EP1021838A1 - Verfahren und vorrichtung zum herstellen einer scheibe aus halbleitendem material - Google Patents
Verfahren und vorrichtung zum herstellen einer scheibe aus halbleitendem materialInfo
- Publication number
- EP1021838A1 EP1021838A1 EP98947547A EP98947547A EP1021838A1 EP 1021838 A1 EP1021838 A1 EP 1021838A1 EP 98947547 A EP98947547 A EP 98947547A EP 98947547 A EP98947547 A EP 98947547A EP 1021838 A1 EP1021838 A1 EP 1021838A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melt
- wafer
- semiconducting material
- silicon
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000000155 melt Substances 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000004020 conductor Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 32
- 229910052710 silicon Inorganic materials 0.000 abstract description 24
- 239000010703 silicon Substances 0.000 abstract description 24
- 239000011863 silicon-based powder Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a method and a device for producing a pane made of semiconducting material, in particular a silicon pane, for a solar cell according to the preamble of claim 1 and claim 4, respectively.
- a method for producing a polycrystalline solar cell in which a silicon substrate is produced by powder metallurgy and then the active silicon layer of the solar cell is applied to the silicon substrate.
- the silicon substrate is produced by sintering or melting a compact formed from silicon powder with the aid of an electric current through the powder compact.
- the silicon layer is applied to the silicon substrate by spinning on liquid silicon, by vapor deposition or by plasma spraying. Alternatively, the silicon layer can also be applied in powder form to the silicon substrate and then melted.
- the previously known method is relatively complicated since first the silicon substrate has to be produced and then the silicon layer has to be applied to it.
- DE 35 36 743 A1 discloses a process for the production of large-area silicon crystal bodies for solar cells, in which silicon powder is used as the starting material and is converted into film form by sintering. The film is then melted in a thermal treatment by one-sided energy irradiation up to at least half of its layer thickness and recrystallized. The remaining layer thickness is then melted in a further temperature treatment and re- crystallizes that the enlarged crystal grains formed after the second temperature treatment in the residual crystallization continue to grow over the entire layer thickness of the silicon body. This process is also relatively complicated due to the multiple temperature treatment.
- the invention is based on the object of specifying a simple and inexpensive method for producing a pane of semi-conductive material, in particular a silicon pane, for a solar cell.
- the invention is further based on the object of specifying a device for carrying out the method.
- the melt is exposed to an electrical and / or magnetic field at least during the start of solidification.
- the interaction of the field with the material crystallizing out of the melt leads to directional crystal growth, which leads to the formation of large crystal grains or an almost monocrystalline disk.
- the field according to claim 2 is a constant field, which is particularly effective if it fluctuates according to claim 3 about a central direction.
- the claim 4 characterizes the basic structure of a device for producing a disc from semiconducting material.
- FIG. 1 shows a section through a device for producing a disk from semiconducting material
- FIG. 2 shows a section through the embodiment of FIG. 1, cut along the line II-II of FIG. 1,
- FIG. 3 is a view similar to FIG. 2 with an additional capacitor
- Fig. 4 is a detailed view of the surface of a molding of Fig. 1 in section and
- Fig. 5 is a plan view of the surface shown in Fig. 4.
- a mold for producing a silicon wafer which is processed into a solar cell, has a lower part 2 and an upper part 4, which form a cavity with a degassing outlet 5 between them.
- the molded parts 2 and 4 consist for example of quartz, which is coated with tungsten towards the cavity, or of silicon carbide or other suitable materials.
- a metal plate 6 is arranged, which consists of tungsten or another material that is as resistant to high temperatures as possible. With appropriate temperature control of the lower part, however, steel or even copper is also suitable.
- Fine, high-purity silicon powder 8 is introduced into the cavity and is compressed by pressing the lower part 2 and upper part 4 together.
- electrical conductors 10 are integrated in the upper part 4, which run parallel to one another and parallel to the underside of the upper part 4.
- the underside of the upper part 4 is electrically heated, with so much heating power being carried out under the control of a control unit (not shown) that the silicon powder 8 melts.
- a control unit not shown
- the silicon powder 8 melts.
