EP0966550B1 - Corps fritte en metal dur ou cermet et son procede de production - Google Patents

Corps fritte en metal dur ou cermet et son procede de production Download PDF

Info

Publication number
EP0966550B1
EP0966550B1 EP98919052A EP98919052A EP0966550B1 EP 0966550 B1 EP0966550 B1 EP 0966550B1 EP 98919052 A EP98919052 A EP 98919052A EP 98919052 A EP98919052 A EP 98919052A EP 0966550 B1 EP0966550 B1 EP 0966550B1
Authority
EP
European Patent Office
Prior art keywords
sintering
microwave
platelets
sintered body
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98919052A
Other languages
German (de)
English (en)
Other versions
EP0966550A1 (fr
Inventor
Klaus RÖDIGER
Klaus Dreyer
Monika Willert-Porada
Thorsten Gerdes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19725914A external-priority patent/DE19725914A1/de
Application filed by Widia GmbH filed Critical Widia GmbH
Publication of EP0966550A1 publication Critical patent/EP0966550A1/fr
Application granted granted Critical
Publication of EP0966550B1 publication Critical patent/EP0966550B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a hard metal or cermet sintered body defined in claim 1, consisting of at least one hard material phase containing WC and a binder phase and embedded WC platelets (platelike reinforcing materials).
  • the invention also relates to a method for producing a hard metal or cermet sintered body as defined in claim 4.
  • a hard metal composite body made of hard material phases, such as tungsten carbide and / or carbides or nitrides of the elements of the IVa or Va group of the periodic table, of reinforcing materials and of a binder metal phase such as cobalt, iron or nickel is known from EP 0 448 572 B1, which as reinforcing materials either single-crystal platelet-shaped reinforcing material made of borides, carbides, nitrides or carbonitrides of the elements of the IVa or VIa group of the periodic table or mixtures thereof or of SiC, Si 3 N 4 , Si 2 N 2 O, Al 2 O 3 , ZrO 2 , AlN and / or BN or single-crystalline needle-shaped reinforcing materials made of SiC, Si 3 N 4 , Si 2 N 2 O, Al 2 O 3 , ZrO 2 , AlN and / or BN.
  • the proportion of the reinforcing materials is 2 to 40% by volume, preferably 10 to 20% by volume.
  • the US-A-3 which is at least 647 401 describes anisodimensional tungsten carbide platelets of maximum dimension between 0.1 to 50 ⁇ m and a largest dimension three times as large as the smallest dimension. These platelets are bound by cobalt, which is present in an amount of 1 to 30% based on the total body weight.
  • the body has a density of 95% of the theoretical maximum density.
  • CH 522 038 describes a cemented cemented carbide body containing tungsten carbide particles, the mean grain size of which is smaller than 1 ⁇ m , at least 60% of the particles being smaller than 1 ⁇ m .
  • the metal phase content is between 1 to 30% and is composed of 8 to 33% by weight of tungsten and 67 to 62% by weight of cobalt.
  • the largest areas of the anisodimensional WC particles should be oriented practically parallel to a reference line.
  • WO 96/22399 describes a multiphase sintered body which has a first hard phase made of carbides, nitrides, carbonitrides or carbooxynitrides of the elements of the IVa, Va or VIa metals of the periodic table.
  • the second phase consists of a solid solution with particle sizes of 0.01 to 1 ⁇ m of carbides, nitrides, carbonitrides and Carbooxinitriden of at least two elements of the IVa to VIa-group of the periodic system.
  • the binder is composed of cobalt, nickel, iron, chromium, molybdenum and tungsten, as well as mixtures thereof.
  • the sintered body can contain WC platelets made of tungsten carbide with a size between 0.1 and 0.4 ⁇ m , which are to be formed in situ.
  • ultra-fine grain alloys Especially in the production of ultra-fine grain alloys but ultrafine and nano-fine starting powders also become clearly that the conventional production process due to problems with processing powders and grain enlargement apparently reach its limits during sintering.
  • microwaves describes electromagnetic radiation in the frequency range from approx. 10 8 to 10 11 Hz (corresponding to a wavelength in a vacuum of around 1 mm to 1 m).
  • Commercially available microwave generators generate monochromatic radiation, ie waves with a certain frequency. Generators with 2.45 ⁇ 10 9 Hz are widespread, which corresponds to a wavelength of 12 cm.
