EP1051589B1 - Verfahren zur simulation der bedrohung von teilnehmern einer militärischen übung durch handgranaten oder minen - Google Patents

Verfahren zur simulation der bedrohung von teilnehmern einer militärischen übung durch handgranaten oder minen Download PDF

Info

Publication number
EP1051589B1
EP1051589B1 EP99906033A EP99906033A EP1051589B1 EP 1051589 B1 EP1051589 B1 EP 1051589B1 EP 99906033 A EP99906033 A EP 99906033A EP 99906033 A EP99906033 A EP 99906033A EP 1051589 B1 EP1051589 B1 EP 1051589B1
Authority
EP
European Patent Office
Prior art keywords
participant
hgrm
weapon simulator
ksim
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99906033A
Other languages
English (en)
French (fr)
Other versions
EP1051589A1 (de
Inventor
Rudolf Deinlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Publication of EP1051589A1 publication Critical patent/EP1051589A1/de
Application granted granted Critical
Publication of EP1051589B1 publication Critical patent/EP1051589B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying

Definitions

  • the invention relates to a method for simulating the threat to participants a military exercise using hand grenades or mines the preamble of claim 1. It is used for realistic simulation of Threat to exercise participants, especially soldiers and vehicles, through single mines, mine blocks and hand grenades. This can be used in training handling with all (harmless) consequences are practiced and in the simulated battle the objective influence of mines and hand grenades be determined.
  • a mine or hand grenade is from one Weapon simulator simulated.
  • the individual exercise participants in particular Personnel, vehicles
  • the effective areas of the mines and hand grenades are deployed by a data transfer between the Weaponry simulators and the participant sensors simulated.
  • the object of the invention is to provide a method with which an accurate Range limitation of the mine or hand grenade is possible, so that a reliable determination of the mine or in the effective range of the triggered Hand grenade located participants is reached.
  • the data transmission between the weapon simulator and the individual subscriber sensor systems is carried out in the form of a two-way radio transmission.
  • the radio transmission from the individual participant sensors to the weapon simulator serves to delimit the effective range of the mines or hand grenade to be simulated.
  • the field strength curve in the near field of the transmitting and receiving antennas involved is used for this.
  • a hit is only possible if the near field of the transmitting antenna on the subscriber sensor system overlaps the near field of the receiving antenna on the weapon simulator.
  • a frequency is selected as the transmission frequency whose near-field range is greater than the maximum effective range of the mine or hand grenade to be simulated.
  • the relationship between near field r and frequency f applies: r ⁇ c / 2 ⁇ f (c: speed of light).
  • frequencies in the range from a few kHz to a few 10 MHz can be used for the transmission.
  • the MW and LW range fall into this frequency range (LW long wave, approx. 30 - 300 kHz; MW medium wave, approx. 300 kHz - 3 MHz)
  • the radio transmission from the weaponry simulator to the individual participant sensor systems serves to confirm or verify a mine or Hand grenade hit.
  • Frequencies in the VHF or UHF range VHF very high frequency, approx. 30 - 300 MHz; UHF ultra high frequency, approx. 300 - 3000 MHz are used.
  • the hit of a participant is done when there is a confirmed communication between participant sensors and weapon simulator.
  • the effective range delimitation according to the invention by radio transmission in Near field area (in the LW or MW area) of subscriber sensors too Ordnance simulator enables an exact and faithful replica of the effects of different mine types and hand grenades. In particular, both concealed as well as open installation possible.
  • a precise range limitation with level measurement in a high-frequency transmission To achieve a correspondingly high damping in the Transmission medium, including antennas. Become an asset therefore for the transmission from the participant sensors to the weapon simulator magnetic antennas (e.g. ferrite rod with antenna coil) are used, whereby the range limitation of the mines or hand grenades by using the Field strength curve is achieved in the near field of these antennas.
  • magnetic antennas e.g. ferrite rod with antenna coil
  • the high attenuation in the transmission path has the advantage that that in nature and civilization occurring damping influences by different Soil conditions, by building, due to the weather or open and concealed laying only play a minor role.
  • the method according to the invention supports all principles of use of mine laying e.g. also the mixed laying of mine blocks (PzAbwVMi) and single mines (SchtzAbwVMi).
  • the procedure is for mine combat simulation in combat training centers for the battle of connected weapons as well as a stand-alone solution for pure Mine combat training designed.
  • the participant sensor systems attached to vehicles or personnel enables in addition to the mine detection, the radio connection of others Equipment.
  • the transmission takes place from a subscriber sensor system to the weapon simulator, for example in the MW range, and the Transmission from the weapon simulator to the participant sensor system as an example in the UHF frequency range. As mentioned, there are other frequency ranges too possible.
  • FIG. 1 shows the initial situation when the method according to the invention is carried out.
  • Two typical exercise participants are shown, namely personnel and tanks, each of which is assigned a subscriber sensor system HGRM-S.
  • HGRM-S subscriber sensor system
  • the SchtzAbwVMi-KSIM is triggered by the trip wire STR.
  • the arrows between each KSIM and HGRM-S symbolize the possible transmission paths in the case the triggering of a weapon simulator.
  • Fig. 2 shows an example of a block diagram of the overall system of weapon simulator KSIM and subscriber sensor technology HGRMS-S as it is carried out of the method according to the invention is used.
  • the invention The method is based on a combination of two radio transmission links between KSIM ordnance simulator and participant sensors HGRM-S.
  • the weaponry simulator shown in FIG. 2 comprises KSIM a UHF transmitter and a MW receiver.
  • the participant sensors HGRM-S accordingly comprises a UHF receiver and a MW transmitter.
  • the MW radio link from the participant sensors to the weapon simulator (Transmission in the near field) serves to limit the range and for information transfer.
  • the UHF radio link from the ordnance simulator for participant sensors only serves to transfer information (confirmation of MW reception).
  • a hit by a mine or hand grenade has occurred if a confirmed one Communication between the participant sensors and the weapon simulator came about.
  • the communication between the weapon simulator is running and subscriber sensors, in particular using two similar methods which are described in more detail below.
  • An additional can be done via the controller within the participant sensor system Data transmission between the subscriber sensor system and one not shown here central processing and control unit can be realized. This can include, for example, the fact that the participant concerned is hit was transmitted for further evaluation.
  • the probability of radio collisions occurring outside the procedure is due to the locally delimited transmission ranges, as well the low frequency of events (mine / HGR triggering, data transmission), the short transmission times (high bit rate, little data) and the non-synchronism of mine / HGR releases very low.
  • the method according to the invention is for the connection of further devices open for radio data transmission.
  • the coding of the different Ordnance simulators and other devices are transparent to the outside, that means additional devices can be used with unchanged subscriber sensors use the data transmission link.
  • the data at the interface of the participant sensors HGRM-S to the central processing and control unit on the one hand and the data at the transfer interface (not shown in FIG. 2) the weapon simulator KSIM to the other devices on the other are the same.
  • the transmission power for data transmission to personnel and Vehicles can be reduced compared to mine simulation because here the parameters of the transmission path are more constant and only minor Ranges of approx. 0.1 m to 3.0 m must be bridged. Also owns data transmission is a low priority compared to mine simulation, which is automatically taken into account in the subscriber sensors.
  • the time utilization of the frequencies used is directly related with mine release and with data transmission.
  • the Utilization is reduced to a minimum by the method according to the invention.
  • FIG. 3 shows an example of the radio transmission areas of individual weapon simulators and subscriber sensor systems, as are used for the method according to the invention.
