EP0433856B1 - Matériaux mixtes à base de métaux durs comprenant des borures, nitrures et une matrice en métal ferreux - Google Patents

Matériaux mixtes à base de métaux durs comprenant des borures, nitrures et une matrice en métal ferreux Download PDF

Info

Publication number
EP0433856B1
EP0433856B1 EP90123854A EP90123854A EP0433856B1 EP 0433856 B1 EP0433856 B1 EP 0433856B1 EP 90123854 A EP90123854 A EP 90123854A EP 90123854 A EP90123854 A EP 90123854A EP 0433856 B1 EP0433856 B1 EP 0433856B1
Authority
EP
European Patent Office
Prior art keywords
titanium
volume
iron
zirconium
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90123854A
Other languages
German (de)
English (en)
Other versions
EP0433856A1 (fr
Inventor
Dietrich Dr. Lange
Lorenz Dr. Sigl
Karl-Alexander Dr. Schwetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elektroschmelzwerk Kempten GmbH
Original Assignee
Elektroschmelzwerk Kempten GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elektroschmelzwerk Kempten GmbH filed Critical Elektroschmelzwerk Kempten GmbH
Priority to AT90123854T priority Critical patent/ATE102263T1/de
Publication of EP0433856A1 publication Critical patent/EP0433856A1/fr
Application granted granted Critical
Publication of EP0433856B1 publication Critical patent/EP0433856B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides

Definitions

  • Hard metals which are understood to mean sintered materials made of metallic hard materials based on high-melting carbides of the metals from groups 4b to 6b of the periodic table and low-melting binder metals from the iron group, in particular cobalt, have long been known. They are mainly used for machining technology and to combat wear. For the production of these hard metals from the usually powdery hard materials, the metal binders are required, which must wet the hard material during the sintering process with the formation of an alloy (solution). This is the only way to create the tough, hard microstructure of the hard metals suitable for use, among which the WC-Co and TiC-WC-Co systems are best known.
  • binders from the iron group are also suitable for other high-melting metallic hard materials, such as borides and nitrides (cf. "Ullmanns Enzyklopadie der techn. Chemie", vol. 12, 4th edition 1976, chapter “hard metals” , Pp. 515-521).
  • Alloys based on nitrides and carbonitrides of titanium and zirconium with a very high proportion of the binder, in particular iron, (at least 50% and more) are particularly tough, but no longer very hard (HV 1050-1175) (cf. US-A -4,145,213 by Oskarsson et al.). Such materials are believed to be less brittle than the boride-based systems mentioned above. However, due to their low hardness, they are not suitable for processing hard and high-temperature materials such as SiC-reinforced aluminum alloys.
  • Density at least 97% TD based on the theoretically possible density of the entire mixed material, Grain size of the hard material phase maximum 5.5 ⁇ m, Hardness (HV 30) at least 1200, Flexural strength (measured according to the 4-point method at room temperature) at least 1,000 MPa and Breaking resistance K IC at least 8.0 MPa m 1/2 .
  • Tungsten carbide mixed materials in which the hard material components consist of titanium boride and titanium nitride, together, preferably 50-97% by volume, have proven particularly useful Make up 50 - 90 vol .-%, and in particular about 80 vol .-%, of the entire mixed material. 2.5-40% by volume of the hard material components preferably consist of titanium nitride. The missing proportion of up to 100% by volume in the entire mixed material is distributed among the oxides that may be present, preferably titanium oxide, with a proportion between 0 to 10% by volume and the metallic binding phase from the low-carbon iron or Iron alloy. Alloy components for low-carbon iron types are preferably chromium or chromium-nickel mixtures.
  • the hard metal mixing materials according to the invention can be produced by processes known per se, for example by pressure-free sintering of fine starting powder mixtures or by infiltration of porous moldings from the hard material components with the low-carbon binder.
  • borides and nitrides selected as hard material components should be as free as possible from carbon-containing impurities, which have a disadvantageous effect on the formation of the microstructure in the finished sintered body.
  • titanium diboride which may contain boron carbide in its manufacture, can react not only with graphite, as already mentioned above, but also with boron carbide in the presence of iron to form the undesired Fe2B phase during the sintering process, as the following equations illustrate: TiB2 + 4Fe + C ---> TiC + 2Fe2B (1) TiB2 + 12Fe + B4C ---> TiC + 6Fe2B (2)
  • Oxygen which is predominantly in the form of adhering oxides of titanium and zirconium, which includes, for example, TiO2, Ti2O3 and / or TiO and the corresponding oxides of zirconium, does not interfere, however, and can contain up to about 2% by weight in the Starting powders are tolerated.
  • the separate addition of such oxides, in particular titanium oxide does not interfere with the sintering process and that, for example, up to 10% by volume of titanium oxide is present in the finished mixed material, the properties of which remain practically unchanged.
  • the oxygen can also be present, in whole or in part, in the form of so-called oxynitrides of titanium and zircon.
  • iron types with a C content of less than 0.1, preferably less than 0.05% by weight are advantageously used.
  • Carbonyl iron powders with an Fe content of 99.95 to 99.98% by weight have proven particularly useful.
  • These low-carbon types of iron can contain, for example, chromium in amounts of approximately 12% by weight or nickel-chromium mixtures of, for example, 8% by weight of nickel and 18% by weight of chromium as alloy components.
  • grinding units can be used for this purpose, such as ball mills, planetary ball mills and attritors, in which grinding media and grinding vessels are made of material of their own, which in the present case means, for example, titanium diboride and low-carbon iron types.
  • the powder mixtures obtained after the mixed grinding are optionally mixed with temporary binders or pressing aids and made free-flowing by spray drying. They are then pressed by conventional measures, such as cold isostatic pressing or die pressing, to form green bodies of the desired shape with a density of at least 60% TD.
  • An annealing treatment at about 400 ° C removes binders or pressing aids without residue.
  • the green bodies are then heated in the absence of oxygen to temperatures in the range from 1350 ° C. to 1900 ° C., preferably from 1550 ° C. to 1800 ° C., and 10 to 150 minutes, preferably 15, until a liquid iron-rich phase is formed at this temperature to 45 Minutes, held and then slowly cooled to room temperature.
  • This sintering process is advantageously carried out in furnace units which are equipped with metallic heating elements, for example made of tungsten, tantalum or molybdenum, in order to avoid unwanted carburization of the sintered bodies.
  • the sintered bodies expediently before cooling to room temperature, by applying pressure by means of a gaseous pressure transmission medium such as argon, at temperatures from 1200 ° C to 1400 ° C under a pressure of 150 to 250 MPa, preferably about 200 MPa, 10 continue to heat up to 15 minutes.
  • a gaseous pressure transmission medium such as argon
  • the hard material components for example titanium boride, titanium nitride and optionally titanium oxide
  • these powder mixtures can be molded into green bodies with a density of 50 to 60% TD.
  • These porous green bodies are then surrounded in a refractory crucible, for example made of boron nitride or aluminum oxide, with a powder bed of the desired binding metal, which only partially covers the surface of the porous body.
  • the crucibles are then heated in furnace assemblies with metallic heating elements (W, Ta, Mo) in a vacuum free of carbon impurities to temperatures above the melting point of the metallic binding phase, whereby the liquid binding metal penetrates into the porous green body by infiltration until its pores are practically completely closed are.
  • metallic heating elements W, Ta, Mo
  • non-porous mixing materials which also have a density of almost 100% TD.
  • the time required for this is essentially determined by the time required for the binder metal to melt.
  • the process is generally completed in a period of 30 seconds to 30 minutes depending on the size of the workpiece.
  • the hard metal mixed materials according to the invention thus produced are not only very dense, but also very hard, tough and strong.
  • the desired combination of toughness and hardness can be varied over a wide range via the mixing ratio of hard materials, since titanium nitride, for example, is somewhat tougher than titanium diboride with a somewhat lower hardness.
  • titanium nitride for example, is somewhat tougher than titanium diboride with a somewhat lower hardness.
  • even small amounts of titanium nitride can considerably reduce the crater wear that usually occurs with indexable inserts, although such an influence was not to be expected from a hard material component softer than titanium diboride.
  • the mixed materials according to the invention are also suitable as cutting tools for machining very hard materials, for example with SiC-reinforced aluminum alloys and nickel-based superalloys, as well as for impact-free machining such as core drilling or sawing of building materials containing silicon dioxide, for example concrete.
  • Example 2 The same amounts of titanium diboride and titanium nitride as in Example 1 were mixed with 600 g of a powder made of stainless steel, which contained 18% by weight of nickel, 8% by weight of chromium and ⁇ 0.05% by weight of carbon and an average starting particle size of 20 ⁇ m had ground and processed under the same conditions as described in Example 1. The sintering was carried out at a temperature of 1650 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Claims (6)