  • thermal radiation (Planckian radiation) has a very large frequency bandwidth and in typical sintering processes it has its energy maximum at a wavelength of 1 to 2 ⁇ m . Matter, which is exposed to electromagnetic radiation, can heat up due to the interaction with the field and thereby withdraw energy from the wave field. Since this interaction is strongly frequency-dependent, matter is also heated in the microwave field and by thermal radiation due to various heating mechanisms.
  • the interaction of matter with a microwave field takes place via the electrical dipoles or free charges present in the material.
  • the range of absorption properties of materials for microwaves ranges from transparent (oxide ceramics, some organic polymers) to partially transparent (oxide ceramics, non-oxide ceramics, filled polymers, semiconductors) to reflective (metals).
  • the behavior of a material in the microwave field depends on the microwave frequency and to a large extent on the temperature: material that is microwave-transparent at room temperature can absorb or reflect strongly at elevated temperatures. For most substances, the penetration depth of the microwaves is much greater than that for infrared radiation, which, depending on the sample size, has the result that the material - in contrast to "skin heating" with infrared radiation - can be heated in volume with microwaves.
  • the penetration depth of microwaves with a frequency of 2.45 GHz at a temperature of 20 ° C differs for different substances and has the following values: 1.7 ⁇ m for aluminum, 2.5 ⁇ m for Cobalt (as an example for metals), 4.7 ⁇ m for WC and 8.2 ⁇ m for TiC (as example for solid semiconductors), 10 m for Al 2 O 3 and 1.3 cm for H 2 O (as example for insulators) and 7.5 cm for WC with 6 M% Co, 31 cm for Al 2 O 3 with 10 M% Al and 36 cm for Al 2 O 3 with 30 M% TiC (as an example for powder metal green parts).
  • Fig. 1 shows schematically the structure of a suitable one Oven.
  • the microwave with a frequency of 2.45 GHz is from generated a magnetron and into the metallic resonator housing guided. Inside the resonator is the cemented carbide batch, the one with a microwave-transparent, thermal Insulation is surrounded. With appropriate interpretation of the The resonators are in a homogeneous magnetic field and is heated homogeneously. The measurement of the batch temperature and the coupled microwave power are used for Control of the microwave sintering process with a microprocessor. Compare the sintering profiles to microwave sintering conventional sintering in comparable sized furnaces have shown that the sintering cycle (without the cooling phase) shortened by a factor of 3 in microwave sintering can be.
  • the consumption of electrical energy the microwave sintering technology here is due to the process time reduction and because of the lower heating output during of sintering is only a fraction of the values for the conventional sintering technology.
  • a microwave sintering hard metals and also cermets with a high binder metal content (e.g. 25% by mass) as well as with a low binder metal content (for example 4% by mass) at temperatures, 50 to 100 K below that of conventional sintering lying, sintering without pressure.
  • the comparison with a conventional one Sintering shows that the bulk of the compaction in microwave sintering at much lower temperatures still takes place below the eutectic temperature.
  • the improved Compression behavior can also be seen in the simultaneous Reduction of open and closed porosity in Microwave sintering. Because of the shorter sintering times and the microwave sintered show lower sintering temperatures Hard metals have a finer structure and thus an increase in hardness up to 10 %. In use as a cutting tool when turning The microwave sintered version of cast iron showed advantages in the open area wear behavior.
  • Tungsten powder no longer in a separate process step be carburized, but in that the carburizing in the Sintering process is integrated.
  • the compacts are on the usual way of shaping made by instead of Tungsten carbide-cobalt powder mixture from a mixture of Tungsten, carbon and cobalt powder is assumed.
  • the exothermic carburization reaction of tungsten and carbon to tungsten carbide, with a heat tone of 38 kJ / mol, takes place after the binder expulsion of the compact at Temperature of around 930 ° C instead.