  • 3a) shows the transmission range of a PzAbwVMi weapon simulator and a vehicle subscriber sensor system.
  • 3b) shows the transmission range of a SchtzAbwMi ordnance simulator and a personal subscriber sensor system.
  • the UHF transmission ranges are shown by concentric, closed lines.
  • the much smaller MW transmission ranges are shown hatched. They correspond to the near field of the magnetic antennas used.
  • the double arrow on the transmission area of the vehicle subscriber sensor system shows the direction of travel of the vehicle.
  • the MW transmission serves to delimit the effective range
  • the replica of the effective areas will realized by the directivity of magnetic antennas (e.g. ferrite antenna).
  • magnetic antennas e.g. ferrite antenna
  • Farther are combinations of several magnetic antennas (e.g. in the direction aligned with the x- / y- / z-axis).
  • the different ranges can be achieved by different attenuation of the MW receiving antenna in the ordnance simulator or by controlling the MW transmission power in the Achieve participant sensors.
  • the SchtzAbwMi weapon simulator the directivity in the UHF transmission range through directional radiation reached in the UHF range.
  • the subscriber sensor system attached to a vehicle continuously sends out MW wake-up signals in accordance with Table 4. If a PzAbwVMi ordnance simulator receives a broadcast on MW, it sends out its ordnance simulator identification and the sender identification of the participant sensors on its UHF transmitter (telegram structure according to Table 5). The participant sensor system on the triggering vehicle recognizes this and registers and reports the reception as a hit. If other subscriber sensors receive the UHF broadcasts, then they know that the broadcast does not originate from them because it occurs asynchronously to their wake-up process and at the same time contains a foreign subscriber identification.
  • the participant sensor system for personnel does not send out wake-up calls (for reasons of energy saving) and can therefore not be "hit" by PzAbwVMi, which is justified for real use.
  • the described method replaces a complex original mine sensor system in the weapon simulator and enables a high relative speed between vehicles and weapon simulator.
  • an LW transmission can be used, for example.
  • a VHF transmission can be used, for example.
  • the constant MW wake-up transmissions of the participant sensors in vehicles are spatially limited to an area of approximately 8 mx 16 m, so that the vehicles do not interfere with each other.
  • the large-scale usability of the This ensures frequency.
  • Table 1 shows the described execution of the method once again shown in detail.
  • the ordnance simulators are activated on the ordnance simulator itself by certain actions, for example trip wire triggering, electrical ignition, throwing.
  • the electronics as well as the receiver and transmitter of the weapon simulator are in an inactive, battery-saving state ("sleep") until they are triggered.
  • the weapon simulator sends the mine / HGR identifier (telegram according to Table 3) via the UHF transmitter, and the participants in the UHF transmission range, which is significantly larger than the effective range of the mine / HGR, receive this message.
  • these subscriber sensor systems controlled by a random generator, try to establish a connection via the MW transmission link to the mine / HGR.
  • the maximum duration of the procedure ie with 31 participants in the UHF transmission range of the triggering weapon simulator, is a fraction of a second.
  • the participant sensor system recognizes whether damage to the participant is possible at all from the triggered mine type (an example in which damage to the wound is not possible is the combination of an armored vehicle / hand grenade). Only the damaged / wounded participants then carry out the described transponder procedure.
  • too MW transmission e.g. through an LW transmission and the UHF transmission e.g. be replaced by a VHF transmission.
  • the utilization of the frequencies used is very low. Since the Participant sensors on personnel do not send out wake-up calls, they do not contribute to any additional radio interference.
  • the UHF frequency will several times when a mine is triggered as part of the transponder procedure briefly (frame time max. 1 second / mine) within a radius of approx. 50 m used up to 200 m.
  • the subscriber sensor systems located in the UHF reception area of the triggering weapon simulator try to establish a connection via the MW transmission path to the mine / HGR by means of transponder methods after they have received the identifier of the triggering weapon simulator. How the transmissions of the individual subscriber sensors are coordinated and how collision resolution is achieved is explained in more detail below.
  • each participant sensor system After receiving the weapon simulator identifier, each participant sensor system calculates a random number. After a certain time, which is determined by the random number, the individual subscriber sensor system checks whether another subscriber sensor system is already transmitting. If no other subscriber sensor system is transmitting, it begins with the transponder procedure described by MW transmission of the telegram according to Tab. 4 with the subscriber no. 1.
  • the triggered weapon simulator answers the transmissions of the participant sensor system (telegram according to Tab. 4) so that each participant sensor system in the UHF band can determine whether there is transmission in the MW band. If another subscriber sensor system is already transmitting, then the testing subscriber sensor system waits until the transponder process with the other subscriber sensor system has been completed. All subscriber sensors receive the current identifier of the subscriber sensor that is currently carrying out the transponder process. The next subscriber sensor system, which begins with its transponder procedure, sends with a subscriber number that is one higher.
  • each participant sensor system that was able to establish the connection to the triggered weapon simulator ends the transponder procedure. If a participant sensor system does not receive a response from the weapon simulator due to its great distance or radio interference, it tries two more times to establish this connection. If that doesn't work either, she ends the process. If the weapon simulator does not get a reaction in the form of the transponder method after the first transmission of its identification, it repeats its identification twice at intervals of approximately one second.
  • a SchtzAbwVMi, SchtzAbwMi or HGR ordnance simulator detects that when the mine identifier is sent for the first time, another SchtzAbwVMi, SchtzAbwMi or HGR participant sensor system carries out the transponder procedure, then the recognizing ordnance simulator waits until the transponder procedure has ended and only then transmits ,
  • the procedure described enables a safe selection of participants, that are in the effective range of a triggered mine / HGR.
  • a direction finder can be used to locate / locate the mines / HGR, for example after the exercise has ended.
  • a circular area with a diameter of approx. 80 m can be scanned with a wake-up transmitter (identical to subscriber sensors).
  • a wake-up transmitter identical to subscriber sensors.
  • all mines deployed HGR only after "detonation"
  • a special UHF signal for the direction finding process is then generated in the mine / HGR as long as the alarm transmitter is active.
  • Commercially available direction finders are suitable as direction finders.
  • the MW receiver In the described method for simulating the threat from SchtzAbwVMi, SchtzAbwMi, HGR, the MW receiver is only pulsed after the method has been completed and is therefore operated in a power-saving manner in order to be able to receive the alarm transmitter of the direction finder for detection.
  • the MW receiver In the case of the SchtzAbwVMi and the SchtzAbwMi, the MW receiver is already operated in pulsed mode after being focused, so that mines that have not been triggered can also be found.
  • Tab. 6 shows a telegram as an example for data transmission.
  • Tab. 7 shows an exemplary telegram for confirmation. Step no Action HGRM-S KSIM action comment 1. Wake up (send the participant ID MW according to Tab. 4) Sleep mode (MW reception) outside effective range Second Wake up (send the participant ID MW according to Tab.
  • Sleep mode (UHF reception) Sleep Mode Second Sleep mode (UHF reception) Triggering the KSIM with HGR time delay
  • Third Mine ID received Send mine identification according to table 3 4th Participant 1 transmits on MW in accordance with Table 4 and simultaneously receives its transmission on UHF MW reception and UHF transmission according to Table 4 5th Participant 1 avoids / registers mine hits then sleep mode for HGRM-S on subscriber 1 6th Participant 2 transmits on MW in accordance with Tab. 4 and simultaneously receives its transmission on UHF MW reception and UHF transmission according to Table 4 7th Participant 2 reports / registers mine hits then sleep mode for HGRM-S on subscriber 2 8th. ... ... ...
