EP1051740A1 - Procede de production d'une couche monocristalline sur un substrat sans adaptation de reseau, et composant comportant au moins une telle couche - Google Patents

Procede de production d'une couche monocristalline sur un substrat sans adaptation de reseau, et composant comportant au moins une telle couche

Info

Publication number
EP1051740A1
EP1051740A1 EP99907288A EP99907288A EP1051740A1 EP 1051740 A1 EP1051740 A1 EP 1051740A1 EP 99907288 A EP99907288 A EP 99907288A EP 99907288 A EP99907288 A EP 99907288A EP 1051740 A1 EP1051740 A1 EP 1051740A1
Authority
EP
European Patent Office
Prior art keywords
substrate
layer
implantation
defect
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99907288A
Other languages
German (de)
English (en)
Inventor
Siegfried Mantl
Bernhard HOLLÄNDER
Ralf Liedtke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1051740A1 publication Critical patent/EP1051740A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds

Definitions

  • the invention relates to a method for producing a single-crystalline layer on a non-lattice-matched substrate. Furthermore, the invention relates to a component containing one or more such layers according to the preamble of claim 10.
  • dislocations are built in at the interface between the layer formed and the substrate, as a result of this relaxation, - 2 - but also with a disadvantageous number of dislocations, from the interface to the layer surface (so-called threading dislocations). Since most of these dislocations continue through newly grown layers, they significantly degrade the electrical and optical properties of the layer material.
  • the object of the invention is to provide a method of the type described at the outset and a component in which the disadvantages specified above are avoided, in particular the formation of thread mg dislocations is avoided.
  • the object is achieved by a method according to the entirety of the features according to claim 1.
  • the task is further solved by a component according to the entirety of the features according to claim 10. Further expedient or advantageous embodiments or variants can be found on each of these Claims jerk-related subclaims.
  • the object is achieved according to claim 1 in that a buried, defect-rich layer is formed in the single-crystal substrate. It was recognized that the layer formed on the substrate surface is then relaxed and the formation of thread mg dislocations is prevented. It was also recognized that in this way the lattice parameter of the layer thus formed comes closer to the own lattice structure than the originally strained layer, in such a way that the quality of the deposited film does not deteriorate according to the invention through the incorporation of crystal defects. In the method according to the invention, it is also advantageously achieved that the surface roughness of the layer formed is significantly lower compared to conventionally produced layers. Finally, the degree of stress relaxation in the layer according to the invention is significantly increased in an advantageous manner. It can be advantageous to form the buried layer as close as possible to this surface without disturbing the surface structure of the substrate.
  • defect-rich layer buried beneath the substrate surface can be - 4 - implantation.
  • hydrogen can be used as the type of ion.
  • the method claimed in claim 4 provides for an advantageous, dislocation-free formation of the layer formed on the substrate surface at an implantation dose in the range from 1 * 10 14 cm “" 2 to 1 * 10 17 cm “2.
  • the ion implantation can either be before the deposition of the crystalline film or else after the deposition of the crystalline film to form the layer.
  • an ion type for implantation that is matched to the choice of substrate and film material.
  • Light ions or noble gas ions can be particularly suitable for this.
  • the method according to the invention is designed very advantageously in that the defect structure, for example in depth, can be optimized by further implantations.
  • a second implantation by means of a second type of ion favors the increase in the defect density or the increase in the gas bubble density.
  • the method according to the invention is very advantageously supplemented by an annealing treatment for the purpose of thermally induced relaxation and defect reduction.
  • the method according to the invention is not limited to the use of silicon substrates to form a buried, defect-rich layer. Rather, it may be advantageous to use one of the substrate materials listed in claim 9.
  • the component according to the invention as claimed in claim 10, 11 or 12 has the advantage that the microelectronic or optoelectronic properties required by a component can be optimally formed in the layers formed without being adversely affected or disturbed by threading dislocations.
  • the layer produced according to the invention can already be the desired end product.
  • this layer formed according to the invention forms a suitable base, for example as a buffer layer for the growth of a further layer. In this way, it forms a seed layer for the further growth of a single-crystalline film.
  • the method according to the invention for producing a relaxed, single-crystalline layer with a low dislocation density also advantageously includes the production of a buried, defect-rich layer in the substrate by means of hydrogen implantation. This light type of ion allows a precise, defined defect formation within the substrate at the desired depth.
  • Fig. 1 Schematic representation of a according to the previous Ver ⁇ drive by heteroepitaxy on non gittertationange- p motherboardtem substrate layer formed with a plurality of through the surface layer extending threading dislocations; - 6 -
  • Fig. 2 manufactured by the inventive method
  • FIG. 1 shows a layer which was produced by the previous method using heteroepitaxy on a substrate which was not matched to the lattice, with many threading dislocations running through the surface layer.
  • FIG. 2 shows a side view of the layer produced by the method according to the invention.
  • the threading dislocations shown here, which run into the substrate, do not necessarily have to arise.
  • the single-crystalline substrate which has a buried defect-rich layer, is such that the threading dislocations run into the defect-rich layer of the substrate and do not pass through the single-crystalline surface layer (the film).
  • An Si wafer was used as the substrate. Hydrogen with a dose of 1 * 10 16 cm “2 and the energy of approx. 1 keV is implanted into this substrate using a commercially available implantation system, so that a buried defect layer is formed close to the surface without defects in the uppermost atomic layers of the Si substrate.
  • the defect layer thus produced is stable up to approximately 700 ° C., ie the defects are scarcely healed up to this temperature, which enables the subsequent deposition of silicon (Si) and germanium (Ge) in a ratio of 80:20 by means of molecular steel epitaxy (MBE ) at approximately 500 ° C.
  • MBE molecular steel epitaxy
  • Si wafer was used as the substrate.
  • This commercially available substrate was cleaned - as is usual in Si epitaxy - in order to obtain a perfect and clean surface.
  • Si and Ge were then deposited at 500 ° C. in a ratio of 80:20 by means of molecular steel epitaxy (MBE).
  • MBE molecular steel epitaxy
  • the single-crystalline, only 200 nm thick surface layer thus obtained is under mechanical tension.
  • hydrogen is implanted with an implantation device with a dose of 1 • 10 16 cm ⁇ 2 .
  • the implantation energy of the H + ions is selected, for example 20 keV H + , so that the buried, defect-rich layer is formed just below the interface between the surface layer and the Si substrate.
  • Si-Ge layers thus produced can be either directly ver ⁇ turns or serve as an intermediate layer for further epitaxial growth of heterostructures and superlattices.
  • FIG. 3 shows the course of a conventionally produced layer which has surface levels in the range from 1 to 5 nm (nanometer).
  • the course of a layer produced according to the invention shown in FIG. 4 shows a significantly smoother surface without significant surface steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