  • Fig. 2 is thermogravimetry (TG, DTG), dilatometry (DIL, DDIL) and dynamic differential calorimetry (DSC) a reaction sintering of a WC-6 M% Co hard metal for temperatures shown from 500 ° C.
  • the DSC signal is above 750 ° C endothermic reduction of the oxides present in the tungsten powder recognize that with the corresponding mass decrease in thermogravimetry and a first shrinkage stage of the sample in Dilatometer signal corresponds.
  • TG thermogravimetry
  • DIL dilatometry
  • DSC dynamic differential calorimetry
  • the reaction sintering is done using microwave radiation implemented (MWRS), on the one hand is a further refinement of the structure possible, on the other hand the remaining porosity can be compared the conventional reaction sintering (RS) clearly be humiliated.
  • MWRS microwave radiation implemented
  • RS conventional reaction sintering
  • HV30 Vickers hardness was after the conventional one Sintering 1560, after microwave sintering 1630, after conventional reaction sintering 1720 and after microwave reaction sintering 1770.
  • reaction sintering In addition to the material-specific advantages of reaction sintering mentioned, especially microwave reaction sintering, this method offers great potential for simplification and shortening the process flow and saving energy in the production of hard metals. Except at high temperatures carburization that occurs also falls before and after Process steps such as mixing, breaking, crushing etc. continue. A process time gain can also be achieved in this way become.
  • WC-6 M% Co hard metals with differently fine tungsten powders were manufactured using conventional (RS) and microwave heating (MWRS).
  • the tungsten powders used had an average grain size of 0.4 ⁇ m , 1 ⁇ m and 2.4 ⁇ m (in each case FSSS) with doping of 0.2 M% VC or missing VC.
  • FSSS microwave heating
  • the influence of the VC content on the structure is evident most clearly with the fine tungsten powders.
  • the WC crystals especially in the case of the RS samples, apparently have sufficient time to grow out during the sintering phase in the absence of VC.
  • the invention has for its object a simultaneous Increase in hardness and toughness in hard metal or Cemert sintered bodies to bring about the type mentioned.
  • the manufacture the method according to such a sintered body Claim 4 used.
  • the method according to the invention is in no way limited to one limited possible unimodal initial grain size distribution, rather, it can also be used with powders with a wide or bimodal Size distribution to be worked.
  • the reaction sintering of powders, both tungsten and Contain carbon, but also in the starting mixture WC may contain, completely or as a partial Reaction sintering is carried out, the partial proportions of the reaction sintering between 1% and 100% (based on the complete sintering process).
  • the grain growth in the sintered body can be controlled.
  • WC platelet growth can also be controlled via the partial share of reaction sintering, thereby reducing the platelet concentration is controllable in the sintered body.
  • the volume fraction of the WC platelets on the total sintered body volume is preferably up to 25 vol%.
  • the platelet content should be measured as a proportion of the area of a metallographic cut max. 20% amount, with all WC crystals with a length / width ratio, the so-called aspect ratio of greater than 3 be counted.
  • the maximum aspect ratio is preferably Max. 10 ⁇ 1.
  • the rate of growth to be controlled.
  • microwave reaction sintering is that a more homogeneous structure, better compaction, i.e. a smaller residual porosity can be achieved as well as shorter ones Sintering times and lower sintering temperatures. Resulting from this lower manufacturing costs.
  • 0.4 ⁇ m W powder, 0.2% addition of VC, 6% co-powder with a grain size of 1.6 ⁇ m and a stoichiometric addition of carbon in the form of Carbon black mixed and adding acetone for 36 hours in one Ball mill has been ground before then using 2% wax Pressing aids have been added, distilled off and granulated are.
  • the granules were pressed into green bodies by means of die presses and in the microwave sintering oven at 500 ° C / hour to 900 ° C heated up and then with the onset of the carburization reaction to the sintering temperature within 10 min using microwaves heated from 1350 ° C. After a waiting time of 20 min the sample is cooled by turning off the microwave heater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Claims (7)