- all conductors 10 FIG. 2
- the magnetic fields running through the silicon powder 8 and generated by the individual conductors 10 add up to form a rectified magnetic field within the silicon powder 8 or the melt, which runs parallel to the underside of the upper part 4 .
- the process is carried out in such a way that the heating power applied is no longer sufficient to keep the melt liquid, its crystallization begins under the action of the magnetic field.
- the magnetic field led to the crystallization taking place homogeneously and in the same way, so that large crystal bodies or even a monocrystal is formed.
- the solidified disk resulting from the silicon powder 8 is directly connected to the metal plate 6, so that the thickness of the silicon can be less than 100 ⁇ without the disk being endangered.
- the metal plate 6 serves at the same time for contacting the silicon material.
- the doping and contacting and thus the production of the finished solar cell then takes place in the usual way, for example by diffusing in the doping material and by vapor deposition of the contact tracks.
- the metal plate 6 may be missing.
- a silicon melt can be introduced directly into the lower part 2, the electrical conductors 10 then advantageously running in the lower part 2 or additionally in the upper part 4. In special cases it is possible to work without top 4.
- the solidifying melt according to FIG. 3 can be subjected to an electrical field by the shape between the plates 12 and 14 of a capacitor is arranged, which is supplied with DC voltage. It is particularly effective to pivot the capacitor plates 12 and 14 in the sense of the double arrows about a horizontal axis, so that the melt or the crystallizing silicon wafer is penetrated by an electric field which oscillates about a central direction.
- the magnetic field caused by the electrical conductors 10 can be neutralized, in which neighboring conductors each have current flowing through them in opposite directions and are accordingly connected to a current source (not shown). It goes without saying that it is possible to switch from current flow in the same direction to current flow in the opposite direction.
- Fig. 4 shows a cross section through the underside 18 of the upper part 4, which determines the surface shape of the resulting silicon wafer.
- the underside 18 is corrugated and consists of individual pyramids arranged next to one another, the tips of which are assigned to the viewer in FIG.
- the resulting silicon wafer in this way has on its upper side a surface consisting of pyramids arranged next to one another, which improves the efficiency of the later solar cell.
- large-area silicon wafers can be produced in a simple manner with good efficiency in converting incident sunlight into electrical current.
- the thickness of the finished silicon wafers can be chosen to be very thin, so that the consumption of semiconducting material is reduced.
- Any material suitable for producing a solar cell can be used as the semiconducting material, for example germanium, selenium or gallium arsenide.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19742653 | 1997-09-26 | ||
DE19742653A DE19742653A1 (de) | 1997-09-26 | 1997-09-26 | Verfahren und Vorrichtung zum Herstellen einer Scheibe aus halbleitendem Material |
PCT/EP1998/006082 WO1999017381A1 (de) | 1997-09-26 | 1998-09-24 | Verfahren und vorrichtung zum herstellen einer scheibe aus halbleitendem material |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1021838A1 true EP1021838A1 (de) | 2000-07-26 |
Family
ID=7843794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98947547A Withdrawn EP1021838A1 (de) | 1997-09-26 | 1998-09-24 | Verfahren und vorrichtung zum herstellen einer scheibe aus halbleitendem material |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1021838A1 (de) |
JP (1) | JP2001518720A (de) |
CN (1) | CN1271465A (de) |
DE (1) | DE19742653A1 (de) |
WO (1) | WO1999017381A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD323Z (ro) * | 2009-12-29 | 2011-08-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Microfir termoelectric în izolaţie de sticlă |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57143819A (en) * | 1981-03-02 | 1982-09-06 | Agency Of Ind Science & Technol | Manufacture of polycrystalline silicon semiconductor |
