EP1092238A1 - Universal-halbleiterscheibe für hochvolt-halbleiterbauelemente - Google Patents

Universal-halbleiterscheibe für hochvolt-halbleiterbauelemente

Info

Publication number
EP1092238A1
EP1092238A1 EP99915461A EP99915461A EP1092238A1 EP 1092238 A1 EP1092238 A1 EP 1092238A1 EP 99915461 A EP99915461 A EP 99915461A EP 99915461 A EP99915461 A EP 99915461A EP 1092238 A1 EP1092238 A1 EP 1092238A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor
layer
universal
semiconductor wafer
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99915461A
Other languages
English (en)
French (fr)
Inventor
Jenö Tihanyi
Reinhard Ploss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1092238A1 publication Critical patent/EP1092238A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/6634Vertical insulated gate bipolar transistors with a recess formed by etching in the source/emitter contact region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/261Bombardment with radiation to produce a nuclear reaction transmuting chemical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a universal semiconductor wafer for high-voltage semiconductor components, in which at least one layer of the one conductivity type is provided on a semiconductor substrate of the one conductivity type.
  • a universal semiconductor wafer should be usable as the basic material for all of these components. So far, however, it has been necessary to optimize the respective base disks for the individual different high-voltage semiconductor components in accordance with the required voltage classes of the individual semiconductor components, for example by appropriate doping of the epitaxial layer and the wafer thickness.
  • IGBTs Current-switching semiconductor components for high voltages, such as IGBTs, are more sensitive to interference when the inductive loads are to be switched, the higher the blocking or blocking voltage. It is known, for example, that high-voltage IGBTs are particularly at risk of operational reliability due to high radiation. To eliminate this susceptibility to interference, it could be considered to dope the blocking region in the semiconductor wafer low, so that high voltages can be blocked. However, there are limits to such a procedure: if current flows when the voltage is high, the charge carriers are the ones that match the blocking area or the blocking distance at a speed of the order of about 10 7 cm / s. 2 Sieren, even at low current densities in extremely high con ⁇ concentration present.
  • This object is achieved according to the invention in a universal semiconductor wafer of the type mentioned at the outset in that a large number of floating semiconductor regions of the other conductivity type are embedded in the interfaces between the semiconductor substrate and layers and are dimensioned such that the dimension of a floating region is small compared to the layer thickness is the layer and essentially corresponds to or is less than the distance between the conductive regions in an interface.
  • the individual layers can be epitaxial layers or applied by direct wafer bonding.
  • the floating semiconductor regions are preferably introduced into the surface of the arrangement in question by diffusion or ion implantation or implantation and subsequent diffusion before the next layer is applied to it - be it by epitaxy or by direct wafer bonding.
  • the individual layers can preferably also be applied undoped and only subsequently doped by neutron transmutation.
  • the semiconductor regions which may also be interconnected like a grid, are preferably arranged in a plurality of planes which are essentially parallel to one another. These levels are easily created when the individual epitaxial layers are deposited or when these layers are applied by direct wafer bonding.
  • a semiconductor component using such a universal semiconductor wafer for example an IGBT, in which a positive voltage is applied between the gate and source, is switched on, a space charge zone first arises in the uppermost semiconductor layer adjacent to the gate or source. If this space charge zone reaches the floating semiconductor regions that delimit this uppermost semiconductor layer to the next semiconductor layer, then the voltage at these regions remains at the value V pt h then reached, which corresponds to the situation of a “punch-through”.
  • One line type is preferably the n line type, so that the other line type is given by the p line type and the floating semiconductor regions are thus p-type. 4 are. Of course, doping with reversed line types is also possible.
  • the highly doped semiconductor layer of one conductivity type that is to say preferably an n + -conducting buffer layer
  • another layer for example by a so-called “non-punch-through” structure.
  • the semiconductor regions are doped so that the space charge zones completely fill the individual semiconductor layers when a voltage is applied before a breakdown occurs.
  • the doping of the semiconductor regions is so high that they are not completely cleared out. This preferably applies to the central region of the semiconductor component, but not to the edge regions: there the doping of the semiconductor regions can be so low that they are removed when the voltage is applied.
  • the universal semiconductor wafer according to the invention is particularly advantageously suitable for the production of diodes, MOSFETs with field plate edges or IGBTs or GTOs with planar edge structures or for other semiconductor components, such as, for example, "non-punch-through-IGBTs" with a thinly ground back .
  • Fig. 1 is a sectional view through an inventive
  • FIG. 3 shows a sectional view through an IGBT with the universal semiconductor wafer according to the invention.
  • Fig. 4 is a sectional view through a modified
  • FIGS. 1 to 4 show sectional images, hatching is partially omitted there to simplify the illustration. Components that correspond to one another are also provided with the same reference symbols in the figures.