  1. Corps fritté en métal dur ou cermet, se composant d'au moins une phase de matière dure contenant du WC et d'une phase liant ainsi que de platelets de WC enrobés,
    caractérisé par le fait
    que les métaux nécessaires à la formation de la ou bien des phase(s) dure(s), le carbone et les proportions de tungstène et de carbone nécessaires à la formation des platelets de WC, ainsi que, le cas échéant, d'autres métaux, carbures et nitrures métalliques et/ou des composés d'azote solides en tant que fournisseurs pour carbone et/ou azote ont été précomprimés au moins en partie respectivement en forme de poudre en un corps formé et ont été soumis ensuite au moins temporairement à un frittage-réaction dans un champ à micro-ondes ayant une densité de flux d'énergie de 0,01 à 10 W/cm3.
  2. Corps fritté en métal dur ou cermet selon la revendication 1, caractérisé par le fait qu'il contient jusqu'à 12 %, de préférence 8 % de VC et/ou de Cr3C2 par rapport à la phase liant.
  3. Corps fritté en métal dur ou cermet selon la revendication 1 ou 2, caractérisé par le fait que les platelets de WC présentent un rapport diamètre/épaisseur de ≥3, de préférence de ≥5, et/ou que la proportion des platelets de WC - par rapport au volume total - est < 25 pourcent volumétrique.
  4. Procédé de fabrication d'un corps fritté en métal dur ou cermet selon l'une des revendications 1 à 3, caractérisé par le fait que les métaux nécessaires à la formation de la ou bien des phase(s) dure(s), le carbone et les proportions de tungstène et de carbone nécessaires à la formation des platelets de WC, ainsi que, le cas échéant, d'autres métaux, carbures et nitrures métalliques et/ou des composés d'azote solides en tant que fournisseurs pour carbone et/ou azote sont précomprimés au moins en partie respectivement en forme de poudre en un corps formé et sont soumis ensuite au moins temporairement à un frittage-réaction dans un champ à micro-ondes ayant une densité de flux d'énergie de 0,01 à 10 W/cm3.
  5. Procédé selon la revendication 4, caractérisé par le fait que la fraction de matière produite par fittage-réaction, en particulier le WC, est comprise entre 1 % et 100 %, les fractions restantes ont été ajoutées dans la forme chimique dans laquelle elles existent plus tard dans le corps fritté fini.
  6. Procédé selon l'une des revendications 4 ou 5, caractérisé par le fait que la croissance des platelets de WC est commandée par la part du frittage-réaction à micro-ondes par rapport à l'ensemble du processus de frittage à micro-ondes.
  7. Procédé selon l'une des revendications 4 à 6, caractérisé par le fait que l'on ajoute au mélange de départ des inhibiteurs de croissance de grains, de préférence jusqu'à 12 %, en outre de préférence jusqu'à 8 % de VC et/ou de Cr3C2.
EP98919052A 1997-03-10 1998-03-06 Corps fritte en metal dur ou cermet et son procede de production Expired - Lifetime EP0966550B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19709527 1997-03-10
DE19709527 1997-03-10
DE19725914 1997-06-19
DE19725914A DE19725914A1 (de) 1997-03-10 1997-06-19 Hartmetall- oder Cermet-Sinterkörper und Verfahren zu dessen Herstellung
PCT/DE1998/000674 WO1998040525A1 (fr) 1997-03-10 1998-03-06 Corps fritte en metal dur ou cermet et son procede de production