  • 9th Participant n transmits on MW in accordance with Table 4 and simultaneously receives its transmission on UHF MW reception and UHF transmission according to Table 4 Max. 31 participants can be differentiated 10th Participant n reports / registers mine hits then sleep mode for HGRM-S on subscriber n 11th Sleep mode (UHF reception) Time Delay 12th Sleep mode (UHF reception) Sleep mode (MW reception) Bit no meaning comment 1 flag always "0" 2 Bit mine type. 15 Max. 65535 different mines 3 Bit mine type. 14 representable 4 Bit mine type. 13 5 Bit mine type. 12 6 Bit mine type. 11 7 Bit mine type. 10 8th Bit mine type. 9 9 Bit mine type. 8 10 Bit mine type. 7 11 Bit mine type. 6 12 Bit mine type. 5 13 Bit mine type.
  • Bit no meaning comment 1 flag always "0" 2 HGRM sensors on the participant "1" vehicle 3 Bit participant. 4 Max. 31 different, "affected” 4 Bit participant. 3 Representable participants 5 Bit participant. 2 6 Bit participant. 1 7 Bit subscriber. 0 8th Bit mine type. 15 Max. 65535 different mines 9 Bit mine type. 14 representable 10 Bit mine type. 13 11 Bit mine type. 12 12 Bit mine type. 11 13 Bit mine type. 10 14 Bit mine type. 9 15 Bit mine type. 8 16 Bit mine type. 7 17 Bit mine type. 6 18 Bit mine type. 5 19 Bit mine type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Rehabilitation Tools (AREA)
  • Navigation (AREA)
  • Alarm Systems (AREA)
  • Radio Relay Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Simulation der Bedrohung von Teilnehmern einer militärischen Übung durch Handgranaten oder Minen nach dem Oberbegriff des Anspruch 1. Es dient zur realitätsnahen Simulation der Bedrohung von Übungsteilnehmern, insbesondere Soldaten und Fahrzeugen, durch Einzelminen, Minensperren und Handgranaten. Damit kann in der Ausbildung die Handhabung mit allen (ungefährlichen) Folgen geübt werden und im simulierten Gefecht der objektive Einfluß von Minen und Handgranaten festgestellt werden. Eine Mine oder Handgranate wird dabei von einem Kampfmittelsimulator simuliert. Die einzelnen Übungsteilnehmer (insbesondere Personal, Fahrzeuge) sind mit einer Sensorik, im folgenden als Teilnehmersensorik bezeichnet, ausgestattet. Die Wirkbereiche der Minen und Handgranaten werden durch eine Datenübertragung zwischen den ausgebrachten Kampfmittelsimulatoren und den Teilnehmersensoriken nachgebildet.
Aufgabe der Erfindung ist es, ein Verfahren zu schaffen, mit dem eine genaue Reichweitenabgrenzung der Mine oder Handgranate möglich ist, so daß eine zuverlässige Bestimmung der sich im Wirkbereich der ausgelösten Mine oder Handgranate befindlichen Teilnehmer erreicht wird.
Diese Aufgabe wird mit dem Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausführungen sind Gegenstand weiterer Ansprüche.
Erfindungsgemäß wird die Datenübertragung zwischen Kampfmittelsimulator zu den einzelnen Teilnehmersensoriken in Form einer Zwei-Wege-Funkübertragung durchgeführt. Dabei dient die Funkübertragung von den einzelnen Teilnehmersensoriken zu dem Kampfmittelsimulator zur Wirkbereichsabgrenzung der zu simulierenden Minen oder Handgranate. Hierfür wird der Feldstärkenverlauf im Nahfeld der beteiligten Sende- und Empfangsantennen ausgenutzt. Ein Treffer ist nur möglich, wenn das Nahfeld der Sendeantenne an der Teilnehmersensorik mit dem Nahfeld der Empfangsantenne an dem Kampfmittelsimulator überlappt.
Als Übertragungsfrequenz wird eine Frequenz ausgewählt, deren Nahfeldbereich größer als die maximal nötige Wirkreichweite der zu simulierenden Mine oder Handgranate ist. Für den Zusammenhang zwischen Nahfeld r und Frequenz f gilt nach allgemeinen physikalischen Grundsätzen: r ≤ c/2πf   (c: Lichtgeschwindigkeit). Um Wirkbereiche typischer Minen und Handgranaten nachzubilden (einige m bis einige km) können somit für die Übertragung Frequenzen im Bereich von einigen kHz bis einigen 10 MHz eingesetzt werden. In diesen Frequenzbereich fallen insbesondere der MW- und LW-Bereich (LW Langwelle, ca 30 - 300 kHz; MW Mittelwelle, ca. 300 kHz - 3 MHz)
Die Funkübertragung von dem Kampfmittelsimulator zu den einzelnen Teilnehmersensoriken dient zur Bestätigung oder Verifikation eines Minen- oder Handgranaten-Treffers. Für diese Übertragung existiert keine prinzipielle Einschränkung hinsichtlich der benutzten Frequenzen. Vorteilhaft werden jedoch Frequenzen im VHF- oder UHF-Bereich (VHF very high frequency, ca. 30 - 300 MHz; UHF ultra high frequency, ca. 300 - 3000 MHz) eingesetzt.
Der Treffer eines Teilnehmers ist erfolgt, wenn eine bestätigte Kommunikation zwischen Teilnehmersensorik und Kampfmittelsimulator zustande kommt.
Die erfindungsgemäße Wirkbereichsabgrenzung durch eine Funkübertragung im Nahfeldbereich (im LW- oder MW-Bereich) von Teilnehmersensorik zu Kampfmittelsimulator ermöglicht eine genaue und originalgetreue Wirkungsnachbildung von verschiedenen Minentypen und Handgranaten. Insbesondere ist sowohl eine verdeckte als auch eine offene Verlegung möglich.
Durch die Funkübertragung von dem Kampfmittelsimulator zu den einzelnen Teilnehmersensoriken (im UHF oder VHF-Bereich), die zur Bestätigung eines Treffers dient, wird eine hohe Sicherheit bei der Erkennung der Kampfmittelsimulatoren erreicht.
Um eine genaue Reichweitenabgrenzung mit Pegelmessung bei einer Hochfrequenzübertragung zu erreichen, muss eine entsprechend hohe Dämpfung im Übertragungsmedium, inklusive Antennen, vorhanden sein. Vorteilhaft werden deshalb für die Übertragung von der Teilnehmersensorik zum Kampfmittelsimulator magnetische Antennen (z.B. Ferritstab mit Antennenspule) eingesetzt, wobei die Reichweitenabgrenzung der Minen oder Handgranaten durch Ausnutzung des Feldstärkenverlaufs im Nahfeld dieser Antennen erreicht wird.
Die hohe Dämpfung im Übertragungsweg hat den Vorteil, daß die in der Natur und Zivilisation vorkommenden Dämpfungseinflüsse durch unterschiedliche Bodenverhältnisse, durch Bebauung, aufgrund des Wetters oder offene und verdeckte Verlegung nur noch eine geringe Rolle spielen.
Das erfindungsgemäße Verfahren kann sowohl zur Simulation von Minen als auch für Handgranaten (HGR) eingesetzt werden. Die verschiedenen Eigenschaften dieser Systeme können somit mit dem gleichen technischen Ansatz nachgebildet werden. Zum Beispiel können folgende Minentypen simuliert werden:
  • Panzer-Abwehr-Verlege-Mine (PzAbwVMi)
  • Schützen-Abwehr-Mine (SchtzAbwMi)
  • Schützen-Abwehr-Verlege-Mine (SchtzAbwVMi).
  • Das erfindungsgemäße Verfahren unterstützt alle Einsatzgrundsätze der Minenverlegung z.B. auch die gemischte Verlegung von Minensperren (PzAbwVMi) und Einzelminen (SchtzAbwVMi).
    Das Verfahren ist für die Minenkampfsimulation in Gefechtsübungzentren für das Gefecht verbundener Waffen sowie auch als Stand-alone Lösung für reines Minenkampftraining ausgelegt.
    Die an Fahrzeugen oder Personal angebrachten Teilnehmersensoriken ermöglicht neben der Minendetektion auch die funktechnische Anbindung weiterer Geräte.
    Die Erfindung wird anhand konkreter Beispiele unter Bezugnahme auf Zeichnungen näher erläutert. Es zeigen:
    Fig. 1
    zeigt die Ausgangssituation beim Ablauf des erfindungsgemäßen Verfahrens;
    Fig. 2
    ein Blockschaltbild des Gesamtsystems aus Kampfmittelsimulator und Teilnehmersensorik;
    Fig. 3
    die Funkbereiche verschiedener Kampfmittelsimulatoren und Teilnehmersensoriken.
    Bei sämtlichen Ausführungen des erfindungsgemäßen Verfahrens, die im folgenden beschrieben werden, erfolgt die Übertragung von einer Teilnehmersensorik zu dem Kampfmittelsimulator beispielhaft im MW-Bereich, und die Übertragung von dem Kampfmittelsimulator zu der Teilnehmersensorik beispielhaft im UHF-Frequenzbereich. Wie erwähnt, sind auch andere Frequenzbereiche möglich.
    Fig. 1 zeigt die Ausgangssituation beim Ablauf des erfindungsgemäßen Verfahrens. Dargestellt sind zwei typische Ubungsteilnehmer, nämlich Personal und Panzer, denen jeweils eine Teilnehmersensorik HGRM-S zugeordnet ist. Des weiteren sind drei Arten von möglichen Kampfmittelsimulatoren KSIM (HGR-KSIM, PzAbwVMi-KSIM, SchtzAbwVMI-KSIM) dargestellt, die bestimmte Minentypen oder Handgranaten simulieren. Die SchtzAbwVMi-KSIM wird durch den Stolperdraht STR ausgelöst. Die Pfeile zwischen den einzelnen KSIM und HGRM-S symbolisieren die möglichen Übertragungswege im Fall der Auslösung eines Kampfmittelsimulators.
    Fig. 2 zeigt beispielhaft ein Blockschaltbild des Gesamtsystems aus Kampfmittelsimulator KSIM und Teilnehmersensorik HGRMS-S, wie es bei der Durchführung des erfindungsgemäßen Verfahrens eingesetzt wird. Das erfindungsgemäße Verfahren basiert auf einer Kombination von zwei Funkübertragungsstrecken zwischen Kampfmittelsimulator KSIM und Teilnehmersensorik HGRM-S. Entsprechend umfaßt der in Fig. 2 abgebildete Kampfmittelsimulator KSIM einen UHF-Sender sowie einen MW-Empfänger. Die Teilnehmersensorik HGRM-S umfaßt entsprechend einen UHF-Empfänger sowie einen MW-Sender. Die MW-Funkstrecke von der Teilnehmersensorik zum Kampfmittelsimulator (Übertragung im Nahfeldbereich) dient zur Reichweitenabgrenzung und zur Informationsübertragung. Die UHF-Funkstrecke vom Kampfmittelsimulator zur Teilnehmersensorik dient nur zur Informationsübertragung (Bestätigung des MW-Empfangs).
