EP1106745A2 - Vorgefertigtes Deckenelement mit geschäumtem Polyurethan sowie Herstellverfahren - Google Patents

Vorgefertigtes Deckenelement mit geschäumtem Polyurethan sowie Herstellverfahren Download PDF

Info

Publication number
EP1106745A2
EP1106745A2 EP00102569A EP00102569A EP1106745A2 EP 1106745 A2 EP1106745 A2 EP 1106745A2 EP 00102569 A EP00102569 A EP 00102569A EP 00102569 A EP00102569 A EP 00102569A EP 1106745 A2 EP1106745 A2 EP 1106745A2
Authority
EP
European Patent Office
Prior art keywords
ceiling
concrete
lattice girders
reinforced concrete
end sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00102569A
Other languages
English (en)
French (fr)
Other versions
EP1106745A3 (de
Inventor
Hans Schwörer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwoerer Haus KG
Original Assignee
Schwoerer Haus KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwoerer Haus KG filed Critical Schwoerer Haus KG
Publication of EP1106745A2 publication Critical patent/EP1106745A2/de
Publication of EP1106745A3 publication Critical patent/EP1106745A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/023Separate connecting devices for prefabricated floor-slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/04Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/049Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres completely or partially of insulating material, e.g. cellular concrete or foamed plaster
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material

