US20080101977A1 - Sintered bodies for earth-boring rotary drill bits and methods of forming the same - Google Patents

Sintered bodies for earth-boring rotary drill bits and methods of forming the same Download PDF

Info

Publication number
US20080101977A1
US20080101977A1 US11932027 US93202707A US2008101977A1 US 20080101977 A1 US20080101977 A1 US 20080101977A1 US 11932027 US11932027 US 11932027 US 93202707 A US93202707 A US 93202707A US 2008101977 A1 US2008101977 A1 US 2008101977A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
binder
bit body
carbide
cobalt
comprise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11932027
Inventor
Jimmy Eason
James Westhoff
John Stevens
Original Assignee
Eason Jimmy W
Westhoff James C
Stevens John H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits

Abstract

The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In addition, the hard particles may comprise at least one of (i) cast carbide (WC+W2C) particles, (ii) transition metal carbide particles selected from the carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and (iii) sintered cemented carbide particles.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 11/116,752, filed Apr. 28, 2005, pending, the disclosure of which is incorporated herein by reference in its entirety.
  • FIELD OF TECHNOLOGY
  • This invention relates to improvements to earth-boring bits and methods of producing earth-boring bits. More specifically, the invention relates to earth-boring bit bodies, roller cones, insert roller cones, cones and teeth for roller cone earth-boring bits and methods of forming earth-boring bit bodies, roller cones, insert roller cones, cones and teeth for roller cone earth-boring bits.
  • BACKGROUND OF THE TECHNOLOGY
  • Earth-boring bits may have fixed or rotatable cutting elements. Earth-boring bits with fixed cutting elements typically include a bit body machined from steel or fabricated by infiltrating a bed of hard particles, such as cast carbide (WC+W2C), tungsten carbide (WC), and/or sintered cemented carbide with a binder such as, for example, a copper-base alloy. Several cutting inserts are fixed to the bit body in predetermined positions to optimize cutting. The bit body may be secured to a steel shank that typically includes a threaded pin connection by which the bit is secured to a drive shaft of a downhole motor or a drill collar at the distal end of a drill string.
  • Steel bodied bits are typically machined from round stock to a desired shape, with topographical and internal features. Bard-facing techniques may be used to apply wear-resistant materials to the face of the bit body and other critical areas of the surface of the bit body.
  • In the conventional method for manufacturing a bit body from hard particles and a binder, a mold is milled or machined to define the exterior surface features of the bit body. Additional hand milling or clay work may also be required to create or refine topographical features of the bit body.
  • Once the mold is complete, a preformed bit blank of steel may be disposed within the mold cavity to internally reinforce the bit body and provide a pin attachment matrix upon fabrication. Other sand, graphite, transition or refractory metal based inserts, such as those defining internal fluid courses, pockets for cutting elements, ridges, lands, nozzle displacements, junk slots, or other internal or topographical features of the bit body, may also be inserted into the cavity of the mold. Any inserts used must be placed at precise locations to ensure proper positioning of cutting elements, nozzles, junk slots, etc. in the final bit.
  • The desired hard particles may then be placed within the mold and packed to the desired density. The hard particles are then infiltrated with a molten binder, which freezes to form a solid bit body including a discontinuous phase of hard particles within a continuous phase of binder.
  • The bit body may then be assembled with other earth-boring bit components. For example, a threaded shank may be welded or otherwise secured to the bit body, and cutting elements or inserts (typically cemented tungsten carbide, or diamond or a synthetic polycrystalline diamond compact (“PDC”)) are secured within the cutting insert pockets, such as by brazing, adhesive bonding, or mechanical affixation. Alternatively, the cutting inserts may be bonded to the face of the bit body during furnacing and infiltration if thermally stable PDC's (“TSP”) are employed.
  • Rotatable earth-boring bits for oil and gas exploration conventionally comprise cemented carbide cutting inserts attached to cones that form part of a roller-cone assembled bit or comprise milled teeth formed in the cutter by machining. The milled teeth are typically hardfaced with tungsten carbide in an alloy steel matrix. The bit body of the roller cone bit is usually made of alloy steel.
  • Earth-boring bits typically are secured to the terminal end of a drill string, which is rotated from the surface or by mud motors located just above the bit on the drill string. Drilling fluid or mud is pumped down the hollow drill string and out nozzles formed in the bit body. The drilling fluid or mud cools and lubricates the bit as it rotates and also carries material cut by the bit to the surface.