L'invention concerne un procédé de production de couches monocristallines sur des substrats sans adaptation de réseau. On utilise à cet effet un substrat monocristallin comportant une couche enterrée riche en défauts sur laquelle est réalisée une couche monocristalline. La couche enterrée riche en défauts peut être produite par implantation d'hydrogène.
EP99907288A 1998-01-27 1999-01-27 Procede de production d'une couche monocristalline sur un substrat sans adaptation de reseau, et composant comportant au moins une telle couche Withdrawn EP1051740A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19802977A DE19802977A1 (de) 1998-01-27 1998-01-27 Verfahren zur Herstellung einer einkristallinen Schicht auf einem nicht gitterangepaßten Substrat, sowie eine oder mehrere solcher Schichten enthaltendes Bauelement
DE19802977 1998-01-27
PCT/DE1999/000203 WO1999038201A1 (fr) 1998-01-27 1999-01-27 Procede de production d'une couche monocristalline sur un substrat sans adaptation de reseau, et composant comportant au moins une telle couche

Publications (1)

Publication Number Publication Date
EP1051740A1 true EP1051740A1 (fr) 2000-11-15

Family

ID=7855757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99907288A Withdrawn EP1051740A1 (fr) 1998-01-27 1999-01-27 Procede de production d'une couche monocristalline sur un substrat sans adaptation de reseau, et composant comportant au moins une telle couche

Country Status (4)