Definitions

  • the invention relates to a prefabricated ceiling element as a prefabricated component.
  • the invention relates to a reinforced concrete ceiling, the several such ceiling elements contains.
  • the ceiling elements are in a manufacturing company for prefabricated elements produced and then transported to a construction site, where they are in a Buildings are used, preferably put together to a basement ceiling become.
  • the invention further relates to a method for producing the ceiling element as a prefabricated component.
  • Reinforced concrete ceilings are based on building regulations, standards and technical Rules made significant demands. The most important are one high load-bearing capacity according to structural requirements, high fire resistance, Sound insulation measures to suppress airborne noise and Impact sound and high thermal insulation. More requirements, the more relate to production, assembly and economic aspects, are the production of the reinforced concrete ceiling in an economical production process and a low use of materials. Furthermore, in the event that prefabricated Ceiling elements are used as prefabricated components, the transport weight of the ceiling elements to be low to these ceiling elements from the manufacturing company to be able to be transported economically to the construction site.
  • the ceiling elements should be technically simple and economical on the construction site Allow installation to a reinforced concrete ceiling. Furthermore, the Ceiling elements can be used flexibly for different types of buildings his.
  • thermal insulation is one of the most important Become criteria for ceiling systems.
  • the general goal is that in the Thermal insulation ordinance to exceed the specified thermal insulation values. Around To achieve this becomes a high technical level with previous ceiling systems Effort. This effort is mainly incurred on the construction site and contradicts thus the technical trend towards factory prefabrication. Thermal protection Local measures also represent a significant economic Disadvantage.
  • the lattice girders serve both as reinforcement in structural engineering Sense as well as a spacer between the two concrete slices.
  • the Lattice girders therefore have a double function.
  • the lattice girders are made accordingly designed to meet structural requirements. These lattice girders serve as Truss girders and serve to transmit thrust to the middle and End support of the ceiling element.
  • the lattice girders form small thermal bridges between the two washers, however, is the cross section of the steel elements the lattice girder is relatively small, so that the heat flow is also relatively small.
  • the cavity that results between the two disks is already in the Production foamed with polyurethane foam.
  • the cured polyurethane layer supports the structural function of the lattice girders and the concrete panels.
  • Such production can be advantageous on a circulating pallet system take place economically in production.
  • the required thermal insulation can be adjusted via the thickness of the polyurethane layer.
  • a relatively light, prefabricated ceiling construction is achieved, which is only slight Has thermal bridges. This can save a significant amount of energy can be achieved.
  • the ceiling elements can be large-format as prefabricated components getting produced. As a result, they can be opened relatively easily and quickly the construction site. Elaborate concreting work is thus kept to a minimum reduced.
  • a reinforced concrete ceiling is also specified, the several contains such ceiling elements as prefabricated components.
  • a reinforced concrete ceiling can be used variably because of the overall height and the design of the lattice girders can be chosen according to the structural requirements.
  • the large-format ceiling elements have due to their manufacturing method in the production plant good flatness. This flatness is for further expansion of the building is of great advantage because of the usual leveling can be dispensed with.
  • the invention relates to a method for producing a ceiling element as a prefabricated component according to the features of claim 11.
  • a second is applied to the cured polyurethane foam Concrete disc concreted, the end sections of those protruding from the polyurethane foam Lattice girders.
  • the cured polyurethane foam serves So in the production as a carrier for the initially liquid concrete layer second concrete disc.
  • the cured polyurethane foam sufficient structural stability for that of polyurethane foam Enclosed lattice girder forms, so that for the entire ceiling element sufficient ability to absorb horizontal pulling and pushing forces given is.
  • the surface just subtracted so that this surface as the outer surface of the ceiling element can be easily treated further.
  • FIG. 1 shows schematically the structure of a prefabricated ceiling element as Prefabricated component.
  • the ceiling element comprises a lower disk 10 made of reinforced concrete and an upper plate 12 made of reinforced concrete.
  • each disc 10, 12 there are end sections concreted by lattice girders 14, i.e. the longitudinal bars 15a and cross bars 15b and associated welded strut nodes 15c are completely embedded in concrete.
  • Both the lower disk 10 and the upper disk 12 are through Round bars arranged crosswise, some of which are designated 15 by way of example are reinforced.
  • prefabricated reinforcing steel mesh can be used as reinforcement be provided.
  • In the cavity 16 between the two disks 10, 12 is filled with polyurethane foam during the production, which hardens.
  • a total thickness D of 200 to 300 mm for an application example as a basement ceiling element.
  • Typical values for the length L are ⁇ 12 m and for the width B ⁇ 3m.
  • FIG. 2 shows a cross section through the ceiling element. Same parts are called the same. Between the lower disc 10 and the upper disc 12 the cavity 16 is completely filled with polyurethane. The lattice girders 14 form thermal bridges between the two panes 10, 12. Because of the Small cross sections of the lattice girder 14 is the heat flow between the two Disks 10, 12 relatively small, so that the polyurethane layer as a heat insulating Layer comes into effect. In this way, high thermal insulation with relatively low weight and simple construction of the ceiling element reached. It can be clearly seen in FIG. 2 that both the lower disk 10 as well as the upper disc 12 is reinforced by round steels 15, which act as longitudinal reinforcement and as transverse reinforcement the structural requirements for a Help meet blanket.
  • Figure 3 shows a cross section through the ceiling element.
  • the polyurethane layer has a recess in the area 20.
  • this recess 20 there is steel reinforcement introduced with longitudinal rods 22 in the longitudinal direction.
  • the density of the lattice girders 14 is also increased. That way achieved a static increase in the ceiling load capacity in this area 20.
  • Figure 4 shows a longitudinal section through the ceiling element.
  • a transverse reinforcement with cross bars 24 is introduced in the area of the recess 20. This Cross reinforcement increases the load-bearing capacity in the transverse direction.
  • Figure 5 shows the complete structure of a reinforced concrete ceiling, the two ceiling elements 30, 32 includes.
  • the reinforced concrete ceiling is a basement ceiling and sits on Edges on outer walls, e.g. the wall 34 on.
  • Around the circumference of the reinforced concrete ceiling a circumferential ring belt reinforcement 36 is attached.
  • At butt sections is a connecting element between the two ceiling elements 30, 32 38 arranged.
  • On a longitudinal joint surface 40 between the ceiling elements 30, 32, a further connecting element 42 is provided, which the ceiling elements 30, 32 connects to one another in the direction of the longitudinal axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Beschrieben wird ein vorgefertigtes Deckenelement als Fertigbauteil, welches zwei Scheiben (10, 12) aus Stahlbeton enthält, die durch mehrere Gitterträger 14 im Abstand voneinander gehalten sind. Der Raum zwischen den Scheiben (10, 12) ist vollständig mit geschäumtem Polyurethan ausgefüllt. Weiterhin wird ein Verfahren zum Herstellen des Deckenelementes beschrieben. <IMAGE>