    Ein Treffer durch eine Mine oder Handgranate ist erfolgt, wenn eine bestätigte Kommunikation zwischen der Teilnehmersensorik und dem Kampfmittelsimulator zustande kam. Dabei läuft die Kommunikation zwischen Kampfmittelsimulator und Teilnehmersensorik insbesondere nach zwei ähnlichen Verfahren ab, die weiter unten näher beschrieben werden.
    Über den Controller innerhalb der Teilnehmersensorik kann eine zusätzliche Datenübertragung zwischen der Teilnehmersensorik und einer hier nicht eingezeichneten zentralen Verarbeitungs- und Steuereinheit realisiert werden. Dabei kann zum Beispiel die Tatsache, daß der betreffende Teilnehmer getroffen wurde, zur weiteren Auswertung übermittelt werden.
    Die Wahrscheinlichkeit von außerhalb des Verfahrens auftretenden Funkkollisionen ist aufgrund der lokal abgegrenzten Übertragungsreichweiten, sowie der geringen Ereignishäufigkeit (Minen-/HGR-Auslösung, Datenübertragung), der kurzen Übertragungszeiten (hohe Bitrate, wenig Daten) und der Nichtsynchronität von Minen-/HGR-Auslösungen sehr gering.
    Das erfindungsgemäße Verfahren ist für die Anbindung weiterer Geräte zwecks Datenübertragung über Funk offen. Die Codierung der verschiedenen Kampfmittelsimulatoren sowie der weiteren Geräte ist nach außen transparent, das heißt zusätzliche Geräte können mit unveränderter Teilnehmersensorik die Datenübertragungsstrecke nutzen. Die Daten an der Schnittstelle der Teilnehmersensorik HGRM-S zur zentralen Verarbeitungs- und Steuereinheit einerseits und die Daten an der Übergabeschnittstelle (in Fig. 2 nicht dargestellt) des Kampfmittelsimulators KSIM zu den weiteren Geräten andererseits sind gleich. Die Sendeleistung für die Datenübertragung an Personal und Fahrzeugen kann gegenüber der Minensimulation reduziert werden, weil hier die Parameter der Übertragungsstrecke konstanter sind und nur geringe Reichweiten von ca. 0,1 m bis 3,0 m überbrückt werden müssen. Zudem besitzt die Datenübertragung gegenüber der Minensimulation eine niedrige Priorität, die automatisch in der Teilnehmersensorik berücksichtigt wird.
    Die zeitliche Auslastung der verwendeten Frequenzen steht im direkten Zusammenhang mit der Minenauslösung und mit der Datenübertragung. Die Auslastung wird durch das erfindungsgemäße Verfahren auf ein Minimum reduziert.
    In Fig. 3 sind beispielhaft die Funkübertragungsbereiche einzelner Kampfmittelsimulatoren und Teilnehmersensoriken dargestellt, wie sie für das erfindungsgemäße Verfahren eingesetzt werden. In Fig. 3a) ist der Übertragungsbereich eines PzAbwVMi-Kampfmittelsimulators sowie einer Fahrzeug-Teilnehmersensorik dargestellt. In Fig. 3b) ist der Übertragungsbereich einer SchtzAbwMi-Kampfmittelsimulators sowie einer Personal-Teilnehmersensorik dargestellt. Die UHF-Übertragungsbereiche sind dabei durch konzentrische, geschlossene Linien dargestellt. Die wesentlich kleineren MW-Übertragungsbereiche sind schraffiert eingezeichnet. Sie entsprechen dem Nahfeld der verwendeten magnetischen Antennen.
    Der Doppelpfeil am Übertragungsbereich der Fahrzeug-Teilnehmersensorik gibt die Fahrtrichtung des Fahrzeugs wieder.
    Da die MW-Übertragung zur Wirkbereichsabgrenzung dient, entsprechen die dargestellten MW-Übertragungsbereiche gerade den Wirkbereichen der PzAbwVMi oder der SchtzAbwMi. Die Nachbildung der Wirkbereiche wird durch die Richtwirkung magnetischer Antennen (z.B. Ferritantenne) realisiert. Je nach Anordnung wird z.B. ein 360°-Wirkbereich oder ein Wirkbereich in Form einer liegenden Acht (Fahrzeug-Teilnehmersensorik) erzeugt. Weiterhin sind Kombinationen von mehreren magnetischen Antennen (z.B. in Richtung der x-/y-/z-Achse ausgerichtet) möglich. Die unterschiedlichen Reichweiten lassen sich durch unterschiedliche Bedämpfung der MW-Empfangsantenne im Kampfmittelsimulator bzw. durch Steuerung der MW-Sendeleistung in der Teilnehmersensorik erzielen. Bei dem SchtzAbwMi-Kampfmittelsimulator wird die Richtwirkung im UHF-Übertragungsbereich durch eine gerichtete Abstrahlung im UHF-Bereich erreicht.
    Eine vollständige Zweiwegübertragung kommt in beiden dargestellten Situationen in Fig. 3a), 3b) nur bei Überlappung des einfach schraffierten MW-Sendebereichs der jeweiligen Teilnehmersensorik HGRM-S und des gekreuzt schraffierten MW-Empfangsbereichs des Kampfmittelsimulators KSIM zustande. Bei der SchtzAbwMi muß sich der Teilnehmer zusätzlich noch in der dargestellten UHF-"Keule" befinden.
    Im folgenden werden zwei besonders vorteilhafte Ausführungen des erfindungsgemäßen Verfahrens unter Bezugnahme auf Tabellen näher erläutert. Die Tabellen zeigen:
    Tab. 1
    den Ablauf einer ersten Ausführung des erfindungsgemäßen Verfahrens;
    Tab. 2
    den Ablauf einer weiteren Ausführung des erfindungsgemäßen Verfahrens:
    Tab. 3 bis 7
    Beispiele für den Telegrammaufbau bei der Funkübertragung.
    Verfahren zur Simulation der Bedrohung durch PzAbwVMi
    Die an einem Fahrzeug angebrachte Teilnehmersensorik sendet ständig auf MW-Wecksignale gemäß Tab. 4 aus. Empfängt ein PzAbwVMi-Kampfmittelsimulator eine Sendung auf MW, so sendet er seine Kampfmittelsimulator-Kennung und die Absenderkennung der Teilnehmersensorik auf seinem UHF-Sender aus (Telegrammaufbau gemäß Tab. 5). Die Teilnehmersensorik am auslösenden Fahrzeug erkennt das, und registriert und meldet den Empfang als Treffer. Empfangen noch andere Teilnehmersensoriken die UHF-Aussendungen, dann wissen sie, daß die Aussendung nicht von ihnen stammt, weil sie asynchron zu ihrem Weckvorgang auftritt und gleichzeitig eine fremde Teilnehmerkennung enthält. Die Teilnehmersensorik bei Personal führt (aus Energiespargründen) keine Weckaussendungen aus und kann deshalb von PzAbwVMi nicht "getroffen" werden, was dem realen Einsatz gerecht wird.
    Das beschriebene Verfahren ersetzt eine aufwendige Originalminensensorik im Kampfmittelsimulator und ermöglicht eine hohe Relativgeschwindigkeit zwischen Fahrzeugen und Kampfmittelsimulator.
    Alternativ zu der beschriebenen MW-Übertragung kann z.B. eine LW-Übertragung eingesetzt werden. Analog kann anstatt der erwähnten UHF-Übertragung z.B. eine VHF-Übertragung eingesetzt werden.
    Die ständigen MW-Weckaussendungen der Teilnehmersensorik bei Fahrzeugen sind räumlich auf eine Fläche von ca. 8 m x 16 m begrenzt, so daß sich die Fahrzeuge nicht gegenseitig behindern. Die großflächige Nutzbarkeit der Frequenz ist dadurch gewährleistet.
    In der Tabelle 1 ist die beschriebene Ausführung des Verfahrens noch einmal im einzelnen dargestellt.
    Verfahren zur Simulation der Bedrohung durch SchtzAbwVMi, SchtzAbwMi, HGR
    Bei dieser Variante des erfindungsgemäßen Verfahrens werden die Kampfmittelsimulatoren durch bestimmte Aktionen, z.B. Stolperdrahtauslösung, elektrische Zündung, Wurf, am Kampfmittelsimulator selbst aktiviert. Die Elektronik sowie Empfänger und Sender des Kampfmittelsimulators befinden sich bis zur Auslösung in einem inaktiven, batterieschonenden Zustand ("Schlaf"). Der Kampfmittelsimulator sendet im Auslösefall über den UHF-Sender die Kennung der Mine/HGR (Telegramm gemäß Tab. 3), und die Teilnehmer im UHF-Übertragungsbereich, der wesentlich größer als der Wirkbereich der Mine/HGR ist, empfangen diese Nachricht. Sofort nach dem Empfang versuchen diese Teilnehmersensoriken, gesteuert über einen Zufallsgenerator, eine Verbindung über die MW-Übertragungsstrecke zur Mine/HGR herzustellen. Die Aussendungen der Teilnehmersensoriken gemäß Tab. 4 werden vom Kampfmittelsimulator direkt im UHF-Band beantwortet (Transponderverfahren). Da jede Teilnehmersensorik beim Senden gleichzeitig am UHF-Empfänger mithört, kann sofort festgestellt werden, ob die eigene Aussendung oder die eines anderen Teilnehmers beantwortet wird. Die Teilnehmer, die sich außerhalb des MW-Übertragungsbereichs aber im UHF-Bereich befinden, werden diesen Verbindungsaufbau nicht schaffen (kein Treffer). Jeder Teilnehmer, der einen Verbindungsaufbau geschafft hat, ist durch die Mine/HGR getroffen worden. Die ausgelöste Mine/HGR ist nach Abschluß der verschiedenen Verbindungsaufnahmen bei Erreichen der selektierbaren Höchstteilnehmerzahl (z.B. 31) oder nach Ablauf eines Zeitkriteriums wieder inaktiv. Die Zeitdauer des Verfahrens beträgt im Höchstfall, d.h. bei 31 im UHF-Übertragungsbereich des auslösenden Kampfmittelsimulators befindlichen Teilnehmern, Bruchteile einer Sekunde.
    In einer vorteilhaften Ausführung des Verfahrens erkennt die Teilnehmersensorik, ob eine BeschädigungNerwundung des Teilnehmers durch den ausgelösten Minentyp überhaupt möglich ist (ein Beispiel, bei dem eine BeschädigungNerwundung nicht möglich ist, ist die Kombination gepanzertes Fahrzeug/Handgranate). Nur die beschädigten/verwundeten Teilnehmer führen danach das beschriebene Transponderverfahren aus.
    In der Tab. 2 ist die beschriebene Ausführung des Verfahrens noch einmal im einzelnen dargestellt.
    Auch bei dieser Ausführung des erfindungsgemäßen Verfahrens kann die MW-Übertragung z.B. durch eine LW-Übertragung und die UHF-Übertragung z.B. durch eine VHF-Übertragung ersetzt werden.
    Die zeitliche Auslastung der verwendeten Frequenzen ist sehr gering. Da die Teilnehmersensoriken an Personal keine Weckaussendungen durchführen, tragen sie zu keiner zusätzlichen Funkbelastung bei. Die UHF-Frequenz wird bei Auslösung einer Mine im Rahmen des Transponderverfahrens mehrmals kurzzeitig (Rahmenzeit max. 1 Sekunde/Mine) in einem Umkreis von ca. 50 m bis 200 m benutzt.