  • The bit body and other elements of earth-boring bits are subjected to many forms of wear as they operate in the harsh down hole environment. Among the most common form of wear is abrasive wear caused by contact with abrasive rock formations. In addition, the drilling mud, laden with rock cuttings, causes erosive wear on the bit.
  • The service life of an earth-boring bit is a function not only of the wear properties of the PDCs or cemented carbide inserts, but also of the wear properties of the bit body (in the case of fixed cutter hits) or cones (in the case of roller cone hits). One way to increase earth-boring bit service life is to employ bit bodies or cones made of materials with improved combinations of strength, toughness, and abrasion erosion resistance.
  • Accordingly, there is a need for improved bit bodies for earth-boring bits having increased wear resistance, strength and toughness.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a composition for forming a bit body for an earth-boring bit. The bit body comprises hard particles, wherein the hard particles comprise at least one of carbides, nitrides, borides, silicides and oxides and solid solutions thereof and a binder binding together the hard particles. The hard particles may comprise at least one transition metal carbide selected from carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten or solid solutions thereof. The hard particles may be present as individual or mixed carbides and/or as sintered cemented carbides. Embodiments of the binder may comprise at least one metal selected from cobalt, nickel, iron and alloys thereof. In a further embodiment, the binder may further comprise at least one melting point reducing constituent selected from a transition metal carbide up to 60 weight percent, one or more transition elements up to 50 weight percent, carbon up to 5 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In one embodiment, the binder comprises 40 to 50 weight percent of tungsten carbide and 40 to 60 weight percent of at least one or iron, cobalt, and nickel. For the purpose of this invention, transition elements are defined as those belonging to groups IVB, VB, and VIB of the periodic table.
  • Another embodiment of the composition for forming a matrix body comprises hard particles and a binder, wherein the binder has a melting point in the range of 1050° C. to 1350° C. The binder may be an alloy comprising at least one of iron, cobalt, and nickel and may further comprise at least one of a transition metal carbide, a transition element, carbon, boron, silicon, chromium, manganese, silver, aluminum, copper, tin, and zinc. More preferably, the binder may be an alloy comprising at least one of iron, cobalt, and nickel and at least one of tungsten carbide, tungsten, carbon, boron, silicon, chromium, and manganese.
  • A further embodiment of the invention is a composition for forming a matrix body, the composition comprising hard particles of a transition metal carbide and a binder comprising at least one of nickel iron, and cobalt and having a melting point less than 1350° C. The binder may further comprise at least one of a transition metal carbide, tungsten carbide, tungsten, carbon, boron, silicon, chromium, manganese, silver, aluminum, copper, tin, and zinc.
  • In the manufacture of bit bodies, hard particles and, optionally, inserts may be placed within a bit body mold. The inserts may be incorporated into the articles of the present invention by any method. For example, the inserts may be added to the mold before filling the mold with the powdered metal or hard particles and any inserts present may be infiltrated with a molten binder, which freezes to form a solid matrix body including a discontinuous phase of hard particles within a continuous phase of binder. Embodiments of the present invention also include methods of forming articles, such as, but not limited to, bit bodies for earth-boring bits, roller cones, and teeth for rolling cone drill bits. An embodiment of the method of forming an article may comprise infiltrating a mass of hard particles comprising at least one transition metal carbide with a binder comprising at least one of nickel, iron, and cobalt and having a melting point less than 1350° C. Another embodiment includes a method comprising infiltrating a mass of hard particles comprising at least one transition metal carbide with a binder having a melting point in the range of 1050° C. to 1350° C. The binder may comprise at least one of iron, nickel, and cobalt, wherein the total concentration of iron, nickel, and cobalt is from 40 to 99 weight percent by weight of the binder. The binder may further comprise at least one of a selected transition metal carbide, tungsten carbide, tungsten, carbon, boron, silicon, chromium, manganese, silver, aluminum, copper, tin, and zinc in a concentration effective to reduce the melting point of the iron, nickel, and/or cobalt. The binder may be a eutectic or near eutectic mixture. The lowered melting point of the binder facilitates proper infiltration of the mass of hard particles.
  • A further embodiment of the invention is a method of producing an earth-boring bit, comprising casting the earth-boring bit from a molten mixture of at least one of iron, nickel, and cobalt and a carbide of a transition metal. The mixture may be a eutectic or near eutectic mixture. In these embodiments, the earth-boring bit may be cast directly without infiltrating a mass of hard particles.