Description

Die Erfindung betrifft ein vorgefertigtes Deckenelement als Fertigbauteil. Weiterhin betrifft die Erfindung eine Stahlbetondecke, die mehrere derartige Deckenelemente enthält. Die Deckenelemente werden in einem Herstellbetrieb für Fertigbauelemente produziert und dann zu einer Baustelle transportiert, wo sie in ein Gebäude eingesetzt werden, vorzugsweise zu einer Kellerdecke zusammengesetzt werden. Ferner betrifft die Erfindung ein Verfahren zum Herstellen des Dekkenelementes als Fertigbauteil.
An Stahlbetondecken werden aufgrund von Bauvorschriften, Normen und technischen Regeln erhebliche Anforderungen gestellt. Die wichtigsten hierbei sind eine hohe Tragfähigkeit gemäß den baustatischen Erfordernissen, eine hohe Brandbeständigkeit, Schallschutzmaßnahmen zur Unterdrückung von Luftschall und Trittschall sowie eine hohe Wärmedämmung. Weitere Anforderungen, die mehr produktionstechnische, montagetechnische und wirtschaftliche Aspekte betreffen, sind die Herstellung der Stahlbetondecke in einem wirtschaftlichen Produktionsverfahren und ein geringer Materialeinsatz. Weiterhin sollte für den Fall, daß vorgefertigte Deckenelemente als Fertigbauteile verwendet werden, das Transportgewicht der Deckenelemente niedrig sein, um diese Deckenelemente vom Herstellbetrieb zur Baustelle wirtschaftlich transportieren zu können.
Die Deckenelemente sollten auf der Baustelle eine technisch einfache und wirtschaftliche Montage zu einer Stahlbetondecke ermöglichen. Ferner sollten die Deckenelemente flexibel für unterschiedliche Typen von Gebäuden einsetzbar sein.
Bekannte Stahlbetondecken erfüllen nur einige der vorgenannten Anforderungen. Dies ist darauf zurückzuführen, daß die geforderten Eigenschaften von einem einzigen homogenen Material im allgemeinen nicht erreicht werden können: Zum Beispiel eine vor Ort auf der Baustelle erstellte Stahlbetondecke besitzt aufgrund ihres hohen Eigengewichtes einen sehr guten Schallschutz, jedoch ist die Wärmedämmung relativ schlecht. Eine Holzbalkendecke mit Zwischenräumen, die wärmedämmendes Material aufnehmen, hat zwar einerseits eine hervorragende Wärmedämmung, jedoch ist andererseits der Schallschutz relativ gering.
Aufgrund der Wärmeschutzverordnung aus dem Jahr 1995 und der kommenden Energieeinsparungs-Verordnung sowie dem allgemeinem Wunsch von Gebäudebesitzern nach Energieeinsparung ist die Wärmedämmung zu einem der wichtigsten Kriterien für Deckensysteme geworden. Ziel ist es allgemein, die in der Wärmeschutzverordnung festgelegten Wärmeschutzwerte zu übertreffen. Um dies zu erreichen, wird bei bisherigen Deckensystemen ein hoher technischer Aufwand betrieben. Dieser Aufwand fällt vorwiegend auf der Baustelle an und widerspricht damit dem technischen Trend zur werkseitigen Vorfertigung. Wärmeschutztechnische Maßnahmen stellen vor Ort außerdem einen erheblichen wirtschaftlichen Nachteil dar.
Aus der DE-A-198 23 387 (Anmelder J. Glatthaar) ist ein Verfahren zur Herstellung einer Fertigteilwand für die Erstellung von Gebäuden bekannt. Bei diesem Verfahren wird zunächst eine Außenschale auf eine Metallplatte betoniert, wobei gleichzeitig Endabschnitte von Gitterträgern vom Beton umhüllt werden. Auf die Innenseite dieser Außenschale werden Lagen von Polyurethanschaum aufgebracht. Nach dem Aushärten des Polyurethanschaums wird das bis dahin fertiggestellte Teil gedreht, und zur Herstellung der Innenschale der gesamten Fertigteilwand werden die aus dem Polyurethanschaum herausragenden Endabschnitte der Gitterträger in ein auf einer Metallplatte befindliches Betonbett eingetaucht und anschließend ausgehärtet. Zwischen der Innenseite der Innenschale und der ihr zugewandten Polyurethanschaum-Oberfläche ist ein Hohlraum definiert, der vor Ort auf der Baustelle mit Beton ausgefüllt wird.