    Wie oben beschrieben, versuchen die sich im UHF-Empfangsbereich des auslösenden Kampfmittelsimulators befindlichen Teilnehmersensoriken, nachdem sie die Kennung des auslösenden Kampfmittelsimulators empfangen haben, eine Verbindung über die MW-Übertragungsstrecke zur Mine/HGR mittels Transponderverfahren herzustellen. Wie die Aussendungen der einzelnen Teilnehmersensoriken koordiniert werden, und so eine Kollisionsauflösung erreicht wird, wird im folgenden noch näher erläutert.
    Nach Empfang der Kampfmittelsimulator-Kennung berechnet jede Teilnehmersensorik eine Zufallszahl. Nach Ablauf einer bestimmten Zeit, die durch die Zufallszahl bestimmt wird, kontrolliert die einzelne Teilnehmersensorik, ob eine andere Teilnehmersensorik schon sendet. Sendet keine andere Teilnehmersensorik, so beginnt sie mit dem beschriebenen Transponderverfahren durch MW-Aussendung des Telegramms nach Tab. 4 mit der Teilnehmer-Nr. 1. Der ausgelöste Kampfmittelsimulator beantwortet die Aussendungen der Teilnehmersensorik so (Telegramm gemäß Tab. 4), daß jede Teilnehmersensorik im UHF-Band feststellen kann, ob im MW-Band gesendet wird. Sendet bereits eine andere Teilnehmersensorik, dann wartet die prüfende Teilnehmersensorik bis das Transponderverfahren mit der anderen Teilnehmersensorik abgeschlossen ist. Dabei empfangen alle Teilnehmersensoriken die aktuelle Kennung der Teilnehmersensorik, der gerade das Transponderverfahren durchführt. Die nächste Teilnehmersensorik, die mit ihrem Transponderverfahren beginnt, sendet mit einer um eins höheren Teilnehmer-Nr..
    Durch die beschriebenen Steuerung der Reihenfolge, in der die einzelnen Teilnehmersensoriken das Transponderverfahren mit dem ausgelösten Kampfmittelsimulator durchführen, durch Generierung und Zuordnung von Zufallszahlen wird ein großer Adressraum (die Anzahl der gesamten Teilnehmer, die insgesamt an der Übung teilnehmen, kann groß sein, z.B. im Bereich von 1000 Teilnehmern) in einen wesentlich kleineren Adressraum (die Anzahl der Teilnehmer, die bei Auslösung des Kampfmittelsimulators sich in dessen UHF-Empfangsbereich befinden, wird üblicherweise kleiner als 10 sein) erzielt. Dadurch wird die Geschwindigkeit des Verfahrens wesentlich erhöht, was insbesondere bei schnell bewegten Teilnehmern (z.B. Fahrzeuge) von Bedeutung ist.
    Haben zufällig zwei Teilnehmersensoriken die gleiche Zufallszahl berechnet und senden miteinander, dann wird sich der nähere Sender durchsetzen oder es wird zu einer undefinierten UHF-Aussendung kommen. Nach einem Empfangsfehler im Transponderverfahren wird eine neue Zufallszahl in jeder Teilnehmersensorik bestimmt und mit der zuletzt gültigen Teilnehmer-Nr. das Verfahren wiederholt. Jede Teilnehmersensorik, die die Verbindung zum ausgelösten Kampfmittelsimulator herstellen konnte, beendet für sich das Transponderverfahren. Bekommt eine Teilnehmersensorik aufgrund großer Entfernung oder Funkstörung keine Antwort vom Kampfmittelsimulator, so versucht sie noch zweimal, diese Verbindung herzustellen. Wenn das auch nicht gelingt, dann beendet sie das Verfahren. Bekommt der Kampfmittelsimulator nach dem erstmaligen Aussenden seiner Kennung keine Reaktion in Form des Transponderverfahrens, so wiederholt er zweimal in Zeitabständen von ca. einer Sekunde seine Kennung. Erkennt ein SchtzAbwVMi-, SchtzAbwMioder HGR-Kampfmittelsimulator, daß beim erstmaligen Aussenden der Minenkennung bereits eine andere SchtzAbwVMi-, SchtzAbwMi- oder HGR-Teilnehmersensorik das Transponderverfahren durchführt, dann wartet der erkennende Kampfmittelsimulator, bis das Transponderverfahren beendet ist und sendet erst anschließend erstmalig seine Minenkennung.
    Das beschriebene Vorgehen ermöglicht eine sichere Selektion von Teilnehmern, die sich im Wirkbereich einer ausgelösten Mine/HGR befinden.
    Auffinden/Lokalisierung der Minen/HGR
    Zum Auffinden/Lokalisierung der Minen/HGR, z.B. nach beendeter Übung, kann vorteilhaft eine Peilanlage eingesetzt werden.
    Mit einem Wecksender (identisch mit Teilnehmersensorik) kann ein kreisförmiger Bereich von ca. 80 m Durchmesser abgesucht werden. Dazu erkennen alle ausgebrachten Minen (HGR nur nach "Detonation") über ihren MW-Empfänger eine spezielle Kennung des Wecksenders für den Peilbetrieb. In der Mine/HGR wird dann, solange der Wecksender aktiv ist, ein spezielles UHF-Signal für den Peilvorgang generiert. Als Peilanlage eignen sich kommerziell verfügbare Peiler.
    Bei dem beschriebenen Verfahren zur Simulation der Bedrohung durch SchtzAbwVMi, SchtzAbwMi, HGR wird der MW-Empfänger nach Abschluß des Verfahrens nur gepulst und somit stromsparend betrieben, um den Wecksender der Peilanlage zum Auffinden empfangen zu können. Bei den SchtzAbwVMi und den SchtzAbwMi wird der MW-Empfänger bereits nach dem Scharfstellen gepulst betrieben, um auch nicht ausgelöste Minen suchen zu können.
    Datenübertragung
    Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist die Tatsache, die an Fahrzeugen oder Personal angebrachten Teilnehmersensoriken neben der Minendetektion auch die funktechnische Anbindung weiterer Geräte ermöglichen. Tab. 6 zeigt hierzu ein Telegramm als Beispiel für die Datenübertragung. Tab. 7 zeigt ein beispielhaftes Telegramm für eine Bestätigung.
    Schritt Nr Aktion HGRM-S Aktion KSIM Bemerkung
    1. Wecken (senden der Teilnehmerkennung MW gemäß Tab.4) Sleep-Mode (MW-Empfang) außerhalb Wirkbereich
    2. Wecken (senden der Teilnehmerkennung MW gemäß Tab.4) MW-Empfang, Work-Mode Auslösung des KSIM
    3. Teilnehmerkennung + Minenkennung über UHF empfangen Teilnehmerkennung + Minenkennung über UHF senden gemäß Tab.5
    4. Minentreffer melden/ registrieren
    5. Sleep-Mode (UHF-Empfang) Sleep-Mode (MW-Empfang)
    Schritt Nr Aktion HGRM-S Aktion KSIM Bemerkung
    1. Sleep-Mode (UHF-Empfang) Sleep-Mode
    2. Sleep-Mode (UHF-Empfang) Auslösung des KSIM bei HGR Zeitverzögerung
    3. Minenkennung empfangen Minenkennung senden gemäß Tab.3
    4. Teilnehmer 1 sendet auf MW gemäß Tab.4 und empfängt gleichzeitig seine Aussendung auf UHF MW-Empfang und UHF-Sendung gemäß Tab.4
    5. Teilnehmer 1 meidet/registriert Minentreffer anschließend Sleep-Mode für HGRM-S am Teilnehmer 1
    6. Teilnehmer 2 sendet auf MW gemäß Tab.4 und empfängt gleichzeitig seine Aussendung auf UHF MW-Empfang und UHF-Sendung gemäß Tab.4
    7. Teilnehmer 2 meldet/ registriert Minentreffer anschließend Sleep-Mode für HGRM-S am Teilnehmer 2
    8. ... ... ...
    9. Teilnehmer n sendet auf MW gemäß Tab.4 und empfängt gleichzeitig seine Aussendung auf UHF MW-Empfang und UHF-Sendung gemäß Tab.4 max. 31 Teilnehmer können unterschieden werden
    10. Teilnehmer n meldet/ registriert Minentreffer anschließend Sleep-Mode für HGRM-S am Teilnehmer n
    11. Sleep-Mode (UHF-Empfang) Zeitverzögerung
    12. Sleep-Mode (UHF-Empfang) Sleep-Mode (MW-Empfang)
    Bit Nr Bedeutung Bemerkung
    1 Kennzeichnungsbit immer "0"
    2 Bit Minentyp.15 max. 65535 verschiedene Minen
    3 Bit Minentyp.14 darstellbar
    4 Bit Minentyp.13
    5 Bit Minentyp.12
    6 Bit Minentyp.11
    7 Bit Minentyp.10
    8 Bit Minentyp.9
    9 Bit Minentyp.8
    10 Bit Minentyp.7
    11 Bit Minentyp.6
    12 Bit Minentyp.5
    13 Bit Minentyp.4
    14 Bit Minentyp.3
    15 Bit Minentyp.2
    16 Bit Minentyp.1
    17 Bit Minentyp.0
    18 Parity "1"-Bits von Nr 1-17 = ungerade, dann "1"
    Bit Nr Bedeutung Bemerkung
    1 Kennzeichnungsbit immer "0"
    2 HGRM-Sensorik am Teilnehmer "0"=Soldat, "1"=Fahrzeug
    3 Bit Teilnehmer.4 max. 31 verschiedene, "betroffene"
    4 Bit Teilnehmer.3 Teilnehmer darstellbar
    5 Bit Teilnehmer.2
    6 Bit Teilnehmer.1
    7 Bit Teilnehmer.0
    8 Parity "1"-Bitzahl von Nr 1-7=gerade, dann "1"
    Falls ein Telegramm nach Tab.3 nicht korrekt (z.B. Parityfehler, Übertragungsstörung) empfangen wurde, kann mit derTeilnehmer-Nr. "0" die Minenkennung erneut angefordert werden.
    Bit Nr Bedeutung Bemerkung
    1 Kennzeichnungsbit immer "0"
    2 HGRM-Sensorik am Teilnehmer "1"=Fahrzeug
    3 Bit Teilnehmer.4 max. 31 verschiedene, "betroffene"
    4 Bit Teilnehmer.3 Teilnehmer darstellbar
    5 Bit Teilnehmer.2
    6 Bit Teilnehmer.1
    7 Bit Teilnehmer.0
    8 Bit Minentyp.15 max. 65535 verschiedene Minen
    9 Bit Minentyp.14 darstellbar
    10 Bit Minentyp.13
    11 Bit Minentyp.12
    12 Bit Minentyp.11
    13 Bit Minentyp.10
    14 Bit Minentyp.9
    15 Bit Minentyp.8
    16 Bit Minentyp.7
    17 Bit Minentyp.6
    18 Bit Minentyp.5
    19 Bit Minentyp.4
    20 Bit Minentyp.3
    21 Bit Minentyp.2
    22 Bit Minentyp.1
    23 Bit Minentyp.0
    24 Parity "1"-Bitzahl von Nr 1-21=gerade, dann "1"
    Bit Nr Bedeutung Bemerkung
    1 1. Kennzeichnungsbit Zustand immer "1"
    2-16 Zieladresse 15 Bit höchstwertiges Bit zuerst
    17 Bestätigung immer "0"
    18-32 Absenderadresse15 Bit höchstwertiges Bit zuerst
    33-56 Daten 24 Bit 3 Byte
    57-64 Checksumme Byte 1-7 addiert
    Bit Nr Bedeutung Bemerkung
    1 1. Kennzeichnungsbit Zustand immer "1"
    2-16 Zieladresse 15 Bit höchstwertiges Bit zuerst
    17 Bestätigung "1" korrekt, "0" nicht korrekt
    18 Parity "1"-Bitzahl von Nr 1-17=gerade, dann "1"
    Falls ein Telegramm nach Tab.6 nicht korrekt (z.B. Parityfehler, Übertragungsstörung) empfangen wurde, kann mit der Zieladresse "0" (negative Bestatigung) das Telegramm erneut angefordert werden.