  1. Matériaux mixtes à base de métaux durs, à base de borures et de nitrures à haut point de fusion des métaux du groupe 4b du système périodique et de métaux à bas point de fusion constitués de fer et d'alliages à base de fer, caractérisés en ce que les matériaux mixtes sont constitués par
    (1) 40 à 97 % en volume de borures choisis dans le groupe constitué par le diborure de titane, le diborure de zirconium et les cristaux mixtes de ces diborures,
    (2) 1 à 48 % en volume de nitrures choisis dans le groupe constitué par le nitrure de titane et le nitrure de zirconium,
    (3) 0 à 10 % en volume d'oxydes choisis dans le groupe constitué par l'oxyde de titane et l'oxyde de zirconium, les constituants (2) et (3) pouvant aussi être présents entièrement ou partiellement sous forme d'oxynitrures choisis dans le groupe constitué par l'oxynitrure de titane et l'oxynitrure de zirconium, et
    (4) 2 à 59 % en volume de fer et d'alliages à base de fer pauvres en carbone
       et ont les propriétés suivantes:
       une densité d'au moins 97 % de la densité théorique, par rapport à la densité possible en théorie du matériau mixte total,
       une taille maximale des particules de la phase de substance dure de 5,5 µm,
       une dureté (dureté Vickers 30) d'au moins 1200,
       une résistance à la flexion (mesurée par la méthode en quatre points à la température ambiante) d'au moins 1,000 MPa et
       une résistance à la rupture KIC d'au moins 8,0 MPa m1/2.
  2. Matériaux mixtes selon la revendication 1, caractérisés en ce que les constituants de la substance dure (1) et (2) consistent en diborure de titane et en nitrure de titane qui représentent ensemble 50 à 97 % en volume du matériau mixte total, et en ce que le constituant de la substance dure (3) consiste en oxyde de titane en une proportion de 0,1 à 10 % en volume.
  3. Matériaux mixtes selon la revendication 1 et 2, caractérisés en ce que le constituant de métal liant (4) consiste en un alliage à base de fer pauvre en carbone qui contient comme composants de l'alliage du chome ou des mélanges de chrome-nickel.
  4. Procédé de préparation des matériaux mixtes selon la revendication 1, caractérisé en ce que l'on soumet des poudres de départ très pures des constituants de la substance dure (1), (2) et éventuellement (3) et le métal liant (4) à un broyage autogène et on comprime à froid les mélanges fins de poudres de départ ainsi obtenus en les façonnant en corps crus, puis on les soumet à un frittage sans pression dans une atmosphère exempte de carbone et à l'abri de l'oxygène, à des températures comprises entre 1350°C et 1900°C.
  5. Procédé selon la revendication 4, caractérisé en ce que l'on soumet les matériaux mixtes frittés sans pression à un recompactage isostatique à chaud en appliquant une pression à l'aide d'un milieu échangeur de pression gazeux à des températures de 1200°C à 1400°C sous une pression de 150 à 250 MPa.
  6. Procédé de préparation des matériaux mixtes selon la revendication 1, caractérisé en ce que l'on soumet des poudres de départ très pures des constituants de la substance dure (1), (2) et éventuellement (3) à un broyage autogène et on comprime à froid les mélanges fins de poudres de départ ainsi obtenus en les façonnant en corps crus, et on chauffe ces derniers en y versant une poudre composée du constituant métallique liant (4), dans une atmosphère exempte de carbone, à une température supérieure au point de fusion de la phase liante, jusqu'à ce que le métal liant fondu pénètre par infiltration dans les corps crus poreux et en bouche entièrement les pores.
EP90123854A 1989-12-15 1990-12-11 Matériaux mixtes à base de métaux durs comprenant des borures, nitrures et une matrice en métal ferreux Expired - Lifetime EP0433856B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90123854T ATE102263T1 (de) 1989-12-15 1990-12-11 Hartmetall-mischwerkstoffe auf basis von boriden, nitriden und eisenbindemetallen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3941536A DE3941536A1 (de) 1989-12-15 1989-12-15 Hartmetall-mischwerkstoffe auf basis von boriden, nitriden und eisenbindemetallen
DE3941536 1989-12-15

Publications (2)

Publication Number Publication Date
EP0433856A1 EP0433856A1 (fr) 1991-06-26
EP0433856B1 true EP0433856B1 (fr) 1994-03-02

Family

ID=6395567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123854A Expired - Lifetime EP0433856B1 (fr) 1989-12-15 1990-12-11 Matériaux mixtes à base de métaux durs comprenant des borures, nitrures et une matrice en métal ferreux

Country Status (8)