Es ist Aufgabe der Erfindung, ein vorgefertiges Deckenelement bzw. eine Stahlbetondecke sowie ein Verfahren anzugeben, das bzw. die eine hohe Wärmedämmung und einen hohen Schallschutz bietet und mit geringem Aufwand hergestellt und vorteilhaft in ein Gebäude als Fertigbauelement einbezogen werden kann.
Diese Aufgabe wird für ein Deckenelement durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
Gemäß der Erfindung dienen die Gitterträger sowohl als Bewehrung im baustatischen Sinn als auch als Abstandhalter zwischen den beiden Betonscheiben. Die Gitterträger erfüllen also eine Doppelfunktion. Die Gitterträger werden entsprechend dem baustatischen Erfordernissen ausgelegt. Diese Gitterträger dienen als Fachwerkträger und dienen zur Übertragung von Schubkräften auf die Mittel- und Endauflager des Deckenelementes. Die Gitterträger bilden zwar geringe Wärmebrücken zwischen den beiden Scheiben, jedoch ist der Querschnitt der Stahlelemente der Gitterträger relativ klein, so daß auch der Wärmefluß relativ klein ist. Der sich zwischen den zwei Scheiben ergebende Hohlraum wird bereits bei der Herstellung mit Polyurethan-Ortschaum ausgeschäumt. Die ausgehärtete Polyurethanschicht unterstützt die baustatische Funktion der Gitterträger und der Betonscheiben. Eine solche Fertigung kann vorteilhaft auf einer Umlauf-Palettenanlage im Produktionsbetrieb wirtschaftlich erfolgen. Die geforderte Wärmedämmung ist über die Dicke der Polyurethanschicht einstellbar. Durch die Erfindung wird eine relativ leichte, vorgefertigte Deckenkonstruktion erreicht, welche nur geringe Wärmebrücken hat. Auf diese Weise kann eine erhebliche Energieeinsparung erreicht werden. Die Deckenelemente können als Fertigbauteile großformatig hergestellt werden. Sie lassen sich demzufolge relativ einfach und schnell auf der Baustelle montieren. Aufwendige Betonierarbeiten werden somit auf ein Minimum reduziert.
Gemäß der Erfindung wird ferner eine Stahlbetondecke angegeben, die mehrere solche Deckenelemente als Fertigbauteile enthält. Eine derartige Stahlbetondecke ist variabel einsetzbar, da die Bauhöhe und die Ausgestaltung der Gitterträger entsprechend den baustatischen Erfordernissen gewählt werden können. Die großformatigen Deckenelemente haben aufgrund ihrer Herstellweise im Produktionsbetrieb eine gute Ebenheit. Diese Ebenheit ist für den weiteren Ausbau des Gebäudes von großem Vorteil, da auf die sonst übliche Ausgleichsschüttung verzichtet werden kann.
Die Erfindung betrifft gemäß einem weiteren Aspekt ein Verfahren zum Herstellen eines Deckenlements als Fertigbauteil nach den Merkmalen des Anspruchs 11. Bei diesem Verfahren wird auf den ausgehärteten Polyurethanschaum eine zweite Betonscheibe betoniert, die Endabschnitte der aus dem Polyurethanschaum herausragenden Gitterträger aufnimmt. Der ausgehärtete Polyurethanschaum dient also bei der Herstellung als Träger für die zunächst flüssige Betonschicht der zweiten Betonscheibe. In der Praxis hat sich gezeigt, daß der ausgehärtete Polyurethanschaum ausreichende baustatische Stabilität für die vom Polyurethanschaum umhüllten Gitterträger bildet, so daß für das gesamte Deckenelement eine ausreichende Fähigkeit zur Aufnahme horizontaler Zug- und Schubkräfte gegeben ist. Nach dem Betonieren der zweiten Betonscheibe wird die Oberfläche eben abgezogen, so daß diese Fläche als Außenfläche des Deckenelements leicht weiter behandelt werden kann.
Ausführungsbeispiele der Erfindung werden im folgenden anhand der Zeichnung erläutert. Darin zeigt
Figur 1