    Claims (7)

    1. Verfahren zur Simulation der Bedrohung von einem oder mehreren Teilnehmern einer militärischen Übung durch Minen oder Handgranaten, wobei mindestens ein Minen- oder Handgranaten simulierender Kampfmittelsimulator (KSIM) sowie den einzelnen Teilnehmern zugeordnete Teilnehmersensoriken (HGRM-S) eingesetzt werden, und die Wirkung der Minen oder Handgranaten durch eine Datenübertragung zwischen Kampfmittelsimulator (KSIM) und Teilnehmersensoriken (HGRM-S) nachgebildet wird, dadurch gekennzeichnet, dass die Datenübertragung durch eine Zwei-Wege-Funkübertragung zwischen Kampfmittelsimulator (KSIM) und den einzelnen Teilnehmersensoriken (HGRM-S) durchgeführt wird, wobei die Funkübertragung von den einzelnen Teilnehmersensoriken (HGRM-S) zu dem Kampfmittelsimulator (KSIM) im Nahfeldbereich der beteiligten Sende- und Empfangsantennen erfolgt, und diese Übertragung zur Wirkbereichsabgrenzung der Minen oder Handgranaten dient, und die Funkübertragung von dem Kampfmittelsimulator (KSIM) zu den einzelnen Teilnehmersensoriken (HGRM-S) zur Bestätigung oder Verifikation eines Treffers durch die Minen oder Handgranaten dient;
      wobei die Funkübertragung von den einzelnen Teilnehmersensoriken (HGRM-S) zu dem Kampfmittelsimulator (KSIM) im MW- oder LW-Frequenzbereich erfolgt und die Funkübertragung von dem Kampfmittelsimulator (KSIM) zu den einzelnen Teilnehmersensoriken (HGRM-S) im VHF- oder UHF-Frequenzbereich erfolgt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zum Senden und Empfangen im Nahfeldbereich magnetische Antennen eingesetzt werden.
    3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Zwei-Wege-Funkübertragung zwischen Kampfmittelsimulator (KSIM) und einer Teilnehmersensorik (HGRM-S) folgendermaßen abläuft:
      wiederholtes Senden der Teilnehmerkennung durch die Teilnehmersensorik (HGRM-S);
      Empfang der Teilnehmerkennung durch den Kampfmittelsimulator (KSIM), wobei das Zustandekommen der Übertragung als Auslösung des empfangenden Kampfmittelsimulators (KSIM) und als Treffer der sendenden Teilnehmersensorik (HGRM-S) gilt;
      Senden der Kampfmittelsimulatorkennung sowie der Teilnehmerkennung durch den Kampfmittelsimulator (KSIM) an die Teilnehmersensorik (HGRM-S);
      Empfang der Kampfmittelsimulatorkennung sowie der Teilnehmerkennung durch die Teilnehmersensorik (HGRM-S) und Registrierung des Treffers.
    4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Zwei-Wege-Funkübertragung zwischen Kampfmittelsimulator (KSIM) und einer Teilnehmersensorik (HGRM-S) folgendermaßen abläuft:
      Senden der Kampfmittelsimulatorkennung durch den Kampfmittelsimulator (KSIM) bei Auslösung des Kampfmittelsimulators (KSIM);
      Empfang der Kampfmittelsimulatorkennung durch die Teilnehmersensorik (HGRM-S);
      Senden der Teilnehmerkennung durch die Teilnehmersensorik (HGRM-S);
      Empfang der Teilnehmerkennung durch den Kampfmittelsimulator (KSIM), wobei das Zustandekommen der Übertragung als Treffer der sendenden Teilnehmersensorik (HGRM-S) durch den empfangenden Kampfmittelsimulator (KSIM) gilt;
      Senden der Teilnehmerkennung durch den Kampfmittelsimulator (KSIM) an die Teilnehmersensorik (HGRM-S);
      Empfang der Teilnehmerkennung durch die Teilnehmersensorik (HGRM-S) und Registrierung des Treffers.
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Senden der Teilnehmerkennung durch die Teilnehmersensorik (HGRM-S) sowie der Empfang der Teilnehmerkennung durch die Teilnehmersensorik (HGRM-S) im wesentlichen gleichzeitig erfolgt.
    6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass wenn mehrere Teilnehmersensoriken (HGRM-S) die Kampfmittelsimulatorkennung vom auslösenden Kampfmittelsimulator (KSIM) empfangen, die Reihenfolge, in der diese Teilnehmersensoriken (HGRM-S) ihre Teilnehmerkennung an den Kampfmittelsimulator (KSIM) senden, mittels eines Zufallszahlengenerators bestimmt wird.
    7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Teilnehmersensorik (HGRM-S) nach Empfang der Kampfmittelsimulatorkennung eine Prüfung durchführt, ob ein Treffer des zugeordneten Teilnehmers aufgrund des Typs des auslösenden Kampfmittelsimulators (KSIM) zugelassen ist, und bei negativem Ergebnis die weiteren Verfahrensschritte unterlässt.
    EP99906033A 1998-01-29 1999-01-08 Verfahren zur simulation der bedrohung von teilnehmern einer militärischen übung durch handgranaten oder minen Expired - Lifetime EP1051589B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19803337A DE19803337C2 (de) 1998-01-29 1998-01-29 Verfahren zur Simulation der Bedrohung von Teilnehmern einer militärischen Übung durch Handgranaten oder Minen
    DE19803337 1998-01-29
    PCT/DE1999/000022 WO1999039148A1 (de) 1998-01-29 1999-01-08 Verfahren zur simulation der bedrohung von teilnehmern einer militärischen übung durch handgranaten oder minen