DE3524983A1 (de) * | 1985-07-12 | 1987-01-22 | Siemens Ag | Verfahren zum herstellen von bandfoermigen siliziumkristallen mit horizontaler ziehrichtung |
DE3524997A1 (de) * | 1985-07-12 | 1987-01-15 | Siemens Ag | Verfahren zum herstellen von bandfoermigen siliziumkristallen mit horizontaler ziehrichtung |
US4873063A (en) * | 1986-01-06 | 1989-10-10 | Bleil Carl E | Apparatus for zone regrowth of crystal ribbons |
JPH0484467A (ja) * | 1990-07-27 | 1992-03-17 | Mitsubishi Electric Corp | 太陽電池の製造方法 |
KR0139730B1 (ko) * | 1993-02-23 | 1998-06-01 | 사또오 후미오 | 반도체 기판 및 그 제조방법 |
-
1997
- 1997-09-26 DE DE19742653A patent/DE19742653A1/de not_active Withdrawn
-
1998
- 1998-09-24 EP EP98947547A patent/EP1021838A1/de not_active Withdrawn
- 1998-09-24 JP JP2000514344A patent/JP2001518720A/ja not_active Withdrawn
- 1998-09-24 CN CN98809536A patent/CN1271465A/zh active Pending
- 1998-09-24 WO PCT/EP1998/006082 patent/WO1999017381A1/de not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO9917381A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD323Z (ro) * | 2009-12-29 | 2011-08-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Microfir termoelectric în izolaţie de sticlă |
Also Published As
Publication number | Publication date |
---|---|
JP2001518720A (ja) | 2001-10-16 |
CN1271465A (zh) | 2000-10-25 |
DE19742653A1 (de) | 1999-04-01 |
WO1999017381A1 (de) | 1999-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2820824C2 (de) | ||
DE3901042C2 (de) | ||
DE2638270C2 (de) | Verfahren zur Herstellung großflächiger, freitragender Platten aus Silicium | |
DE2638269C2 (de) | Verfahren zur Herstellung von substratgebundenem, großflächigem Silicium | |
DE1300788C2 (de) | Verfahren zur herstellung kugeliger loetperlen auf traegerplatten | |
DE2850805C2 (de) | Verfahren zum Herstellen von scheiben- oder bandförmigen Siliziumkristallen mit Kolumnarstruktur für Solarzellen | |
EP2271787B1 (de) | Verdampferkörper | |
DE3536743C2 (de) | Verfahren zum Herstellung von großflächigen Siliziumkristallkörpern für Solarzellen | |
DE2654063A1 (de) | Verfahren zum herstellen eines bandes aus polykristallinem halbleitermaterial | |
DE2754652A1 (de) | Verfahren zum herstellen von silicium-photoelementen | |
DE1127488B (de) | Halbleiteranordnung aus Silizium oder Germanium und Verfahren zu ihrer Herstellung | |
DE2917564A1 (de) | Verfahren zum herstellen von solarzellen und dadurch hergestellte gegenstaende | |
DE2523307C2 (de) | Halbleiterbauelement | |
DE3231671C2 (de) | ||
AT10749U1 (de) | Verfahren zur herstellung von clathratverbindungen | |
DE1901752A1 (de) | Verfahren zur Herstellung eines Einkristalles in einem nichtmonokristallinem Substrat | |
DE3525177A1 (de) | Verfahren und vorrichtung fuer das erschmelzen und fuer das aufdampfen von hochreinem silizium | |
DE1614391A1 (de) | Mehrfach-Halbleiteranordnung | |
DE3209548A1 (de) | Solarzellenanordnung in duennschichtbauweise aus halbleitermaterial sowie verfahren zu ihrer herstellung | |
DE4102484A1 (de) | Verfahren zur herstellung von metallscheiben sowie die verwendung von siliciumscheiben | |
DE4309319A1 (de) | Dünnschichtsolarzelle und Herstellungsverfahren dazu, Verfahren zur Herstellung eines Halbleiterrohlings und Verfahren zur Herstellung eines Halbleitersubstrates | |
EP1021838A1 (de) | Verfahren und vorrichtung zum herstellen einer scheibe aus halbleitendem material | |
DE19652818A1 (de) | Verfahren zum Herstellen einer Solarzelle sowie Solarzelle | |
DE3540452C2 (de) | Verfahren zur Herstellung eines Dünnschichttransistors | |
DE2626761A1 (de) | Verfahren und vorrichtung zum herstellen von einzelkristallschichten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000331 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
AX | Request for extension of the european patent |
Free format text: LV PAYMENT 20000331 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20020403 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1031784 Country of ref document: HK |