  • Unless otherwise indicated, all numbers expressing quantities of ingredients, time, temperatures, and so forth used in the present specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, may inherently contain certain errors necessarily resulting from the standard deviations found in their respective testing measurements.
  • The reader will appreciate the foregoing details and advantages of the present invention, as well as others, upon consideration of the following detailed description of embodiments of the invention. The reader also may comprehend such additional details and advantages of the present invention upon making and/or using embodiments within the present invention.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The features and advantages of the present invention may be better understood by reference to the accompanying figures in which:
  • FIG. 1 is a schematic cross-sectional view of an embodiment of bit body for an earth-boring bit;
  • FIG. 2 is a graph of the results of a two cycle DTA, from 900° C. to 1400° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 45% tungsten carbide and about 55% cobalt;
  • FIG. 3 is a graph of the results of a two cycle DTA, from 900° C. to 1300° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 45% tungsten carbide, about 53% cobalt, and about 2% boron:
  • FIG. 4 is a graph of the results of a two cycle DTA, from 900° C. to 1400° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 45% tungsten carbide, about 53% nickel, and about 2% boron:
  • FIG. 5 is a graph of the results of a two cycle DTA, from 900° C. to 1200° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 96.3% nickel and about 3.7% boron;
  • FIG. 6 is a graph of the results of a two cycle DTA, from 900° C. to 1300° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 88.4% nickel and about 11.6% silicon;
  • FIG. 7 is a graph of the results of a two cycle DTA, from 900° C. to 1200° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 96% cobalt and about 4% boron;
  • FIG. 8 is a graph of the results of a two cycle DTA, from 900° C. to 1300° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 87.5% cobalt and about 12.5% silicon;
  • FIG. 9 is a photomicrograph of a material produced by infiltrating a mass of hard particles with a binder consisting essentially of cobalt and boron;
  • FIG. 10 is a photomicrograph of a material produced by infiltrating a mass of hard particles with a binder consisting essentially of cobalt and boron.
  • FIG. 11 is a photomicrograph of a material produced by infiltrating a mass of hard particles with a binder consisting essentially of cobalt and boron;
  • FIG. 12 is a photomicrograph of a material produced by infiltrating a mass of hard particles with a binder consisting essentially of cobalt and boron; and
  • FIG. 13 is a photomicrograph of a material produced by infiltrating a mass of cast carbide particles and a cemented carbide insert with a binder consisting essentially of cobalt and boron.
  • FIG. 14 is a representation of an embodiment of a bit body of the present invention;
  • FIGS. 15 a, 15 b and 15 c are graph of Rotating Beam Fatigue Data for compositions that could be used in embodiments of the present invention including FL-25 having approximately 25 volume % binder (FIG. 15 a) FL-30 having approximately 30 volume % binder (FIG. 15 b), and FL-35 having approximately 35 volume % binder; and
  • FIG. 16 is a representation of an embodiment of a roller cone of the present invention.
  • DESCRIPTION ON THE INVENTION
  • Embodiments of the present invention relate to a composition for the formation of bit bodies for earth-boring bits, roller cones, insert roller cones, cones and teeth for roller cone drill bits and methods of making a bit body for such articles. Additionally, the method may be used to make other articles. Certain embodiments of a bit body of the present invention comprise at least one discontinuous hard phase and a continuous binder phase binding together the hard phase. Embodiments of the compositions and methods of the present invention provide increased service life for the bit body, roller cones, insert roller cones, teeth, and cones produced from the composition and method and thereby improve the service life of the earth-boring bit or other tool. The body material of the bit body, roller cone, insert roller cone, cone provides the overall properties to each region of the article.