Country Link
US (1) US5045512A (fr)
EP (1) EP0433856B1 (fr)
JP (1) JPH08944B2 (fr)
AT (1) ATE102263T1 (fr)
AU (1) AU633665B2 (fr)
CA (1) CA2031640A1 (fr)
DE (2) DE3941536A1 (fr)
ES (1) ES2050923T3 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920019961A (ko) * 1991-04-26 1992-11-20 기시다 도시오 고영율재료 및 이것을 이용한 표면피복공구 부재
FR2678286B1 (fr) * 1991-06-28 1994-06-17 Sandvik Hard Materials Sa Cermets a base de borures des metaux de transition, leur fabrication et leurs applications.
GB9127416D0 (en) * 1991-12-27 1992-02-19 Atomic Energy Authority Uk A nitrogen-strengthened alloy
US5401292A (en) * 1992-08-03 1995-03-28 Isp Investments Inc. Carbonyl iron power premix composition
DE4237423A1 (de) * 1992-11-05 1994-05-11 Kempten Elektroschmelz Gmbh Verbundwerkstoffe auf der Basis von Titandiborid und Verfahren zu ihrer Herstellung
US5427987A (en) * 1993-05-10 1995-06-27 Kennametal Inc. Group IVB boride based cutting tools for machining group IVB based materials
US5409868A (en) * 1993-12-23 1995-04-25 Electrofuel Manufacturing Co. Ceramic articles made of compositions containing borides and nitrides
DE69434357T2 (de) * 1993-12-27 2006-03-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Legierung auf Stahlbasis mit hohem Modul und Verfahren zu deren Herstellung
JPH07300656A (ja) * 1994-04-30 1995-11-14 Daido Metal Co Ltd 高温用焼結軸受合金及びその製造方法
US5637816A (en) * 1995-08-22 1997-06-10 Lockheed Martin Energy Systems, Inc. Metal matrix composite of an iron aluminide and ceramic particles and method thereof
JP3381487B2 (ja) * 1995-11-06 2003-02-24 株式会社日立製作所 原子力プラント制御棒駆動装置用ローラ及びそれを用いた制御棒駆動装置
US6103651A (en) * 1996-02-07 2000-08-15 North American Refractories Company High density ceramic metal composite exhibiting improved mechanical properties
US5679611A (en) * 1996-10-09 1997-10-21 Eastman Kodak Company Ceramic article containing a core comprising tetragonal zirconia and a shell comprising zirconium nitride
US5688731A (en) * 1996-11-13 1997-11-18 Eastman Kodak Company Ceramic articles containing doped zirconia having high electrical conductivity
US5696040A (en) * 1996-12-20 1997-12-09 Eastiman Kodak Company Ceramic article containing a core comprising zirconia and a shell comprising zirconium boride
US5702766A (en) * 1996-12-20 1997-12-30 Eastman Kodak Company Process of forming a ceramic article containing a core comprising zirconia and a shell comprising zirconium boride
US7175686B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Erosion-corrosion resistant nitride cermets
US7544228B2 (en) * 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
US7153338B2 (en) * 2003-05-20 2006-12-26 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
US7731776B2 (en) * 2005-12-02 2010-06-08 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with superior erosion performance
US8323790B2 (en) * 2007-11-20 2012-12-04 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with low melting point binder
DE102008014355A1 (de) * 2008-03-14 2009-09-17 Esk Ceramics Gmbh & Co. Kg Verbundwerkstoff auf Basis von Übergangsmetalldiboriden, Verfahren zu dessen Herstellung und dessen Verwendung
US11174538B2 (en) * 2017-02-06 2021-11-16 The Regents Of The University Of California Tungsten tetraboride composite matrix and uses thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE659917C (de) * 1931-10-24 1938-05-13 Fried Krupp Akt Ges Gesinterte Hartmetallegierungen
JPS568886B2 (fr) * 1974-09-09 1981-02-26
GB2038879A (en) * 1979-01-03 1980-07-30 Kennametal Inc Sintered Cemented Titanium Diboride Niobium Nitride
JPS55128560A (en) * 1979-03-27 1980-10-04 Agency Of Ind Science & Technol Boride based ultrahard heat resistant material
US4419130A (en) * 1979-09-12 1983-12-06 United Technologies Corporation Titanium-diboride dispersion strengthened iron materials
JPS5837274B2 (ja) * 1980-08-26 1983-08-15 工業技術院長 高強度複合焼結材料
JPS5837274A (ja) * 1981-08-31 1983-03-04 日産自動車株式会社 キイシリンダの保持構造
WO1984004713A1 (fr) * 1983-05-27 1984-12-06 Ford Werke Ag Procede de fabrication et d'utilisation d'un corps comportant du diborure de titane
US4636481A (en) * 1984-07-10 1987-01-13 Asahi Glass Company Ltd. ZrB2 composite sintered material
JPS6150909A (ja) * 1984-08-20 1986-03-13 Ichimaru Fuarukosu Kk 植物生薬の水溶性抽出エキス含有美白化粧料
JPS61130437A (ja) * 1984-11-28 1986-06-18 Kawasaki Steel Corp 金属蒸着用容器の製造方法
JPS627673A (ja) * 1985-06-19 1987-01-14 旭硝子株式会社 ZrB↓2系焼結体
US4889836A (en) * 1988-02-22 1989-12-26 Gte Laboratories Incorporated Titanium diboride-based composite articles with improved fracture toughness
US4929417A (en) * 1989-04-21 1990-05-29 Agency Of Industrial Science And Technology Method of manufacture metal diboride ceramics

