nv Surface coatings
US20140165271A1 (en) * 2012-12-18 2014-06-19 Ansell Limited Encapsulating protective suits with enhanced water repellency
CN103085380A (zh) * 2013-01-29 2013-05-08 上海交通大学 一种具有耐腐蚀性能的铜超疏水表面及其制备方法
DE102013224951A1 (de) * 2013-12-05 2015-06-11 BSH Hausgeräte GmbH Haushaltsgerät
US10085540B2 (en) * 2014-05-30 2018-10-02 Amorepacific Corporation Cosmetic composition applicator including impermeable sheet
US9968963B2 (en) * 2015-08-31 2018-05-15 Sigma Laboratories Of Arizona, Llc Functional coating
US10060895B2 (en) * 2015-12-27 2018-08-28 Light of Detection, Ltd. Devices and methods for identifying a biological or chemical residue in an liquid sample
WO2017120306A1 (en) 2016-01-08 2017-07-13 Clarcor Inc. Use of microfibers and/or nanofibers in apparel and footwear
JP6786820B2 (ja) * 2016-03-09 2020-11-18 ダイキン工業株式会社 成形体の製造方法
CN105648770B (zh) * 2016-03-25 2018-04-13 广州拜费尔空气净化材料有限公司 一种超疏水表面的制备方法
US10524598B2 (en) 2016-05-03 2020-01-07 Benny Green Easily cleanable drinking assembly
CN106868473B (zh) * 2017-01-23 2018-07-13 江苏菲沃泰纳米科技有限公司 一种梯度递减结构防液涂层的制备方法
CN107058979B (zh) * 2017-01-23 2018-05-11 江苏菲沃泰纳米科技有限公司 一种防水耐电击穿涂层的制备方法
CN107058981B (zh) * 2017-01-23 2018-09-21 江苏菲沃泰纳米科技有限公司 一种低粘附、耐蚀涂层的制备方法
CN106835075B (zh) * 2017-01-23 2018-04-20 江苏菲沃泰纳米科技有限公司 一种梯度递增结构防液涂层的制备方法
CN107058982B (zh) * 2017-01-23 2018-06-19 江苏菲沃泰纳米科技有限公司 一种具有多层结构防液涂层的制备方法
CN106906456B (zh) * 2017-01-23 2018-04-20 江苏菲沃泰纳米科技有限公司 一种交联度可控的涂层的制备方法
CN109518468A (zh) * 2018-11-13 2019-03-26 疏博(上海)纳米科技有限公司 一种有机硅聚合物超疏水织物整理剂的制备及应用
CN109322143A (zh) * 2018-12-07 2019-02-12 东华大学 一种超疏水表面材料的硅氧烷类单体等离子体处理方法
CN110665768B (zh) * 2019-07-26 2022-04-26 江苏菲沃泰纳米科技股份有限公司 防水纳米膜及其制备方法、应用和产品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL85087C (de) * 1951-10-09
US4188426A (en) * 1977-12-12 1980-02-12 Lord Corporation Cold plasma modification of organic and inorganic surfaces
US4632842A (en) * 1985-06-20 1986-12-30 Atrium Medical Corporation Glow discharge process for producing implantable devices
JPH036204A (ja) * 1989-06-01 1991-01-11 Furukawa Electric Co Ltd:The プラズマ重合膜の製膜方法
DE3939341A1 (de) * 1989-11-29 1991-06-06 Bayer Ag Hydrophobierungs- und oleophobierungsmittel
EP0492545B1 (de) * 1990-12-25 1998-03-25 Matsushita Electric Industrial Co., Ltd. Transparentes Substrat mit aufgebrachtem monomolekularem Film und Verfahren zu seiner Herstellung
EP0508136B1 (de) * 1991-03-14 1998-06-03 Matsushita Electric Industrial Co., Ltd. Oberflächenbehandeltes Material für Bekleidung
CA2072384A1 (en) * 1991-08-29 1993-03-01 Clifford L. Spiro Carbon fluoride compositions
JPH07222624A (ja) * 1994-02-16 1995-08-22 Matsushita Electric Ind Co Ltd 歯ブラシ
US5888591A (en) * 1996-05-06 1999-03-30 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
JPH10273617A (ja) * 1997-03-31 1998-10-13 Toray Ind Inc 撥水性コーティング膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0014299A1 *

Also Published As

Publication number Publication date
CA2342330A1 (en) 2000-03-16
AU5813999A (en) 2000-03-27
EP1112404A1 (de) 2001-07-04
EP0985741A1 (de) 2000-03-15
EP1115902A1 (de) 2001-07-18
EP1112391B1 (de) 2004-04-14
CN1322264A (zh) 2001-11-14
WO2000014299A1 (en) 2000-03-16
EP1112391A1 (de) 2001-07-04
CA2340448A1 (en) 2000-03-16
WO2000014323A1 (en) 2000-03-16
JP2003521588A (ja) 2003-07-15
JP2002524660A (ja) 2002-08-06
CA2343160A1 (en) 2000-03-16
DE69916468D1 (de) 2004-05-19
DE69916468T2 (de) 2005-05-25
JP2003514983A (ja) 2003-04-22
WO2000014298A1 (en) 2000-03-16
AU6035499A (en) 2000-03-27
CA2343154A1 (en) 2000-03-16
AU5821699A (en) 2000-03-27
ES2220112T3 (es) 2004-12-01
JP2003514984A (ja) 2003-04-22
WO2000014297A1 (en) 2000-03-16
AU6035599A (en) 2000-03-27
BR9913497A (pt) 2001-06-05

Similar Documents

Publication Publication Date Title
WO2000014299A1 (en) Raw materials or blanks having super hydrophobic coating
WO2000014296A1 (en) Super hydrophobic coated substrates
US6649222B1 (en) Modulated plasma glow discharge treatments for making superhydrophobic substrates
US6660339B1 (en) Process for hydrophobic treatment of water vapor permeable substrates
KR100341565B1 (ko) 젖음성이 우수한 표면을 갖는 불소계 수지
JP5247149B2 (ja) プラズマを用いて基材をコーティングする方法
Abourayana et al. Plasma processing for tailoring the surface properties of polymers
WO2001017696A1 (en) Process for hydrophobic treatment of water vapour permeable substrates
Li et al. Thin film deposition technologies and processing of biomaterials
JP7084394B2 (ja) 優れた安定性及び耐久性を有する親水性の多機能性超薄コーティング
EP1343596A1 (de) Oberflächenmodifizierungsverfahren
Michelmore et al. Where physics meets chemistry: Thin film deposition from reactive plasmas
EP2275598B1 (de) Oberflächenbehandlung
Gilman et al. Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma
MXPA01002388A (en) Super hydrophobic coated substrates
JPH11181330A (ja) 非汚れ吸着性湿潤性コーティング装置
MXPA01002432A (en) Textile articles or clothing having super hydrophobic coating
MXPA01002425A (en) Modulated plasma glow discharge treatments for making superhydrophobic substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20010802

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020213