schematisch den Aufbau eines Deckenlements,
Figur 2
einen Querschnitt durch das Deckenlement nach Figur 1 mit ausgeschäumtem Hohlraum,
Figur 3
einen Querschnitt durch das Deckenelement, wobei in einer Ausnehmung in der Polyurethanschicht eine Bewehrung in Längsrichtung vorgesehen ist,
Figur 4,
einen Längsschnitt mit in einer Ausnehmung verstärktem Querträger, und
Figur 5
eine Stahlbetondecke mit zwei Deckenelementen, die miteinander verbunden sind.
Figur 1 zeigt schematisch den Aufbau eines vorgefertigten Deckenelements als Fertigbauteil. Das Deckenelement umfaßt eine untere Scheibe 10 aus Stahlbeton und eine obere Scheibe 12 aus Stahlbeton. In jeder Scheibe 10, 12 sind Endabschnitte von Gitterträgern 14 einbetoniert, d.h. die Längsstäbe 15a und Querstäbe 15b sowie zugehörige geschweißte Strebenknoten 15c sind völlig in Beton eingebettet. Sowohl die untere Scheibe 10 als auch die obere Scheibe 12 sind durch kreuzweise angeordnete Rundstähle, von denen beispielhaft einige mit 15 bezeichnet sind, bewehrt. Alternativ kann als Bewehrung auch vorgefertigte Betonstahlmatten vorgesehen sein. In dem Hohlraum 16 zwischen den beiden Scheiben 10, 12 wird bei der Herstellung Polyurethan-Ortschaum eingefüllt, der aushärtet. Typische Abmessungen sind für die Dicke der oberen Scheibe d1 = 70 mm, für die Dicke des Polyurethan-Ortschaums d2 = 80 bis 180 mm und als Dicke für die untere Scheibe 10 d3 = 50 mm. Je nach Dicke der Polyurethanschicht ergibt sich somit eine Gesamtdicke D von 200 bis 300 mm für ein Anwendungsbeispiel als Kellerdeckenelement. Typische Werte für die Länge L sind ≤ 12 m und für die Breite B ≤ 3m.
Figur 2 zeigt einen Querschnitt durch das Deckenelement. Gleiche Teile sind gleich bezeichnet. Zwischen der unteren Scheibe 10 und der oberen Scheibe 12 ist der Hohlraum 16 vollkommen mit Polyurethan ausgefüllt. Die Gitterträger 14 bilden zwar Wärmebrücken zwischen den beiden Scheiben 10, 12. Aufgrund der geringen Querschnitte der Gitterträger 14 ist der Wärmefluß zwischen den beiden Scheiben 10, 12 relativ gering, so daß die Polyurethanschicht als wärmedämmende Schicht voll zur Wirkung kommt. Auf diese Weise wird eine hohe Wärmedämmung bei relativ geringem Gewicht und einfachem Aufbau des Deckenelements erreicht. In Figur 2 ist gut zu erkennen, daß sowohl die untere Scheibe 10 als auch die obere Scheibe 12 durch Rundstähle 15 verstärkt ist, die als Längsbewehrung und als Querbewehrung die baustatischen Anforderungen für eine Decke erfüllen helfen.
Figur 3 zeigt einen Querschnitt durch das Deckenelement. Die Polyurethanschicht hat eine Ausnehmung im Bereich 20. In dieser Ausnehmung 20 ist eine Stahlbewehrung mit Längsstäben 22 in Längsrichtung eingebracht. Im Bereich der Ausnehmung 20 ist ferner die Dichte der Gitterträger 14 erhöht. Auf diese Weise wird in diesem Bereich 20 eine statische Erhöhung der Deckenbelastbarkeit erzielt.
Figur 4 zeigt einen Längsschnitt durch das Deckenelement. Im Bereich der Ausnehmung 20 ist eine Querbewehrung mit Querstäben 24 eingebracht. Diese Querbewehrung erhöht die Deckenbelastbarkeit in Querrichtung.
Figur 5 zeigt den kompletten Aufbau einer Stahlbetondecke, die zwei Deckenelemente 30, 32 umfaßt. Die Stahlbetondecke ist eine Kellerdecke und sitzt am Rande auf Außenwänden, z.B. der Wand 34, auf. Um den Umfang der Stahlbetondecke ist eine umlaufende Ringgurtbewehrung 36 angebracht. An Stoßabschnitten zwischen den zwei Deckenelementen 30, 32 ist ein Verbindungselement 38 angeordnet. An einer Längsstoßfläche 40 zwischen den Deckenelementen 30, 32 ist ein weiteres Verbindungselement 42 vorgesehen, welches die Deckenelemente 30, 32 in Richtung der Längsachse untereinander verbindet.