  • n-conducting substrate 4 with a doping concentration n 0 an n-conducting epitaxial layer 5 with a doping concentration ni, a second n-conducting layer epitaxial layer 6 with a doping concentration n 2 and a third n-conducting epitaxial layer 7 with a doping concentration n 3 are provided.
  • n-conducting epitaxial layer 5 with a doping concentration ni a second n-conducting layer epitaxial layer 6 with a doping concentration n 2
  • a third n-conducting epitaxial layer 7 with a doping concentration n 3 are provided.
  • the epitaxial layers 5, 6 and 7 corresponding layers can also be provided by direct wafer bonding.
  • the doping concentrations in the lithium substrate 4 and the epitaxial layers 5, 6 and 7 can also be identical to one another.
  • the epitaxial layers 5, 6 and 7 can be deposited undoped and subsequently doped by neutron transmutation.
  • These areas 8 are introduced by diffusion or ion implantation before the subsequent layer 5 or 6 or 7 is applied.
  • regions 8 of the lowest level in FIG. 1 are introduced into the surface of substrate 4 by diffusion or ion implantation before layer 5 is deposited epitaxially.
  • the regions 8 of the “middle” plane are introduced by diffusion or ion implantation.
  • the regions 8 of the top level are introduced before the layer 7 is subsequently deposited epitaxially.
  • Lifetime killers such as platinum and / or gold, can be implanted or otherwise introduced between the individual epitaxial layers in their interfaces.
  • the individual regions 8 "float", even if, as has already been mentioned, they can be connected at least partially or entirely in one plane.
  • the distance d between the individual areas 8 of a plane corresponds approximately to the diameter b of these areas or is somewhat larger than this.
  • the distance d between the individual areas 8 of a level is smaller than the distance Di, D 2 between the individual levels.
  • the universal semiconductor wafer according to the invention is advantageously suitable for diodes, MOSFETs with field plate edges, IGBTs, GTOs with planar edge structures or other semiconductor components, such as, for example, “non-punch-through IGBTs” with a thinly ground rear side 3. 7
  • FIG. 2 An example of a diode with aluminum electrodes 9, 10, a p-type zone 11, a field plate 12 and an insulating layer 13 made of silicon dioxide is shown in FIG. 2.
  • the doping concentration in the regions 8 in the region of the edge 14 of this diode is somewhat weaker than the doping concentration in the regions 8 in the central region of the diode, that is to say essentially in FIG. 2 below the zone 11.
  • the regions 8 in the central region are doped so highly that they are not completely cleared of charge carriers when a voltage is applied between the electrodes 9, 10. This does not apply to the area near the edge 14, where the regions 8 are only so heavily doped that they are actually cleared out when this voltage is applied.
  • a voltage + U is present at the electrode 9, for example, while the electrode 10 can be grounded.
  • the field plate 12 like the doping of the regions 8 which becomes weaker in the region of the edge 14, serves to prevent a breakdown in the region of the edge 14 of the diode.
  • Figs. 3 and 4 respectively show a sectional view of an IGBT with the inventive Universal wafer 1.
  • This universal semiconductor wafer 1 has, in addition, an n + - type layer 16 and a p + -type layer 17, on which a drain contact 15 for a drain connection D with a voltage + U D is plotted.
  • a source metalization 18, which is grounded gate electrodes 19 made of polycrystalline silicon, which are connected to one another and to which a gate voltage U G is applied, a field plate 20 made of polycrystalline silicon, which is connected to the source metalization 18, and a channel or channel stopper 21 made of polycrystalline silicon, which is electrically connected to the layer 7.
  • the gate electrodes 19, the field plate 20 and the channel stopper 21 are in an insulating layer 22 made of, for example, silicon dioxide and / or silicon nitride 8 embedded, which also forms the gate oxide below the gate electrodes 19.
  • an insulating layer 22 made of, for example, silicon dioxide and / or silicon nitride 8 embedded, which also forms the gate oxide below the gate electrodes 19.
  • n + -conducting areas 23 and p -conducting areas 24 which together form source zones which are in contact with the source metallization 18.
  • a space charge zone When the IGBT is switched on, i.e. when a voltage + U Gs is applied between gate electrodes 19 and source metallization 18, a space charge zone first forms in the top layer 7. If this space charge zone is the top level of the p-type semiconductor regions 8 between layers 6 and 7 in one When the voltage value V pth is reached, the voltage of these semiconductor regions 8 remains at the voltage value V pth , the situation of a "punch-through" occurring. With a further increase in the drain voltage U D , the space charge zone forms in the layer 6 and finally reaches the semiconductor regions between the layers 5 and 6. This continues until the space charge zone finally arrives at the n + -conducting layer 16. This achieves four times the dielectric strength of a structure that could be achieved with n-doping alone without the p-doped regions 8. The dielectric strength can be further increased by additional levels with semiconductor regions 8.
  • the p + -doped semiconductor layer 17 and the source zones 23, 24, other layers can also be provided in order to form a GTO, a MOSFET or other semiconductor components.
  • the weakening doping of the semiconductor regions 8 in the region of the edge 14 can also be achieved by additionally assigning n + -doped semiconductor regions 25 to the p + -doped semiconductor regions 8, as is shown in the exemplary embodiment in FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Thyristors (AREA)