Country Link
US (1) US6464780B1 (fr)
EP (1) EP1051740A1 (fr)
DE (1) DE19802977A1 (fr)
WO (1) WO1999038201A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465356C (zh) * 2001-06-08 2009-03-04 克利公司 高表面质量的GaN晶片及其生产方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859429A1 (de) * 1998-12-22 2000-06-29 Daimler Chrysler Ag Verfahren zur Herstellung epitaktischer Silizium-Germaniumschichten
GB2349392B (en) * 1999-04-20 2003-10-22 Trikon Holdings Ltd A method of depositing a layer
US6593625B2 (en) 2001-06-12 2003-07-15 International Business Machines Corporation Relaxed SiGe layers on Si or silicon-on-insulator substrates by ion implantation and thermal annealing
US6855649B2 (en) * 2001-06-12 2005-02-15 International Business Machines Corporation Relaxed SiGe layers on Si or silicon-on-insulator substrates by ion implantation and thermal annealing
US6515335B1 (en) 2002-01-04 2003-02-04 International Business Machines Corporation Method for fabrication of relaxed SiGe buffer layers on silicon-on-insulators and structures containing the same
US7226504B2 (en) * 2002-01-31 2007-06-05 Sharp Laboratories Of America, Inc. Method to form thick relaxed SiGe layer with trench structure
US6746902B2 (en) * 2002-01-31 2004-06-08 Sharp Laboratories Of America, Inc. Method to form relaxed sige layer with high ge content
US6583000B1 (en) 2002-02-07 2003-06-24 Sharp Laboratories Of America, Inc. Process integration of Si1-xGex CMOS with Si1-xGex relaxation after STI formation
US6793731B2 (en) * 2002-03-13 2004-09-21 Sharp Laboratories Of America, Inc. Method for recrystallizing an amorphized silicon germanium film overlying silicon
DE10218381A1 (de) * 2002-04-24 2004-02-26 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer oder mehrerer einkristalliner Schichten mit jeweils unterschiedlicher Gitterstruktur in einer Ebene einer Schichtenfolge
US6703293B2 (en) 2002-07-11 2004-03-09 Sharp Laboratories Of America, Inc. Implantation at elevated temperatures for amorphization re-crystallization of Si1-xGex films on silicon substrates
GB0220438D0 (en) 2002-09-03 2002-10-09 Univ Warwick Formation of lattice-turning semiconductor substrates
US6699764B1 (en) 2002-09-09 2004-03-02 Sharp Laboratories Of America, Inc. Method for amorphization re-crystallization of Si1-xGex films on silicon substrates
US6903384B2 (en) * 2003-01-15 2005-06-07 Sharp Laboratories Of America, Inc. System and method for isolating silicon germanium dislocation regions in strained-silicon CMOS applications
US6825086B2 (en) * 2003-01-17 2004-11-30 Sharp Laboratories Of America, Inc. Strained-silicon channel CMOS with sacrificial shallow trench isolation oxide liner
DE10318284A1 (de) * 2003-04-22 2004-11-25 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer verspannten Schicht auf einem Substrat und Schichtstruktur
DE10318283A1 (de) 2003-04-22 2004-11-25 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer verspannten Schicht auf einem Substrat und Schichtstruktur
WO2004109775A2 (fr) * 2003-06-03 2004-12-16 The Research Foundation Of State University Of New York Formation de semiconducteur compose exempt de dislocations sur un substrat a defaut d'appariement
US8889530B2 (en) * 2003-06-03 2014-11-18 The Research Foundation Of State University Of New York Formation of highly dislocation free compound semiconductor on a lattice mismatched substrate
US7071022B2 (en) * 2003-07-18 2006-07-04 Corning Incorporated Silicon crystallization using self-assembled monolayers