Claims (14)

  1. Vorgefertigtes Deckenelement als Fertigbauteil,
    dadurch gekennzeichnet, daß zwei Scheiben (10, 12) aus Stahlbeton durch mehrere Gitterträger (14) im Abstand voneinander gehalten sind,
    daß Endabschnitte der Gitterträger (14) in der jeweiligen Scheibe (10, 12) einbetoniert sind,
    und daß der Raum zwischen den Scheiben (10, 12) vollständig mit geschäumtem Polyurethan ausgefüllt ist.
  2. Deckenelement nach Anspruch 1, dadurch gekennzeichnet, daß der Raum zwischen den Scheiben (10, 12) Ausnehmungen (20) im ausgehärteten Polyurethan hat, in denen Querträger (24) und/oder Längsträger (22) aus Stahlbeton angeordnet sind.
  3. Deckenelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mindestens eine der Scheiben (10,12), vorzugsweise beide Scheiben, eine Bewehrung (15) aus Stahl enthält.
  4. Deckenelement nach Anspruch 3, dadurch gekennzeichnet, daß als Bewehrung kreuzweise angeordnete Rundstähle (15) vorgesehen sind.
  5. Deckenelement nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß als Bewehrung vorgefertigte Betonstahlmatten vorgesehen sind.
  6. Deckenelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Endabschnitte der Gitterträger zumindest die Längsstäbe (15a) mit angeschweißten Strebenknoten (15c) umfassen.
  7. Stahlbetondecke, dadurch gekennzeichnet, daß sie mehrere Deckenelemente (30, 32) nach einem der vorhergehenden Ansprüche 1 bis 5 enthält.
  8. Stahlbetondecke nach Anspruch 7, dadurch gekennzeichnet, daß sie einen Ringgurt (36) mit Koppelschloß enthält, welcher die Deckenelemente (30, 32) umfangsseitig untereinander verbindet.
  9. Stahlbetondecke nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß sie in Richtung der Längsachse integrierte Verbindungselemente (38) enthält, welche die einzelnen Deckenelemente (30, 32) in Richtung der Längsachse untereinander verbindet.
  10. Stahlbetondecke nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie als Kellerdecke oder Geschoßdecke verwendet wird.
  11. Verfahren zum Herstellen eines Deckenelements als Fertigbauteil,
    bei dem eine erste Betonscheibe (10) bereitgestellt wird, in die Endabschnitte von Gitterträgern (14) einbetoniert sind,
    auf diese erste Betonscheibe (10) mit den hervorstehenden Gitterträgern (14) Polyurethanschaum bis zu einer Höhe aufgetragen wird, daß Endabschnitte der Gitterträger (14) noch aus dem Polyurethanschaum hervorragen,
    anschließend der Polyurethanschaum ausgehärtet wird,
    und bei dem auf den ausgehärteten Polyurethanschaum eine zweite Betonscheibe (12) betoniert wird, welche die hervorstehenden Endabschnitte der Gitterträger (14) enthält.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Endabschnitte der Gitterträger (14) zumindest Längststäbe (15a) mit angeschweißten Strebenknoten (15c) umfassen.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß mindestens eine der Betonscheiben (10, 12) vorzugsweise beide Scheiben, eine Bewehrung (15) aus Stahl enthält.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberseite der zweiten Betonscheibe nach dem Auftragen des Betons eben abgezogen wird.
EP00102569A 1999-12-09 2000-02-07 Vorgefertigtes Deckenelement mit geschäumtem Polyurethan sowie Herstellverfahren Withdrawn EP1106745A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29921645U 1999-12-09
DE29921645U DE29921645U1 (de) 1999-12-09 1999-12-09 Vorgefertigtes Deckenelement mit geschäumtem Polyurethan