Publications (2)

Publication Number Publication Date
EP0966550A1 EP0966550A1 (fr) 1999-12-29
EP0966550B1 true EP0966550B1 (fr) 2001-10-04

Family

ID=26034637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98919052A Expired - Lifetime EP0966550B1 (fr) 1997-03-10 1998-03-06 Corps fritte en metal dur ou cermet et son procede de production

Country Status (4)

Country Link
US (1) US6293986B1 (fr)
EP (1) EP0966550B1 (fr)
AT (1) ATE206481T1 (fr)
WO (1) WO1998040525A1 (fr)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058437A1 (fr) * 2001-01-17 2002-07-25 The Penn State Research Foundation Traitement par hyperfrequences au moyen de couches de materiau en poudre absorbant les micro-ondes
CA2409433A1 (fr) * 2002-10-23 2004-04-23 Consolidated Civil Enforcement Inc. Methode de traitement cryogenique de carbure de tungstene contenant du cobalt
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
US7384443B2 (en) * 2003-12-12 2008-06-10 Tdy Industries, Inc. Hybrid cemented carbide composites
US20050211475A1 (en) 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US20080101977A1 (en) * 2005-04-28 2008-05-01 Eason Jimmy W Sintered bodies for earth-boring rotary drill bits and methods of forming the same
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US7687156B2 (en) 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US7597159B2 (en) 2005-09-09 2009-10-06 Baker Hughes Incorporated Drill bits and drilling tools including abrasive wear-resistant materials
US7997359B2 (en) 2005-09-09 2011-08-16 Baker Hughes Incorporated Abrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials
US7703555B2 (en) 2005-09-09 2010-04-27 Baker Hughes Incorporated Drilling tools having hardfacing with nickel-based matrix materials and hard particles
US8002052B2 (en) 2005-09-09 2011-08-23 Baker Hughes Incorporated Particle-matrix composite drill bits with hardfacing
US7776256B2 (en) * 2005-11-10 2010-08-17 Baker Huges Incorporated Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US7784567B2 (en) 2005-11-10 2010-08-31 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US7802495B2 (en) 2005-11-10 2010-09-28 Baker Hughes Incorporated Methods of forming earth-boring rotary drill bits
US7807099B2 (en) 2005-11-10 2010-10-05 Baker Hughes Incorporated Method for forming earth-boring tools comprising silicon carbide composite materials
US8770324B2 (en) 2008-06-10 2014-07-08 Baker Hughes Incorporated Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded
US7913779B2 (en) 2005-11-10 2011-03-29 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US20070151769A1 (en) * 2005-11-23 2007-07-05 Smith International, Inc. Microwave sintering
US20070138706A1 (en) * 2005-12-20 2007-06-21 Amseta Corporation Method for preparing metal ceramic composite using microwave radiation
ES2386626T3 (es) 2006-04-27 2012-08-23 Tdy Industries, Inc. Cabezas perforadoras de suelos modulares con cuchillas fijas y cuerpos de cabezas perforadoras de suelos modulares con cuchillas fijas
CA2662966C (fr) 2006-08-30 2012-11-13 Baker Hughes Incorporated Procedes permettant d'appliquer un materiau resistant a l'usure aux surfaces externes d'outils de forage dans le sol et structures resultantes
US7541561B2 (en) * 2006-09-01 2009-06-02 General Electric Company Process of microwave heating of powder materials
US7326892B1 (en) 2006-09-21 2008-02-05 General Electric Company Process of microwave brazing with powder materials
BRPI0717332A2 (pt) 2006-10-25 2013-10-29 Tdy Ind Inc Artigos tendo resistência aperfeiçoada à rachadura térmica
US7775416B2 (en) * 2006-11-30 2010-08-17 General Electric Company Microwave brazing process
US8272295B2 (en) * 2006-12-07 2012-09-25 Baker Hughes Incorporated Displacement members and intermediate structures for use in forming at least a portion of bit bodies of earth-boring rotary drill bits
US7775287B2 (en) 2006-12-12 2010-08-17 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US20080138533A1 (en) * 2006-12-12 2008-06-12 General Electric Company Microwave process for forming a coating
US8574686B2 (en) * 2006-12-15 2013-11-05 General Electric Company Microwave brazing process for forming coatings
US8409318B2 (en) * 2006-12-15 2013-04-02 General Electric Company Process and apparatus for forming wire from powder materials