US7282738B2 (en) * 2003-07-18 2007-10-16 Corning Incorporated Fabrication of crystalline materials over substrates
JP2007505477A (ja) * 2003-07-23 2007-03-08 エーエスエム アメリカ インコーポレイテッド シリコン−オン−インシュレーター構造及びバルク基板に対するSiGeの堆積
ATE405947T1 (de) * 2003-09-26 2008-09-15 Soitec Silicon On Insulator Verfahren zur herstellung vonn substraten für epitakitisches wachstum
US7030002B2 (en) * 2004-02-17 2006-04-18 Sharp Laboratories Of America, Inc. Low temperature anneal to reduce defects in hydrogen-implanted, relaxed SiGe layer
EP1571241A1 (fr) * 2004-03-01 2005-09-07 S.O.I.T.E.C. Silicon on Insulator Technologies Méthode de fabrication d'un substrat
AU2005254426A1 (en) * 2004-06-21 2005-12-29 Wageningen University Tailor-made functionalized silicon and/or germanium surfaces
DE102004048096A1 (de) * 2004-09-30 2006-04-27 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer verspannten Schicht auf einem Substrat und Schichtstruktur
JP4654710B2 (ja) * 2005-02-24 2011-03-23 信越半導体株式会社 半導体ウェーハの製造方法
US7364989B2 (en) * 2005-07-01 2008-04-29 Sharp Laboratories Of America, Inc. Strain control of epitaxial oxide films using virtual substrates
US7901968B2 (en) * 2006-03-23 2011-03-08 Asm America, Inc. Heteroepitaxial deposition over an oxidized surface
EP2012367B1 (fr) * 2007-07-02 2012-02-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cellule solaire multiple
TWI398017B (zh) * 2007-07-06 2013-06-01 Huga Optotech Inc 光電元件及其製作方法
US9127345B2 (en) 2012-03-06 2015-09-08 Asm America, Inc. Methods for depositing an epitaxial silicon germanium layer having a germanium to silicon ratio greater than 1:1 using silylgermane and a diluent
US9171715B2 (en) 2012-09-05 2015-10-27 Asm Ip Holding B.V. Atomic layer deposition of GeO2
US9583363B2 (en) * 2012-12-31 2017-02-28 Sunedison Semiconductor Limited (Uen201334164H) Processes and apparatus for preparing heterostructures with reduced strain by radial distension
US9218963B2 (en) 2013-12-19 2015-12-22 Asm Ip Holding B.V. Cyclical deposition of germanium
CN117480592A (zh) 2021-06-14 2024-01-30 亚琛工业大学 量子比特元件
US20240304706A1 (en) 2021-06-14 2024-09-12 Rheinisch-Westfälische Technische Hochschule (RWTH Aachen) Qubit element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE248224C (fr)
DD248224A1 (de) * 1984-06-20 1987-07-29 Univ Berlin Humboldt Verfahren zur herstellung von halbleiterbauelementen
JPH0770711B2 (ja) 1986-06-05 1995-07-31 株式会社日本自動車部品総合研究所 半導体装置
DE3743734C2 (de) 1987-12-23 1996-09-26 Licentia Gmbh Verfahren zur Herstellung von vergrabenen, isolierenden Schichten und damit hergestellter Halbleiterkörper
US5084411A (en) * 1988-11-29 1992-01-28 Hewlett-Packard Company Semiconductor processing with silicon cap over Si1-x Gex Film
DE4029060C2 (de) 1990-09-13 1994-01-13 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung von Bauteilen für elektronische, elektrooptische und optische Bauelemente
US5198371A (en) * 1990-09-24 1993-03-30 Biota Corp. Method of making silicon material with enhanced surface mobility by hydrogen ion implantation
US5726440A (en) * 1995-11-06 1998-03-10 Spire Corporation Wavelength selective photodetector
US5920764A (en) * 1997-09-30 1999-07-06 International Business Machines Corporation Process for restoring rejected wafers in line for reuse as new
US6211095B1 (en) * 1998-12-23 2001-04-03 Agilent Technologies, Inc. Method for relieving lattice mismatch stress in semiconductor devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9938201A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465356C (zh) * 2001-06-08 2009-03-04 克利公司 高表面质量的GaN晶片及其生产方法