Abstract

Die Erfindung betrifft eine Universal-Halbleiterscheibe für Hochvolt-Halbleiterbauelemente, bei der auf einem Halbleitersubstrat (4) des einen Leitungstyps mindestens eine Schicht (5, 6, 7) des einen Leitungstyps vorgesehen ist. In die Grenzflächen zwischen dem Halbleitersubstrat (4) und der mindestens einen Schicht ist eine Vielzahl von floatenden Halbleitergebieten (8) des anderen Leitungstyps eingebettet, wobei diese Halbleitergebiete so bemessen sind, dass die Abmessung eines Halbleitergebietes (8) klein gegenüber der Schichtdicke der Halbleiterschicht (5, 6, 7) ist und im wesentlichen dem Abstand zwischen den floatenden Halbleitergebieten (8) in einer Grenzfläche entspricht oder kleiner als dieser ist.

Description

1
Beschreibung
Universal-Halbleiterscheibe für Hochvolt- Halbleiterbauelemente
Die vorliegende Erfindung betrifft eine Universal-Halbleiterscheibe für Hochvolt-Halbleiterbauelemente, bei der auf einem Halbleitersubstrat des einen Leitungstyps mindestens eine Schicht des einen Leitungstyps vorgesehen ist.
Um Hochvolt-Halbleiterbauelemente, wie beispielsweise Dioden, IGBT's (Bipolartransistoren mit isoliertem Gate), MOSFET's oder GTO's (Gate-Abschaltthyristoren) , mit möglichst wenig Aufwand herstellen zu können, sollte eine Universal-Halbleiterscheibe als Grundmaterial für alle diese Bauelemente einsetzbar sein. Bisher ist es aber erforderlich, für die einzelnen verschiedenen Hochvolt-Halbleiterbauelemente die jeweiligen Grundscheiben entsprechend den geforderten Spannungsklassen der einzelnen Halbleiterbauelemente beispielsweise durch entsprechende Dotierung der epitaktischen Schicht und der Scheibendicke zu optimieren.
Stromschaltende Halbleiterbauelemente für hohe Spannungen, wie beispielsweise IGBT's, sind, wenn speziell induktive Lasten zu schalten sind, für Störungen um so empfindlicher, je höher die Sperr- bzw. Blockierspannung ist. So weiß man, daß beispielsweise Hochvolt-IGBT' s durch Höhenstrahlung in ihrer Betriebszuverlässigkeit besonders gefährdet sind. Zur Beseitigung dieser Störanfälligkeit könnte daran gedacht werden, den Sperrbereich in der Halbleiterscheibe niedrig zu dotieren, damit hohe Spannungen gesperrt werden können. Einem derartigen Vorgehen sind aber Grenzen gesetzt: fließt nämlich bei hoher anliegender Spannung Strom, sind die Ladungsträger, die mit einer Grenzgeschwindigkeit in der Größenordnung von etwa 107 cm/s den Sperrbereich bzw. die Blockierstrecke pas- 2 sieren, bereits bei kleinen Stromdichten in extrem hoher Kon¬ zentration vorhanden. Diese hohe Konzentration kommt dann der Dotierung nahe, so daß eine Verzerrung des elektrischen Feldes eintritt, was zu einer Zerstörung des Halbleiterbauelementes führen kann, wenn der geschaltete Strom höhere Werte annimmt. Bisher halten nur Thyristoren hohe Ströme bei hoher Sperrspannung aus. Diese müssen aber bei einer kleinen anliegenden Spannung bzw. einer Spannungsumkehrung abgeschaltet werden und können daher nicht als "echte" Schalter betrachtet werden.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Universal-Halbleiterscheibe für Hochvolt-Halbleiterbauelemente zu schaffen, die vielseitig einsetzbar ist und sich speziell für Hochvolt-Stromschalter eignet, die gegenüber Höhenstrahlung weitgehend unempfindlich sind.
Diese Aufgabe wird bei einer Universal-Halbleiterscheibe der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß in die Grenzflächen zwischen Halbleitersubstrat und Schichten eine Vielzahl von floatenden Halbleitergebieten des anderen Leitungstyps eingebettet sind, die so bemessen sind, daß die Abmessung eines floatenden Gebiets klein gegenüber der Schichtdicke der Schicht ist und im wesentlichen dem Abstand zwischen den leitenden Gebieten in einer Grenzfläche entspricht oder kleiner als dieser ist.