Also Published As

Publication number Publication date
EP0433856A1 (fr) 1991-06-26
JPH06128680A (ja) 1994-05-10
AU6802690A (en) 1991-06-20
JPH08944B2 (ja) 1996-01-10
DE59004781D1 (de) 1994-04-07
DE3941536A1 (de) 1991-06-20
US5045512A (en) 1991-09-03
ES2050923T3 (es) 1994-06-01
CA2031640A1 (fr) 1991-06-16
AU633665B2 (en) 1993-02-04
ATE102263T1 (de) 1994-03-15

Similar Documents

Publication Publication Date Title
EP0433856B1 (fr) Matériaux mixtes à base de métaux durs comprenant des borures, nitrures et une matrice en métal ferreux
EP0800495B1 (fr) Production d'un corps moule ceramique contenant de l'aluminure
EP0353542B1 (fr) Matières composites polycristallines frittées sous pression à base de nitrure de bore hexagonal, d'oxydes et de carbures
DE69227503T2 (de) Hartlegierung und deren herstellung
DE102006013746A1 (de) Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
EP0902771B1 (fr) Corps moule en cermet et son procede de fabrication
WO1996020902A9 (fr) Production d'un corps moule ceramique contenant de l'aluminure
DE3238555C2 (fr)
DE3027401C2 (fr)
DE2009696A1 (de) Durch intermetallische Verbindungen verbundene Massen aus Aluminiumoxid und metallischer Verbindung
DE68925310T2 (de) Komplexe Cermets aus Boriden
DE69412293T2 (de) Durch Siliciumcarbid und Partikel verstärktes keramisches Schneidwerkzeug
DE69018868T2 (de) Siliciumnitridkeramik mit einer Metallsilizidphase.
DE68918506T2 (de) Hochfeste hochzähe TiB2-Keramik.
DE69410490T2 (de) Durch Whisker und Partikel verstärktes keramisches Schneidwerkzeug
DE102014204277B4 (de) VERSCHLEIßFESTE WOLFRAMCARBID-KERAMIKEN UND VERFAHREN ZU IHRER HERSTELLUNG
DE69206148T2 (de) Cermets auf Uebergangsmetallboridbasis, ihre Herstellung und Anwendung.
DE3618727A1 (de) Gesintertes cermet mit einem gehalt an zrb(pfeil abwaerts)2(pfeil abwaerts)
DE2630687C2 (fr)
DE3529265C2 (fr)
EP1560799A2 (fr) Composites ceramique-metal ou metal-ceramique
EP0232711B1 (fr) Plaquette de coupe
EP0600255B1 (fr) Composites à base de diborure de titane et procédé de leur fabrication
DE102004051288B4 (de) Polykristallines Hartstoffpulver, Kompositwerkstoff mit einem polykristallinen Hartstoffpulver und Verfahren zur Herstellung eines polykristallinen Hartstoffpulvers
DE19629993B4 (de) Mischkeramik auf Aluminiumoxidbasis, Verfahren zu deren Herstellung und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19930405

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 102263

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59004781

Country of ref document: DE

Date of ref document: 19940407

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050923

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941112

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941114

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941118

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941121

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941129

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19941214

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941230

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 90123854.3

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951211

Ref country code: AT

Effective date: 19951211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951212

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19951212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

Ref country code: BE

Effective date: 19951231

BERE Be: lapsed

Owner name: ELEKTROSCHMELZWERK KEMPTEN G.M.B.H.

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051211