Publications (2)

Publication Number Publication Date
EP1106745A2 true EP1106745A2 (de) 2001-06-13
EP1106745A3 EP1106745A3 (de) 2001-08-22

Family

ID=8082717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00102569A Withdrawn EP1106745A3 (de) 1999-12-09 2000-02-07 Vorgefertigtes Deckenelement mit geschäumtem Polyurethan sowie Herstellverfahren

Country Status (2)

Country Link
EP (1) EP1106745A3 (de)
DE (1) DE29921645U1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422356A1 (de) * 2002-11-21 2004-05-26 Schwörer Haus KG Fertigbauteil mit Dämmaterial und in Beton eingebetteten Heizleitungen sowie zugehöriges Herstellungsverfahren
EP1529893A2 (de) 2003-09-10 2005-05-11 Schwörer Haus KG Deckenelement als Halbfabrikat und zugehöriges Herstellverfahren
DE10348767B3 (de) * 2003-10-21 2005-09-15 Wahls, Manfred, Dipl.-Ing. Verfahren zur Herstellung einer Kerndämmstoff-Verbunddecke sowie Kerndämmstoff-Verbunddecke
ITMI20100071A1 (it) * 2010-01-21 2011-07-22 Isoltech Srl Manufatto per solai prefabbricati.
EP2767373A1 (de) 2013-02-15 2014-08-20 Bayer MaterialScience AG Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements
CN111535490A (zh) * 2020-05-11 2020-08-14 中力建设集团有限公司 一种装配式楼板及其施工方法
US11053675B1 (en) * 2018-11-17 2021-07-06 Juan Jose Santandreu Construction panel and construction panel assembly with improved structural integrity
US11085186B2 (en) * 2017-07-04 2021-08-10 Shandong University Thermal-insulated exterior wall boards, dedicated molds and making methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10116976A1 (de) * 2001-04-05 2002-10-10 Hofmann Gmbh & Co Selbsttragendes Deckenelement und Verfahren zu dessen Herstellung
DE10300024A1 (de) * 2003-01-03 2004-07-22 Neu, Jörg Bauelement für den Wohnungs- und Gesellschaftsbau
FR2939817B1 (fr) * 2008-12-11 2016-12-30 Adrien Sarnari Bloc elementaire prefabrique pour la construction d'un mur a isolation exterieure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823387A1 (de) 1997-07-01 1999-01-28 Joachim Glatthaar Verfahren zur Herstellung einer Fertigteilwand für die Erstellung von Gebäuden

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2329816A1 (fr) * 1975-10-30 1977-05-27 Selam Element de plancher prefabrique isolant et coupe-feu
FR2355137A1 (fr) * 1976-06-15 1978-01-13 Otce Omnium Tech Etu Const Equ Element prefabrique de couverture ou de plancher
DE3610030C1 (de) * 1986-03-25 1987-02-05 Rapp Albert Bruno Bauelement fuer Hochbauwerke
AT396274B (de) * 1991-04-23 1993-07-26 Avi Alpenlaendische Vered Bewehrungskoerper fuer eine deckenplatte
JPH1025854A (ja) * 1996-07-12 1998-01-27 Jiyoisuto:Kk 軽量コンクリート板
EP0940516A1 (de) * 1998-03-06 1999-09-08 Structherm Ltd Bauplatte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823387A1 (de) 1997-07-01 1999-01-28 Joachim Glatthaar Verfahren zur Herstellung einer Fertigteilwand für die Erstellung von Gebäuden