US7946467B2 (en) * 2006-12-15 2011-05-24 General Electric Company Braze material and processes for making and using
US7841259B2 (en) 2006-12-27 2010-11-30 Baker Hughes Incorporated Methods of forming bit bodies
US8512882B2 (en) 2007-02-19 2013-08-20 TDY Industries, LLC Carbide cutting insert
US20080202814A1 (en) * 2007-02-23 2008-08-28 Lyons Nicholas J Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same
US20080210555A1 (en) * 2007-03-01 2008-09-04 Heraeus Inc. High density ceramic and cermet sputtering targets by microwave sintering
US7846551B2 (en) 2007-03-16 2010-12-07 Tdy Industries, Inc. Composite articles
US20090139607A1 (en) * 2007-10-28 2009-06-04 General Electric Company Braze compositions and methods of use
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
JP2011523681A (ja) 2008-06-02 2011-08-18 ティーディーワイ・インダストリーズ・インコーポレーテッド 超硬合金−金属合金複合体
US7703556B2 (en) 2008-06-04 2010-04-27 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US8261632B2 (en) 2008-07-09 2012-09-11 Baker Hughes Incorporated Methods of forming earth-boring drill bits
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8201610B2 (en) 2009-06-05 2012-06-19 Baker Hughes Incorporated Methods for manufacturing downhole tools and downhole tool parts
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US8440314B2 (en) 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
JP2011051841A (ja) * 2009-09-02 2011-03-17 Ismanj:Kk シリコン合金焼結体の製造方法
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
CN103003010A (zh) 2010-05-20 2013-03-27 贝克休斯公司 形成钻地工具的至少一部分的方法,以及通过此类方法形成的制品
US8490674B2 (en) 2010-05-20 2013-07-23 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools
CN102985197A (zh) 2010-05-20 2013-03-20 贝克休斯公司 形成钻地工具的至少一部分的方法,以及通过此类方法形成的制品
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
EP3055272B1 (fr) 2013-10-10 2021-08-11 Raytheon Technologies Corporation Régulation de microstructure de matériau inorganique par chauffage indirect à l'aide d'un rayonnement électromagnétique
EP3057924B1 (fr) 2013-10-14 2019-10-30 United Technologies Corporation Procédé de pyrolyse d'un matériau polymère précéramique à l'aide d'un rayonnement électromagnétique
ES2769895T3 (es) * 2013-12-17 2020-06-29 Hyperion Materials & Tech Sweden Ab Composición para una nueva calidad para herramientas de corte
CN104190942B (zh) * 2014-08-19 2016-08-31 天津市华辉超硬耐磨技术有限公司 一种硬质合金的微波烧结方法
RU2625922C1 (ru) * 2016-01-29 2017-07-19 Вазген Эдвардович Лорян Реактор для получения самораспространяющимся высокотемпературным синтезом тугоплавких неорганических соединений
DE102016207028A1 (de) * 2016-04-26 2017-10-26 H.C. Starck Gmbh Hartmetall mit zähigkeitssteigerndem Gefüge
EP3577242B1 (fr) 2017-01-31 2022-10-12 Tallinn University of Technology Procédé de production d'un matériau composite de carbure cémenté-tungstène bimodal à double structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451791A (en) 1967-08-16 1969-06-24 Du Pont Cobalt-bonded tungsten carbide
US3647401A (en) 1969-06-04 1972-03-07 Du Pont Anisodimensional tungsten carbide platelets bonded with cobalt
JPS6039137A (ja) * 1983-08-12 1985-02-28 Mitsubishi Metal Corp 炭化タングステン基超硬合金の製造法
JPH04502347A (ja) 1988-12-16 1992-04-23 クルップ・ヴィディア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 硬質金属複合体およびその製造方法
US5451365A (en) 1993-05-24 1995-09-19 Drexel University Methods for densifying and strengthening ceramic-ceramic composites by transient plastic phase processing
DE4340652C2 (de) * 1993-11-30 2003-10-16 Widia Gmbh Verbundwerkstoff und Verfahren zu seiner Herstellung
US5580666A (en) 1995-01-20 1996-12-03 The Dow Chemical Company Cemented ceramic article made from ultrafine solid solution powders, method of making same, and the material thereof
DE69525248T2 (de) 1995-08-23 2002-09-26 Toshiba Tungaloy Co. Ltd., Kawasaki Flächen-kristallines Wolframkarbid enthaltendes Hartmetall, Zusammensetzung zur Herstellung von flächen-kristallines Wolframkarbid und Verfahren zur Herstellung des Hartmetalls
DE19601234A1 (de) 1996-01-15 1997-07-17 Widia Gmbh Verbundkörper und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
US6293986B1 (en) 2001-09-25
WO1998040525A1 (fr) 1998-09-17
ATE206481T1 (de) 2001-10-15
EP0966550A1 (fr) 1999-12-29