Die einzelnen Schichten können dabei epitaktische Schichten sein oder durch Direkt-Waferbonding aufgetragen sein. Die floatenden Halbleitergebiete sind in bevorzugter Weise durch Diffusion oder Ionenimplantation oder Implantation und nachfolgende Diffusion in die Oberfläche der gerade vorliegenden Anordnung eingebracht, bevor auf diese die nächste Schicht - sei es durch Epitaxie oder durch Direkt-Waferbondung - aufgetragen wird. Weiterhin können vorzugsweise die einzelnen Schichten auch undotiert aufgetragen und erst nachträglich durch Neutronentransmutation dotiert werden.
Die Halbleitergebiete, die gegebenenfalls auch gitterartig zusammenhängen können, sind vorzugsweise in mehreren, im wesentlichen zueinander parallelen Ebenen angeordnet. Diese Ebenen entstehen ohne weiteres bei der Abscheidung der einzelnen epitaktischen Schichten bzw. beim Auftragen dieser Schichten durch Direkt-Waferbonding. Beim Einschalten eines eine solche Universal-Halbleiterscheibe verwendenden Halbleiterbauelementes, beispielsweise eines IGBT's, bei dem eine positive Spannung zwischen Gate und Source gelegt wird, entsteht zunächst eine Raumladungszone in der obersten, an Gate bzw. Source angrenzenden Halbleiterschicht. Erreicht diese Raumladungszone die diese oberste Halbleiterschicht zur nächsten Halbleiterschicht begrenzenden, floatenden Halbleitergebiete, so bleibt die Spannung an diesen Gebieten auf dem dann erreichten Wert Vpth stehen, was der Situation eines "punch- through" (Durchgriff) entspricht. Bei weiterer Erhöhung der an Drain liegenden Spannung bildet sich die Raumladungszone in der zweitobersten Halbleiterschicht aus und erreicht schließlich die zweite Ebene der Halbleitergebiete. Dieser Vorgang wiederholt sich, bis schließlich die Raumladungszone auf der Seite des Drainkontaktes eine hochdotierte Zone des einen Leitungstyps erreicht. Als Ergebnis kann so eine Struktur erhalten werden, die die (N+l) -fache Spannungsfestigkeit der gleichen Struktur ohne Halbleitergebiete hat, wenn die Anzahl der Ebenen der Halbleitergebiete durch N gegeben ist.
Der eine Leitungstyp ist in bevorzugter Weise der n-Leitungs- typ, so daß der andere Leitungstyp durch den p-Leitungstyp gegeben ist und die floatenden Halbleitergebiete somit p-do- 4 tiert sind. Selbstverständlich ist aber auch eine Dotierung mit umgekehrten Leitungstypen möglich.
Bei dem zuletzt genannten Beispiel eines IGBT's kann die hochdotierte Halbleiterschicht des einen Leitungstyps, also in bevorzugter Weise eine n+-leitende Pufferschicht, auch durch eine andere Schicht, beispielsweise durch eine sogenannte "Non-punch-through"-Struktur ersetzt werden.
Die Halbleitergebiete sind so dotiert, daß die RaumladungsZonen die einzelnen Halbleiterschichten bei angelegter Spannung vollständig ausfüllen, bevor ein Durchbruch eintritt. Die Dotierung der Halbleitergebiete ist dabei so hoch, daß sie nicht vollständig ausgeräumt werden. Dies gilt bevorzugt für den Mittenbereich des Halbleiterbauelementes, jedoch nicht für die Randbereiche: dort kann die Dotierung der Halbleitergebiete so niedrig sein, daß sie bei anliegender Spannung ausgeräumt werden.
Die erfindungsgemäße Universal-Halbleiterscheibe eignet sich in besonders vorteilhafter Weise zur Herstellung von Dioden, MOSFET's mit Feldplattenrand oder IGBT's bzw. GTO's mit planaren Randstrukturen oder auch für andere Halbleiterbauelemente, wie beispielsweise "Non-punch-through-IGBT' s" mit dünn geschliffener Rückseite.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 ein Schnittbild durch eine erfindungsgemäße