    Publications (2)

    Publication Number Publication Date
    EP1051589A1 EP1051589A1 (de) 2000-11-15
    EP1051589B1 true EP1051589B1 (de) 2003-11-12

    Family

    ID=7855962

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99906033A Expired - Lifetime EP1051589B1 (de) 1998-01-29 1999-01-08 Verfahren zur simulation der bedrohung von teilnehmern einer militärischen übung durch handgranaten oder minen

    Country Status (16)

    Country Link
    US (1) US6450817B1 (de)
    EP (1) EP1051589B1 (de)
    KR (1) KR20010033839A (de)
    AU (1) AU741926B2 (de)
    CA (1) CA2319061C (de)
    CZ (1) CZ290680B6 (de)
    DE (1) DE19803337C2 (de)
    ES (1) ES2211042T3 (de)
    HU (1) HU223241B1 (de)
    ID (1) ID27604A (de)
    NO (1) NO318822B1 (de)
    NZ (1) NZ505993A (de)
    PL (1) PL343274A1 (de)
    PT (1) PT1051589E (de)
    TR (1) TR200002186T2 (de)
    WO (1) WO1999039148A1 (de)

    Families Citing this family (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6579097B1 (en) * 2000-11-22 2003-06-17 Cubic Defense Systems, Inc. System and method for training in military operations in urban terrain
    SG96259A1 (en) 2000-11-29 2003-05-23 Ruag Electronics Method and device for simulating detonating projectiles
    SE521874C2 (sv) 2001-01-10 2003-12-16 Saab Ab Stridssimulering
    SE520607C2 (sv) * 2001-03-30 2003-07-29 Saab Ab Förfarande och anordning för träffindikering
    SE0102297D0 (sv) * 2001-06-25 2001-06-25 Saab Ab Associationsmetod och associationsanordning
    US7354271B2 (en) * 2003-05-08 2008-04-08 Michael Brunn Training grenade
    US20080092766A1 (en) * 2003-05-08 2008-04-24 Michael Brunn Trainer grenades
    EP1519136A1 (de) * 2003-09-23 2005-03-30 Saab Ab Simulator von Angriffen mit Kernwaffen, biologischen Waffen oder chemischen Waffen
    ATE374921T1 (de) * 2004-06-19 2007-10-15 Saab Ab System und verfahren zur simulation von explosiven vorrichtungen
    US7657358B2 (en) * 2004-07-02 2010-02-02 Greycell, Llc Entertainment system including a vehicle with a simulation mode
    US7927102B2 (en) 2005-01-13 2011-04-19 Raytheon Company Simulation devices and systems for rocket propelled grenades and other weapons
    US7621062B2 (en) * 2005-03-23 2009-11-24 Gregory Anthony Cugliari Bullet identification and tracking device
    US8145382B2 (en) * 2005-06-17 2012-03-27 Greycell, Llc Entertainment system including a vehicle
    US7507089B2 (en) * 2005-07-15 2009-03-24 Raytheon Company Methods and apparatus to provide training against improvised explosive devices
    US7922491B2 (en) * 2005-09-28 2011-04-12 Raytheon Company Methods and apparatus to provide training against improvised explosive devices
    GB2453900B (en) * 2006-07-19 2011-05-04 Cubic Corp Automated improvised explosive device training system
    KR100815501B1 (ko) * 2006-08-18 2008-03-20 주식회사 코리아일레콤 폭탄 모의 장치 및 상기 폭탄 모의 장치를 이용한 모의교전 시스템
    JP5849972B2 (ja) * 2013-01-08 2016-02-03 日油株式会社 無線起爆雷管、親ダイ、無線起爆システム、及び無線起爆方法
    CN103884241B (zh) * 2014-04-11 2015-11-25 北京中铭恒盛科技有限公司 一种基于ad的特征信号识别方法及装置
    ES2760998T3 (es) * 2015-11-09 2020-05-18 Detnet South Africa Pty Ltd Detonador inalámbrico
    AU2020325224A1 (en) * 2019-08-06 2022-03-03 Layer 3 Services Pty Ltd Systems and methods for simulating blast effects of an explosive
    CN113819796A (zh) * 2021-09-18 2021-12-21 中国人民解放军陆军工程大学 一种地雷对抗模拟系统