  • A typical bit body 10 of a fixed cutter earth-boring bit is shown in FIG. 1. Generally, a bit body 10 comprises attachment means 11 on a shank 12 and blank region 12A incorporated in the bit body 10. The shank 12, blank region 12A, and pin may each independently be made of an alloy of steels or at least one discontinuous hard phase and a continuous binder phase, and the attachment means 11, shank 12, and blank region 12A may be attached to the bit body by any method such as, but not limited to brazed, threaded connections, pins, keyways, shrink fits, adhesives, diffusion bonding, interference fits, or any other mechanical or chemical connection. However, in embodiments of the present invention the shank 12 including the attachment means may be made from an alloy steel or the same or different composition of hard particles in a binder as other portions of the bit body. As such, the bit body 10 may be constructed having various regions, and each region may comprise a different concentration, composition, and crystal size of hard particles or binder, for example. This allows tailoring the properties in specific regions of the article as desired for a particular application. As such, the article may be designed so the properties or composition of the regions may change abruptly or more gradually between different regions of the article. The example bit body 10 of FIG. 1 comprises three regions. For example, the top region 13 may comprise a discontinuous hard phase of tungsten and/or tungsten carbide, the mid section 14 may comprise a discontinuous hard phase of coarse cast tungsten carbide (W2C, WC), tungsten carbide, an or sintered cemented carbide particles, and the bottom region 15, if present, may comprise a discontinuous hard phase of fine cast carbide, tungsten carbide, and/or sintered cemented carbide particles. The bit body 10 also includes pockets 16 along the bottom of the bit body 10 and into which cutting inserts may be disposed. The pockets may be incorporated directly in the bit body by the mold, by machining the green or brown billet, as inserts, for example, incorporated during bit body fabrication, or as inserts attached after the bit body is completed by brazing or other attachment method, as described above, for example. The bit body 10 may also include internal fluid courses, ridges, lands, nozzles, junk slots, and any other conventional topographical features of an earth-boring bit body. Optionally, these topographical features may be defined by preformed inserts, such as inserts 17 that are located at suitable positions on the bit body mold. Embodiments of the present invention include bit bodies comprising cemented carbide inserts. In a conventional bit body, the hard phase particles are bound in a matrix of copper-base alloy, such as, brasses or bronzes. Embodiments of the bit body of the present invention may comprise or be fabricated with new binders to import improved wear resistance, strength and toughness to the bit body.
  • The manufacturing process for hard particles in a binder typically involves consolidating metallurgical powder (typically a particulate ceramic and binder metal) to form a green billet. Powder consolidation processes using conventional techniques may be used, such as mechanical or hydraulic pressing in rigid dies, and wet-bag or dry-bag isostatic pressing. The green billet may then be presintered or fully sintered to further consolidate and densify the powder. Presintering results in only a partial consolidation and densification of the part. A green billet may be presintered at a lower temperature than the temperature to be reached in the final sintering operation to produce a presintered billet (“brown billet”). A brown billet has relatively low hardness and strength as compared to the final fully sintered article, but significantly higher than the green billet. During manufacturing the article may be machined as a green billet, brown billet, or as a fully sintered article. Typically, the machinability of a green or brown billet is substantially easier than the machinability of the fully sintered article. Machining a green billet or a brown billet may be advantageous if the fully sintered part is difficult to machine or would require grinding to meet the required dimensional final tolerances rather than machining. Other means to improve machinability of the part may also be employed such as addition of machining agents to close the porosity of the billet, a typical machining agent is a polymer. Finally, sintering at liquid phase temperature in conventional vacuum furnaces or at high pressures in a SinterHip furnace may be carried out. The billet may be over pressure sintered at a pressure of 300-2000 psi and at a temperature of 1350-1500° C. Pre-sintering and sintering of the billet causes removal of lubricants, oxide reduction, densification, and microstructure development. As stated above, subsequent to sintering, the bit body, roller cone, insert roller cone or cone may be further appropriately machined or grinded to form the final configuration.
  • The present invention also includes a method of producing a bit body, roller cone, insert roller cone or cone with regions of different properties of compositions. An embodiment of the method includes placing a first metallurgical powder into a first region of a void within a mold and second metallurgical powder in a second region of the void of the mold. In some embodiments, the mold may be segregated into the two or more regions by, for example, placing a physical partition, such as paper or a polymeric material, in the void of the mold to separate the regions. The metallurgical powders may be chosen to provide, after consolidation and sintering, cemented carbide materials having the desired properties as described above. In another embodiment, a portion of at least the first metallurgical powder and the second metallurgical powder are placed in contact, without partitions, within the mold. A wax or other binder may be used with the metallurgical powders to help form the regions without use of physical partitions.
  • An article with a gradient change in properties or composition may also be formed by, for example, placing a first metallurgical powder in a first region of a mold. A second portion of the mold may then be filled with a metallurgical powder comprising a blend of the first metallurgical powder and a second metallurgical powder. The blend would result in an article having at least one property between the same property in an article formed by the first and second metallurgical powder independently. This process may be repeated until the desired composition gradient or compositional structure is complete in the mold and, typically would end with filling a region of the mold with the second metallurgical powder. Embodiments of this process may also be performed with or without physical partitions. Additional regions may be filled with different materials, such as a third metallurgical powder or even a previously copper alloy infiltrated article. The mold may then be isostatically compressed to consolidate the metallurgical powders to form a billet. The billet is subsequently sintered to further densify the billet and to form an autogenous bond between the regions.