Universal-Halbleiterscheibe,
Fig. 2 ein Schnittbild durch eine Diode der erfindungsgemäßen Universal-Halbleiterscheibe, 5
Fig. 3 ein Schnittbild durch einen IGBT mit der er¬ findungsgemäßen Universal-Halbleiterscheibe, und
Fig. 4 ein Schnittbild durch einen abgewandelten
IGBT mit der erfindungsgemäßen Universal- Halbleiterscheibe .
Obwohl die Fig. 1 bis 4 Schnittbilder zeigen, sind zur Vereinfachung der Darstellung dort Schraffuren teilweise weggelassen. Auch werden in den Figuren einander entsprechende Bauteile jeweils mit den gleichen Bezugszeichen versehen.
Fig. 1 zeigt eine Universal-Halbleiterscheibe 1 mit einer Vorderseite 2 und einer Rückseite 3, bei der auf einem n- leitenden Substrat 4 mit einer Dotierungskonzentration n0 nacheinander eine n-leitende epitaktische Schicht 5 mit einer Dotierungskonzentration ni, eine zweite n-leitende epitaktische Schicht 6 mit einer Dotierungskonzentration n2 und eine dritte n-leitende epitaktische Schicht 7 mit einer Dotierungskonzentration n3 vorgesehen sind. Anstelle der epitaktischen Schichten 5, 6 und 7 können auch entsprechende Schichten durch Direkt-Waferbonden vorgesehen werden. Auch können die Dotierungskonzentrationen im Lithium-Substrat 4 und den epitaktischen Schichten 5, 6 und 7 jeweils gleich zueinander sein.
Die epitaktischen Schichten 5, 6 und 7 können undotiert abgeschieden und nachträglich durch Neutronen-Transmutation dotiert sein.
Erfindungsgemäß befinden sich zwischen dem Substrat 4 und der Schicht 5, sowie zwischen der Schicht 5 und der Schicht 6 und zwischen der Schicht 6 und der Schicht 7 jeweils p-leitende Gebiete 8, die jeweils "Inseln" bilden oder auch gitterähn- 6 lieh zusammenhängen können. Diese Gebiete 8 werden durch Diffusion oder Ionenimplantation vor dem Auftragen der jeweils nachfolgenden Schicht 5 bzw. 6 bzw. 7 eingebracht. So werden beispielsweise die Gebiete 8 der in Fig. 1 untersten Ebene durch Diffusion oder Ionenimplantation in die Oberfläche des Substrates 4 eingebracht, bevor die Schicht 5 epitaktisch abgeschieden wird. Nach dem Abscheiden der Schicht 5 werden die Gebiete 8 der "mittleren" Ebene durch Diffusion oder Ionenimplantation eingebracht. Schließlich werden nach dem Abscheiden der epitaktischen Schicht 6 die Gebiete 8 der obersten Ebene eingebracht, bevor anschließend die Schicht 7 epitaktisch abgeschieden wird.
Zwischen die einzelnen epitaktischen Schichten können in deren Grenzflächen Lebensdauer-Killer, wie beispielsweise Platin und/oder Gold, implantiert oder auf sonstige Weise eingebracht werden.
Die einzelnen Gebiete 8 "floaten", auch wenn sie, was bereits erwähnt wurde, wenigstens teilweise oder ganz in einer Ebene zusammenhängen können.
Der Abstand d zwischen den einzelnen Gebieten 8 einer Ebene entspricht etwa dem Durchmesser b dieser Gebiete oder ist etwas größer als dieser. Außerdem ist der Abstand d zwischen den einzelnen Gebieten 8 einer Ebene kleiner als der Abstand Di, D2 zwischen den einzelnen Ebenen.
Die erfindungsgemäße Universal-Halbleiterscheibe eignet sich in vorteilhafter Weise für Dioden, MOSFET's mit Feldplattenrand, IGBT', GTO's mit planaren Randstrukturen oder andere Halbleiterbauelemente, wie beispielsweise "Non-punch-through- IGBT's" mit dünn geschliffener Rückseite 3. 7