    Family Cites Families (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1383564A (en) * 1972-07-29 1974-02-12 Solartron Electronic Group Umpires ray gun for use in weapon training systems
    US4141295A (en) * 1978-02-13 1979-02-27 The United States Of America As Represented By The Secretary Of The Navy Actuation mine simulator
    GB2176271B (en) 1985-06-13 1988-11-30 Schlumberger Electronics Improvements in weapon training systems
    DE3837998A1 (de) * 1988-11-09 1990-05-10 Diehl Gmbh & Co Verfahren zur simulation der auswirkung eines wirkungsfeldes
    US5027709A (en) * 1990-04-26 1991-07-02 Slagle Glenn B Magnetic induction mine arming, disarming and simulation system
    US5074793A (en) * 1990-07-30 1991-12-24 The United States Of America As Represented By The Secretary Of The Army Mine effects simulator system
    US5246372A (en) * 1990-11-05 1993-09-21 The United States Of America As Represented By The Secretary Of The Army Training grenade
    JPH04281200A (ja) * 1991-03-07 1992-10-06 Fujitsu Ltd 模擬システム
    US5207579A (en) * 1991-05-22 1993-05-04 The United States Of America As Represented By The Secretary Of The Army Antipersonnel training mine
    GB9220412D0 (en) * 1992-09-28 1992-11-11 Texas Instruments Holland Transponder systems for automatic identification purposes
    US5292254A (en) * 1993-01-04 1994-03-08 Motorola, Inc. Method for determining minefield effects in a simulated battlefield
    US5692029A (en) * 1993-01-15 1997-11-25 Technology International Incorporated Detection of concealed explosives and contraband
    US5556281A (en) 1994-02-17 1996-09-17 Motorola, Inc. Simulated area weapons effects display arrangement
    US5474452A (en) * 1994-03-04 1995-12-12 The United States Of America As Represented By The Secretary Of The Army Training simulation system for indirect fire weapons such as mortars and artillery
    EP0773699A1 (de) * 1994-05-31 1997-05-14 Capcom Co., Ltd. Schallabtasteinrichtung, spielgerät, verfahren zu dessen steuerung, spielgerät mit lichtstrahl und akustisches gerät
    IL111556A0 (en) * 1994-11-08 1995-07-31 Ramta Israel Aircraft Industry Mine simulation system
    FR2730557B1 (fr) * 1995-02-10 1997-04-11 Giat Ind Sa Mine d'exercice, dispositif de programmation et dispositif de simulation mettant en oeuvre une telle mine
    US5788500A (en) * 1995-12-04 1998-08-04 Oerlikon-Contraves Ag Continuous wave laser battlefield simulation system
    DE19617060C2 (de) 1996-04-29 1998-07-23 C O E L Entwicklungsgesellscha Verfahren und Einrichtung zur Simulation der Wirkung von Steilfeuerwaffen auf Gefechtseinheiten
    US5941708A (en) 1996-05-24 1999-08-24 Motorola, Inc. Method for simulating temporal aspects of area weapons
    ES2143840T3 (es) * 1997-01-13 2000-05-16 Se Schweizerische Elektronikun Sistema de apoyo acustico.
    FR2758635B1 (fr) * 1997-01-22 1999-04-09 Aerospatiale Systeme d'aide au deminage
    US6254394B1 (en) * 1997-12-10 2001-07-03 Cubic Defense Systems, Inc. Area weapons effect simulation system and method

    Also Published As

    Publication number Publication date
    CA2319061C (en) 2005-01-04
    NO318822B1 (no) 2005-05-09
    CA2319061A1 (en) 1999-08-05
    ID27604A (id) 2001-04-12
    NZ505993A (en) 2003-01-31
    HUP0100545A2 (hu) 2001-06-28
    HU223241B1 (hu) 2004-04-28
    DE19803337A1 (de) 1999-08-12
    KR20010033839A (ko) 2001-04-25
    EP1051589A1 (de) 2000-11-15
    CZ290680B6 (cs) 2002-09-11
    PT1051589E (pt) 2004-03-31
    TR200002186T2 (tr) 2000-12-21
    AU2608999A (en) 1999-08-16
    DE19803337C2 (de) 2002-11-21
    US6450817B1 (en) 2002-09-17
    ES2211042T3 (es) 2004-07-01
    CZ20002724A3 (cs) 2001-11-14
    HUP0100545A3 (en) 2002-01-28
    NO20003822L (no) 2000-07-26
    PL343274A1 (en) 2001-08-13
    WO1999039148A1 (de) 1999-08-05
    AU741926B2 (en) 2001-12-13
    NO20003822D0 (no) 2000-07-26

    Similar Documents

    Publication Publication Date Title
    EP1051589B1 (de) Verfahren zur simulation der bedrohung von teilnehmern einer militärischen übung durch handgranaten oder minen
    DE19523399C2 (de) Handfeuerwaffe
    DE69829776T2 (de) System und verfahren zur simulation der wirkung flächendeckender waffen
    DE60207376T3 (de) Gefechtssimulation wo zielobjekte mit einem schutzobjekt mittels einer oertlichen zusammenarbeit zwischen den zielobjekten und den betreffenden schutzobjekten miteinander verbunden sind
    EP3580731A1 (de) Verfahren zum betreiben eines authentifizierungssystems und authentifizierungssystem
    WO2011092023A1 (de) Programmierbare munition
    DE602004010880T2 (de) System und Verfahren zur Waffenwirkung-Simulation
    DE102005055099A1 (de) Einrichtung zur Simulation der Wirkung von direkt und indirekt wirkenden Waffen zur Verbesserung der Ausbildung und zur Nutzung in Gefechtsübungszentren
    EP1154221B1 (de) System und Verfahren zur Simulation von Schüssen
    DE4031089A1 (de) Minensystem
    EP1166029B2 (de) Verfahren zur gefechtsfeldsimulation
    EP3098559B1 (de) Verfahren zum starten eines flugkörpers aus einem startgerät
    DE19617060C2 (de) Verfahren und Einrichtung zur Simulation der Wirkung von Steilfeuerwaffen auf Gefechtseinheiten
    DE4229509C2 (de) Verfahren und Einrichtung zum Schützen von Radarstationen gegen Anti-Radar-Flugkörper
    DE2547593A1 (de) Fuer ein sperrsystem geeignete mine
    DE4135225C2 (de) Verfahren zum Simulieren der Wirkung von Minen auf verschiedene Minenziele sowie Simulationsmine für die Durchführung eines derartigen Verfahrens
    DE3540876A1 (de) Ergaenzungseinrichtung fuer simulatoren fuer schiessausbildung und manoever
    DE19611209A1 (de) Verfahren und Vorrichtung zur Positionsbestimmung von beweglichen Objekten
    EP2060069B1 (de) Kommunikationsverfahren zwischen komponenten eines drahtlosen kurzstreckennetzwerkes und netzwerkkomponente
    DE102004039336B4 (de) Einrichtung zur Leistungssteigerung und Verbesserung der Auswertung in einem Gefechtsübungszentrum
    DE2149701C3 (de) MH Laserlicht arbeitender Simulator für das Fernlenken militärischer Flugkörper
    WO2003083402A1 (de) Verfahren zum steuern von zieldarstellung und vorrichtung hierfür
    DE3402167A1 (de) Steuerung fuer das starten von lenkwaffen, sowie verfahren zum steuern derselben
    EP0455864A2 (de) Geschoss für Geländeüberwachung
    DD302020A9 (de) Verfahren zur Imitation von vergifteten Raeumen und des Nachweises deren Ausmasse mit strukturmaessigen Aufklaerungsgeraeten

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000420

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE ES FR GB NL PT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE ES FR GB NL PT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040211

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20040202

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2211042

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040813

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20041222

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20041229

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20050110

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20050111

    Year of fee payment: 7

    Ref country code: FR

    Payment date: 20050111

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20050120

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20050223

    Year of fee payment: 7

    NLS Nl: assignments of ep-patents

    Owner name: EADS DEUTSCHLAND GMBH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: PC4A

    Owner name: EADS DEUTSCHLAND GMBH, DE

    Effective date: 20050630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060108

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060109

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060109

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060710

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060801

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20060108

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Effective date: 20060710

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20060801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20060929

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20060109

    BERE Be: lapsed

    Owner name: *EADS DEUTSCHLAND G.M.B.H.

    Effective date: 20060131