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422356A1 (de) * 2002-11-21 2004-05-26 Schwörer Haus KG Fertigbauteil mit Dämmaterial und in Beton eingebetteten Heizleitungen sowie zugehöriges Herstellungsverfahren
EP1529893A2 (de) 2003-09-10 2005-05-11 Schwörer Haus KG Deckenelement als Halbfabrikat und zugehöriges Herstellverfahren
EP1529893A3 (de) * 2003-09-10 2006-06-07 Schwörer Haus KG Deckenelement als Halbfabrikat und zugehöriges Herstellverfahren
EP2749704A2 (de) 2003-09-10 2014-07-02 Schwörer Haus KG Deckenelement als Halbfabrikat und zugehöriges Herstellverfahren
EP2749704A3 (de) * 2003-09-10 2014-09-10 Schwörer Haus KG Deckenelement als Halbfabrikat und zugehöriges Herstellverfahren
DE10348767B3 (de) * 2003-10-21 2005-09-15 Wahls, Manfred, Dipl.-Ing. Verfahren zur Herstellung einer Kerndämmstoff-Verbunddecke sowie Kerndämmstoff-Verbunddecke
ITMI20100071A1 (it) * 2010-01-21 2011-07-22 Isoltech Srl Manufatto per solai prefabbricati.
EP2767373A1 (de) 2013-02-15 2014-08-20 Bayer MaterialScience AG Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements
US11085186B2 (en) * 2017-07-04 2021-08-10 Shandong University Thermal-insulated exterior wall boards, dedicated molds and making methods thereof
US11053675B1 (en) * 2018-11-17 2021-07-06 Juan Jose Santandreu Construction panel and construction panel assembly with improved structural integrity
CN111535490A (zh) * 2020-05-11 2020-08-14 中力建设集团有限公司 一种装配式楼板及其施工方法

Also Published As

Publication number Publication date
DE29921645U1 (de) 2000-02-17
EP1106745A3 (de) 2001-08-22

Similar Documents

Publication Publication Date Title
EP0123642B1 (de) Verbundträger
EP1712696B1 (de) Kerngedämmte Fertigteilwand mit Verbundnadeln
EP0511193A2 (de) Bewehrungskörper für eine Deckenplatte
DE2829864A1 (de) Verbundtraeger
EP1106745A2 (de) Vorgefertigtes Deckenelement mit geschäumtem Polyurethan sowie Herstellverfahren
DE212004000002U1 (de) Bausteinverbund
DE4023465A1 (de) Turmbauwerk
DE2727159A1 (de) Bewehrung von flachdecken gegen durchstanzen
EP1529893B1 (de) Verfahren zum Herstellen einer Platte für die Bautechnik
EP1482101A1 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Verbindungsmittel für ein Wandbauelement
DE4035044C1 (en) Load-bearing concrete building panel - has embedded reinforced concrete columns in two rows parallel to panel surface
DD297386A5 (de) Polystyrolbeton fuer betonfertigteile
DE2546769A1 (de) Rippendeckenelement
EP3663474B1 (de) Vorrichtung zur wärmeentkopplung zwischen einer betonierten gebäudewand und einer geschossdecke sowie herstellverfahren
EP0035634B1 (de) Feuerwiderstandsfähiger Verbundträger
DE3119623A1 (de) Tragendes, plattenfoermiges bauelement
DE10350082B4 (de) Vorgespannte Flachdecke mit Hohldeckenplatten
EP0419785A2 (de) Polystyrolbeton für Betonfertigteile
WO2004059216A1 (de) Vorgefertigtes bauelement, insbesondere decken- oder wandbauelement aus einem ausgehäurteten material sowie verfahren zur herstellung eines solchen bauelements
EP0645501B1 (de) Verfahren zur Herstellung von vorgefertigten Modulen für die Erstellung von Bauwerken und vorgefertiger Modul
DE1911445A1 (de) Vorgefertigtes Bauelement fuer Betondecken und Betonwaende
DE102007063668B4 (de) Montagebauteil für selbsttragende Dachtafeln oder Wandplatten aus Porenbeton
DE19714435C2 (de) Verfahren zum Errichten von bewehrtem Mauerwerk
DE2904129A1 (de) Mauerstein, ausgefuehrt als geschlitzter hochwaermedaemmender blockstein
AT346048B (de) Mantelbeton - fertigteil - element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010725

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20040611

18W Application withdrawn

Effective date: 20040716