Ein Beispiel einer Diode mit Aluminium-Elektroden 9, 10, einer p-leitenden Zone 11, einer Feldplatte 12 und einer Isolierschicht 13 aus Siliziumdioxid ist in Fig. 2 gezeigt. Die Dotierungskonzentration in den Gebieten 8 im Bereich des Randes 14 dieser Diode ist etwas schwächer als die Dotierungskonzentration der Gebiete 8 im Mittenbereich der Diode, also in Fig. 2 im wesentlichen unterhalb der Zone 11. So sind im Mittenbereich die Gebiete 8 so hoch dotiert, daß sie bei Anlegen einer Spannung zwischen die Elektroden 9, 10 nicht vollständig von Ladungsträgern ausgeräumt werden. Dies gilt nicht für den Bereich in der Nähe des Randes 14, wo die Gebiete 8 nur so stark dotiert sind, daß sie bei Anlegen dieser Spannung tatsächlich ausgeräumt sind.
An der Elektrode 9 liegt beispielsweise eine Spannung +U, während die Elektrode 10 geerdet sein kann. Die Feldplatte 12 dient wie die im Bereich des Randes 14 schwächer werdende Dotierung der Gebiete 8 dazu, einen Durchbruch im Bereich des Randes 14 der Diode zu verhindern.
Die Fig. 3 und 4 zeigen jeweils einen Schnitt durch einen IGBT mit der erfindungsgemäßen Universal-Halbleiterscheibe 1. Diese Universal-Halbleiterscheibe 1 weist zusätzlich eine n+- leitende Schicht 16 und eine p+-leitende Schicht 17 auf, auf der ein Drainkontakt 15 für «inen Drainanschluß D mit einer Spannung +UD aufgetragen ist. Außerdem sind eine Sourcemetal- lisierung 18, die geerdet ist, Gateelektroden 19 aus polykristallinem Silizium, die untereinander verbunden sind und an denen eine Gatespannung UG liegt, eine Feldplatte 20 aus polykristallinem Silizium, die mit der Sourcemetallisierung 18 verbunden ist, und ein Kanal- bzw. Channel-Stopper 21 aus polykristallinem Silizium, der elektrisch mit der Schicht 7 verbunden ist, gezeigt. Die Gateelektroden 19, die Feldplatte 20 und der Channel-Stopper 21 sind in einer Isolierschicht 22 aus beispielsweise Siliziumdioxid und/oder Siliziumnitrid 8 eingebettet, die unterhalb der Gateelektroden 19 auch das Gateoxid bildet. Im Oberflächenbereich der Schicht 7 befinden sich noch n+-leitende Bereiche 23 sowie p-leitende Bereiche 24, die zusammen jeweils Sourcezonen bilden, die mit der Sourcemetallisierung 18 kontaktiert sind.
Bei Einschalten des IGBT's, also bei Anlegen einer Spannung +UGs zwischen Gateelektroden 19 und Sourcemetallisierung 18 bildet sich zuerst eine Raumladungszone in der obersten Schicht 7. Wenn diese Raumladungszone die oberste Ebene der p-leitenden Halbleitergebiete 8 zwischen den Schichten 6 und 7 bei einem Spannungswert Vpth erreicht, bleibt die Spannung dieser Halbleitergebiete 8 auf dem Spannungswert Vpth stehen, wobei die Situation eines "punch-through" (Durchgriff) auftritt. Bei weiterer Erhöhung der Drainspannung UD bildet sich die Raumladungszone in der Schicht 6 aus und erreicht schließlich die Halbleitergebiete zwischen den Schichten 5 und 6. Dies geht so weiter, bis die Raumladungszone schließlich an der n+-leitenden Schicht 16 ankommt. Damit wird die vierfache Spannungsfestigkeit einer Struktur erreicht, die mit allein einer n-Dotierung ohne die p-dotierten Gebiete 8 zu erreichen wäre. Durch zusätzliche Ebenen mit Halbleitergebieten 8 kann die Spannungsfestigkeit weiter gesteigert werden.
Anstelle der n+-dotierten Halbleiterschicht 16, der p+-do- tierten Halbleiterschicht 17 und der Sourcezonen 23, 24 können auch andere Schichten vorgesehen werden, um einen GTO, einen MOSFET oder andere Halbleiterbauelemente zu bilden.
Die schwächer werdende Dotierung der Halbleitergebiete 8 im Bereich des Randes 14 kann auch dadurch erreicht werden, daß zusätzlich n+-hochdotierte Halbleitergebiete 25 den p+-do- tierten Halbleitergebieten 8 zugeordnet werden, wie dies im Ausführungsbeispiel von Fig. 4 gezeigt ist.