Also Published As

Publication number Publication date
US6464780B1 (en) 2002-10-15
DE19802977A1 (de) 1999-07-29
WO1999038201A1 (fr) 1999-07-29

Similar Documents

Publication Publication Date Title
WO1999038201A1 (fr) Procede de production d'une couche monocristalline sur un substrat sans adaptation de reseau, et composant comportant au moins une telle couche
EP1604390B1 (fr) Procede de production d'une structure lamellaire liberant la contrainte sur un substrat non adapte en grille et utilisation d'un tel systeme lamellaire dans des composants electroniques et/ou optoelectroniques
DE69827824T2 (de) Kontrolle der verspannungsdichte durch verwendung von gradientenschichten und durch planarisierung
DE602004003910T2 (de) Pufferstruktur für Heteroepitaxie auf einem Siliciumsubstrat
DE68923920T2 (de) Spannungs- und defektfreie fehlangepasste Epitaxialheterostrukturen und deren Herstellungsverfahren.
DE69231321T2 (de) Verfahren zur Herstellung eines Substrates von SOI-Type mit einer monokristallinen Schicht aus Silizium auf einer isolierenden Schicht
DE10137369B4 (de) Halbleitersubstrat, Feldeffekt-Transistor, Verfahren zur Bildung einer SiGe-Schicht und Verfahren zur Bildung einer gespannten Si-Schicht unter Verwendung derselben, und Verfahren zur Herstellung eines Feldeffekt-Transistors
DE19905516C2 (de) Lichtemittierende Diode mit dotierter Grenzflächenschicht zum Steuern von Verunreinigungen und Verfahren zum Herstellen derselben
EP1816672B1 (fr) Structure à couches semiconductrices et procédé de sa fabrication
EP1014431A2 (fr) Méthode de fabrication des couches epitaxiales de silicium-germanium
EP0475378A1 (fr) Procédé de fabrication de substrats pour composants optiques, électroniques et électro-optiques
EP1616345A2 (fr) Procede de production d'une couche contrainte sur un substrat, et structure en couches
DE102018213437B4 (de) Verfahren zur Herstellung von Galliumnitridsubstrat unter Verwendung von Hydrid-Gasphasenepitaxie
DE3335189A1 (de) Verfahren zum herstellen einer heterostruktur
EP1616346A2 (fr) Procede pour produire une couche contrainte sur un substrat et structure en couches
DE112019003987T5 (de) VERFAHREN ZUR HERSTELLUNG EINES GaN-LAMINATSUBSTRATS
DE102011004247A1 (de) Verfahren zur Herstellung eines Siliziumkarbid-Substrats
DE102008026784A1 (de) Epitaxierte Siliciumscheibe mit <110>-Kristallorientierung und Verfahren zu ihrer Herstellung
DE102018213434A1 (de) Verfahren zur Herstellung von Galliumnitridsubstrat unter Verwendung der Multiionimplantation
EP1497855B1 (fr) Procede de production d'une ou plusieurs couches monocristallines dotee chacune d'une structure reticulaire differente dans un plan d'une suite de couches
DE69425787T2 (de) Verfahren zur Herstellung epitaktischen Halbleitermaterials
DE10034263B4 (de) Verfahren zur Herstellung eines Quasisubstrats
DE69318271T2 (de) Verfahren zum Wachstum von Verbundhalbleitern auf einer Siliziumscheibe
DE112020000367T5 (de) Verfahren zur Herstellung eines Empfängersubstrats einer Halbleiter-auf-Isolator-Struktur für Hochfrequenzanwendungen und Verfahren zur Herstellung einer solchen Struktur
DE10043587B4 (de) Verfahren zur Herstellung eines Substrats, nach diesem Verfahren hergestelltes Substrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150113