Similar Documents

Publication Publication Date Title
EP0966550B1 (fr) Corps fritte en metal dur ou cermet et son procede de production
DE69231381T2 (de) Verfahren zur herstellung zementierter karbidartikel
DE4340652C2 (de) Verbundwerkstoff und Verfahren zu seiner Herstellung
DE60110237T2 (de) Verfahren zur herstellung eines diamanthaltigen abrasiven produkts
DE69227503T2 (de) Hartlegierung und deren herstellung
DE2927079C2 (fr)
DE68910190T3 (de) Verfahren zur Herstellung von Sputtertargets aus Wolfram-Titan.
DE69431096T2 (de) Herstellung eines Dauermagneten
EP0433856B1 (fr) Matériaux mixtes à base de métaux durs comprenant des borures, nitrures et une matrice en métal ferreux
DE69032117T2 (de) Verfahren zur herstellung von gesinterten keramischen materialien
DE10035719A1 (de) Verfahren zum Herstellen von intermetallischen Sputtertargets
DE69428672T2 (de) Verfahren zur herstellung eines hochschmelzenden metallischen silizidtargets
WO2019234016A1 (fr) Alliage de molybdène à densité optimisée
DE69320633T2 (de) Gesinterte karbonitridlegierung auf titanbasis mit extrem feiner korngrösse mit hoher zähigkeit und/oder verschleissfestigkeit
Lima et al. Spark plasma sintering of nanostructured powder composites (WC–Ni) prepared by carboreduction reaction
Kakeshita et al. Martensitic transformations in cermets with a metastable austenitic binder I: WC(Fe Ni C)
DE69206148T2 (de) Cermets auf Uebergangsmetallboridbasis, ihre Herstellung und Anwendung.
EP1409408B1 (fr) Procede pour produire du diborure de magnesium ainsi que des corps moules en diborure de magnesium a partir d&#39;hydrure de magnesium et de bore elementaire par synthese a plasma pulse
DE19725914A1 (de) Hartmetall- oder Cermet-Sinterkörper und Verfahren zu dessen Herstellung
DE69210954T2 (de) Verfahren zur Herstellung eines weichmagnetischen Komposit-Materials und weichmagnetisches Komposit-Material
DE69520249T2 (de) Sehr feine Verbundpulver und Verfahren zu ihrer Herstellung
DE60027018T2 (de) Synthese und konsolidierung von nanophasenmaterielien
DE4418598A1 (de) Verfahren zur Herstellung einer hochdispersen Pulvermischung insbesondere zur Herstellung von Bauteilen aus schwer sinterbaren Werkstoffen mit intermetallischen Phasen
DE10117657A1 (de) Komplex-Borid-Cermet-Körper, Verfahren zu dessen Herstellung und Verwendung dieses Körpers
Kakeshita et al. Martensitic transformation in cermets with metastable austenitic binder: II. TiC Fe Ni C

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR IT LU SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010111

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR IT LU SE

REF Corresponds to:

Ref document number: 206481

Country of ref document: AT

Date of ref document: 20011015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59801638

Country of ref document: DE

Date of ref document: 20011108

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020306

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120319

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120317

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120228

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 206481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130306

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130306

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150305

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801638

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001