Claims

9Patentansprüche
1. Universal-Halbleiterscheibe für Hochvolt-Halbleiterbauelemente, bei der auf einem Halbleitersubstrat (4) des einen Leitungstyps mindestens eine epitaktische Schicht (5, 6, 7) des einen Leitungstyps vorgesehen ist, d a d u r c h g e k e n n z e i c h n e t , daß in den Grenzflächen zwischen dem Halbleitersubstrat (4) und der mindestens einen Schicht (5, 6, 7) eine Vielzahl von floatenden Halbleitergebieten (8) des anderen Leitungstyps eingebettet sind, die so bemessen sind, daß die Abmessung eines floatenden Halbleitergebietes (8) klein gegenüber der Schichtdicke der mindestens einen Schicht (5, 6, 7) ist und im wesentlichen dem Abstand zwischen den floatenden Gebieten (8) in einer Grenzfläche entspricht oder kleiner als dieser ist.
2. Universal-Halbleiterscheibe nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die mindestens eine Schicht (5, 6, 7) eine epitaktische Schicht ist.
3. Universal-Halbleiterscheibe nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die mindestens eine Schicht (5, 6, 7) durch Direkt- Waferbonding aufgetragen ist.
4. Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die floatenden Halbleitergebiete (8) durch Diffusion oder Ionenimplantation oder Implantation und nachfolgende Ausdiffusion vor Abscheidung der folgenden Schicht (5, 6, 7) eingebracht sind. 10
5. Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß die mindestens eine Schicht (5, 6, 7) undotiert aufgetragen und nachträglich durch Neutronentransmutation dotiert ist.
6. Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Halbleitergebiete (8) ein Gitter bilden.
7. Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die Halbleitergebiete (8) in mehreren, im wesentlichen zueinander parallelen Ebenen zwischen den einzelnen Schichten angeordnet sind.
8. Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß die Halbleitergebiete (8) im Bereich des Randes (14) der Universal-Halbleiterscheibe schwächer als in deren Mittenbereich dotiert sind.
9. Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß zwischen die Halbleitergebiete (8) in deren jeweiligen Ebenen noch vereinzelt Halbleitergebiete (25) des einen Leitungstyps eingebracht sind, die höher dotiert sind als die jeweiligen Schichten (5, 6, 7) . 11
10. Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß die Halbleitergebiete im Mittenbereich bzw. im Randbereich so hoch dotiert sind, daß bei Anlegung einer Spannung diese nicht ausgeräumt bzw. ausgeräumt sind.
11. Verfahren zum Herstellen der Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß vor dem Anbringen einer Halbleiterschicht (5, 6, 7) auf das Halbleitersubstrat (4) bzw. auf eine zuvor aufgebrachte Halbleiterschicht (5, 6) in die Oberfläche des Halbleitersubstrates (4) bzw. der bereits aufgebrachten Halbleiterschicht (5, 6) durch Diffusion oder Ionenimplantation die Halbleitergebiete (8) des anderen Leitungstyps eingebracht werden.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , daß die Halbleitergebiete (8) derart eingebracht werden, daß diese im Bereich des Randes (14) der Halbleiterscheibe (1) schwächer als in deren Mittenbereich dotiert sind.
13. Verfahren nach Anspruch 11 oder 12, d a d u r c h g e k e n n z e i c h n e t , daß die Grenzflächen zwischen den Schichten (5, 6, 7) mit Lebensdauer-Killern versehen werden.
14. Verfahren nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , daß die Lebensdauer-Killer in die Grenzflächen eingebracht werden.
15. Verfahren nach Anspruch 14, 12 d a d u r c h g e k e n n z e i c h n e t , daß die Lebensdauer-Killer implantiert werden.
16. Verfahren nach einem der Ansprüche 13 bis 15, d a d u r c h g e k e n n z e i c h n e t , daß als Lebensdauer-Killer Platin und/oder Gold verwendet werden.
17. Verwendung der Universal-Halbleiterscheibe nach einem der Ansprüche 1 bis 10 in einer Diode, einem MOSFET, einem IGBT, einem GTO oder einem anderen Schalter.
EP99915461A 1998-04-14 1999-02-08 Universal-halbleiterscheibe für hochvolt-halbleiterbauelemente Withdrawn EP1092238A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19816448A DE19816448C1 (de) 1998-04-14 1998-04-14 Universal-Halbleiterscheibe für Hochspannungs-Halbleiterbauelemente, ihr Herstellungsverfahren und ihre Verwendung
DE19816448 1998-04-14
PCT/DE1999/000327 WO1999053549A1 (de) 1998-04-14 1999-02-08 Universal-halbleiterscheibe für hochvolt-halbleiterbauelemente

Publications (1)

Publication Number Publication Date
EP1092238A1 true EP1092238A1 (de) 2001-04-18

Family

ID=7864450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99915461A Withdrawn EP1092238A1 (de) 1998-04-14 1999-02-08 Universal-halbleiterscheibe für hochvolt-halbleiterbauelemente

Country Status (5)

Country Link
US (1) US6646304B1 (de)
EP (1) EP1092238A1 (de)
JP (1) JP2002511657A (de)
DE (1) DE19816448C1 (de)
WO (1) WO1999053549A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830332C2 (de) * 1998-07-07 2003-04-17 Infineon Technologies Ag Vertikales Halbleiterbauelement mit reduziertem elektrischem Oberflächenfeld
US6642558B1 (en) * 2000-03-20 2003-11-04 Koninklijke Philips Electronics N.V. Method and apparatus of terminating a high voltage solid state device
DE10061528C1 (de) * 2000-12-11 2002-07-25 Infineon Technologies Ag Mittels Feldeffekt steuerbares Halbleiterbauelement
DE10108046B4 (de) * 2001-02-20 2006-10-19 Infineon Technologies Ag Halbleiterbauelement
DE10117802A1 (de) * 2001-04-10 2002-10-24 Bosch Gmbh Robert Halbleiterleistungsbauelement und entsprechendes Herstellungsverfahren
DE10117801B4 (de) * 2001-04-10 2005-12-22 Robert Bosch Gmbh Halbleiterleistungsbauelement und entsprechendes Herstellungsverfahren
US7161208B2 (en) * 2002-05-14 2007-01-09 International Rectifier Corporation Trench mosfet with field relief feature
GB0417749D0 (en) * 2004-08-10 2004-09-08 Eco Semiconductors Ltd Improved bipolar MOSFET devices and methods for their use
DE102005046707B3 (de) * 2005-09-29 2007-05-03 Siced Electronics Development Gmbh & Co. Kg SiC-PN-Leistungsdiode
JP4453671B2 (ja) 2006-03-08 2010-04-21 トヨタ自動車株式会社 絶縁ゲート型半導体装置およびその製造方法
US7955929B2 (en) 2007-01-10 2011-06-07 Freescale Semiconductor, Inc. Method of forming a semiconductor device having an active area and a termination area
JP6139356B2 (ja) * 2013-09-24 2017-05-31 トヨタ自動車株式会社 半導体装置
EP2889914A1 (de) * 2013-12-30 2015-07-01 ABB Technology AG Bipolare Halbleitervorrichtung
US10468510B2 (en) 2015-07-16 2019-11-05 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of the same
CN112259599B (zh) * 2020-10-21 2021-10-12 清华大学 一种硅片键合式igbt器件及其制作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2439430C2 (de) * 1974-08-16 1983-02-17 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen von homogen dotiertem Halbleitermaterial mit p-Leitfähigkeit
DE2617320A1 (de) * 1976-04-21 1977-11-03 Siemens Ag Verfahren zum herstellen von homogen phosphordotierten siliciumkristallen durch neutronenbestrahlung
US4431848A (en) 1982-04-26 1984-02-14 Koppers Company, Inc. Preparation of resorcinol and substituted resorcinols by liquid-phase dehydrogenation of 1,3-cyclic diones derived by vapor-phase cyclization of delta-keto carboxylic acid esters
FR2526587B1 (fr) * 1982-05-10 1987-02-27 Gen Electric Dispositif a transistor a effet de champ a metal oxyde-silicium de puissance, bidirectionnel
US4656493A (en) 1982-05-10 1987-04-07 General Electric Company Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
IT1214805B (it) * 1984-08-21 1990-01-18 Ates Componenti Elettron Spositivi a semiconduttore con giunprocesso per la fabbricazione di dizioni planari a concentrazione di carica variabile e ad altissima tensione di breakdown
GB2237930A (en) * 1989-11-01 1991-05-15 Philips Electronic Associated A semiconductor device and method of manufacturing a semiconductor device
JP2701502B2 (ja) * 1990-01-25 1998-01-21 日産自動車株式会社 半導体装置
US5111254A (en) * 1990-08-17 1992-05-05 Gte Laboratories Incorporated Floating gate array transistors
DE4309764C2 (de) * 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
JP2801127B2 (ja) * 1993-07-28 1998-09-21 日本碍子株式会社 半導体装置およびその製造方法
US6037632A (en) * 1995-11-06 2000-03-14 Kabushiki Kaisha Toshiba Semiconductor device
KR100206555B1 (ko) * 1995-12-30 1999-07-01 윤종용 전력용 트랜지스터
DE59711481D1 (de) 1996-02-05 2004-05-06 Infineon Technologies Ag Durch Feldeffekt steuerbares Halbleiterbauelement
DE19604044C2 (de) * 1996-02-05 2002-01-17 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9953549A1 *

Also Published As

Publication number Publication date
DE19816448C1 (de) 1999-09-30
US6646304B1 (en) 2003-11-11
WO1999053549A1 (de) 1999-10-21
JP2002511657A (ja) 2002-04-16

Similar Documents

Publication Publication Date Title
EP0057256B1 (de) Vertikal-MIS-Feldeffekttransistor mit kleinem Durchlasswiderstand
DE19811297B4 (de) MOS-Halbleitervorrichtung mit hoher Durchbruchspannung
DE102013113939B4 (de) Halbleiterbauelemente mit stufenförmigem Randabschluss und Verfahren zum Fertigen eines Halbleiterbauelements
WO2000014807A1 (de) Hochspannungs-halbleiterbauelement
EP0996981A1 (de) Hochvolt-randabschluss für planarstrukturen
EP1051756A1 (de) Mos-feldeffekttransistor mit hilfselektrode
DE19816448C1 (de) Universal-Halbleiterscheibe für Hochspannungs-Halbleiterbauelemente, ihr Herstellungsverfahren und ihre Verwendung
DE19830332A1 (de) Vertikales Halbleiterbauelement mit reduziertem elektrischem Oberflächenfeld
DE3787484T2 (de) Verdrahtungsentwurf für bipolare und unipolare Transistoren mit isoliertem Gate.
EP0913000B1 (de) Durch feldeffekt steuerbares halbleiterbauelement
DE10245049B4 (de) Kompensationshalbleiterbauelement
EP1097482B1 (de) J-fet-halbleiteranordnung
DE2904424A1 (de) Thyristor mit steuerung durch feldeffekttransistor
DE4310606C2 (de) GTO-Thyristoren
DE102004002723A1 (de) Halbleiterbauelement mit einem SOI-Aufbau
DE102006002438A1 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
EP0768717A2 (de) Leistungshalbleiterelement
DE112014006158T5 (de) Leistungshalbleitervorrichtung
EP0600241A2 (de) MOS-gesteuerte Diode
EP0389942B1 (de) Hochsperrendes Halbleiterbauelement
DE19638437A1 (de) Durch Feldeffekt steuerbares Halbleiterbauelement
EP0658940A1 (de) Durch Feldeffekt steuerbares Halbleiterbauelement
WO2000035020A1 (de) Laterales hochvolt-halbleiterbaulement mit reduziertem spezifischem einschaltwiderstand
EP3387677B1 (de) Halbleitertransistor mit superlattice-strukturen
DE19650599A1 (de) IGBT mit Trench- Gate- Struktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030829