  • Any binder may be used, as previously described, such as nickel, cobalt, iron and alloys of nickel, cobalt, and iron. Additionally, in certain embodiments, the binder used to fabricate the bit body may have a melting point between 1050° C. and 1350° C. As used herein, the melting point or the melting temperature is the solidus of the particular composition. In other embodiments, the binder comprises an alloy of at least one of cobalt, iron, and nickel, wherein the alloy has a melting point of less than 1350° C. In other embodiments of the composition of the present invention, the composition comprises at least one of cobalt, nickel, and iron and a melting point reducing constituent. Pure cobalt, nickel, and iron are characterized by high melting points (approximately 1500° C.), and hence the infiltration of beds of hard particles by pure molten cobalt, iron, or nickel is difficult to accomplish in a practical manner without formation of excessive porosity or undesirable phases. However, an alloy of at least one of cobalt, iron, nickel may be used if it includes a sufficient amount of at least one melting point reducing constituent. The melting point reducing constituent may be at least one of a transition metal carbide, a transition element, tungsten, carbon, boron, silicon, chromium, manganese, silver, aluminum, copper, tin, zinc, as well as other elements that alone or in combination can be added in amounts that reduce the melting point of the binder sufficiently so that the binder may be used effectively to form a bit body by the selected method. A binder may effectively be used to form a bit body if the binder's properties, for example, melting point, molten viscosity, and infiltration distance, are such that the bit body may be cast without an excessive amount of porosity. Preferably, the melting point reducing constituent is at least one of a transition metal carbide, a transition metal, tungsten, carbon, boron, silicon, chromium and manganese. It may be preferable to combine two or more of the above melting point reducing constituents to obtain a binder effective for infiltrating a mass of hard particles. For example, tungsten and carbon may be added together to produce a greater melting point reduction than produced by the addition of tungsten alone and, in such a case, the tungsten and carbon may be added in the form of tungsten carbide. Other melting point reducing constituents may be added in a similar manner.
  • The one or more melting point reducing constituents may be added alone or in combination with other binder constituents in any amount that produces a binder composition effective for producing a bit body. In addition, the one or more melting point reducing constituents may be added such that the binder is a eutectic or near eutectic composition. Providing a binder with eutectic or near-eutectic concentration of ingredients ensures that the binder will have a lower melting point, which may facilitate casting and infiltrating the bed of hard particles. In certain embodiments, it is preferable for the one or more melting point reducing constituents to be present in the binder in the following weight percentages based on the total binder weight: tungsten may be present up to 55%, carbon may be present up to 4%, boron may be present up to 10%, silicon may be present up to 20% chromium may be present up to 20%, and manganese may be present up to 25%. In certain other embodiments, it may be preferable for the one or more melting point reducing constituents to be present in the binder in one or more of the following weight percentage based on the total binder weight: tungsten may be present from 30 to 55%, carbon may be present from 1.5 to 4%, boron may be present from 1 to 10%, silicon may be present from 2 to 20%, chromium may be present from 2 to 20%, and manganese may be present from 10 to 25%. In certain other embodiments of the composition of the present invention the melting point reducing constituent may be tungsten carbide present from 30 to 60 weight %. Under certain casting conditions and binder concentrations, all or a portion of the tungsten carbide will precipitate from the binder upon freezing and will form a hard phase. This precipitated hard phase may be in addition to any hard phase present as hard particles in the mold. However, if no hard particles are disposed in the mold or in a section of the mold all the hard phase particles in the bit body or in the section of the bit body may be formed as tungsten carbide precipitated during casting.
  • Embodiments of the articles of the present invention may include 50% or greater volumes of hard particles or hard phase, in certain embodiments it may be preferable for the hard particles or hard phase to comprise between 50 and 80 volume % of the article, more preferably, for such embodiments the hard phase may comprise between 60 and 80 volume % of the article. As such, in certain embodiments, the binder phase may comprise less than 50 volume % of the article, or preferably between 20 and 50 volume % of the article. In certain embodiments, the binder may comprise between 20 and 40 volume % of the article.
  • Embodiments of the present invention also comprise bit bodies for earth-boring bits and other articles comprising transition metal carbides wherein the bit body comprises a volume fraction of tungsten carbide greater than 75 volume %. It is now possible to prepare bit bodies having such a volume fraction of, for example, tungsten carbide due to the method of the present invention, embodiments of which are described below. An embodiment of the method comprises infiltrating a bed of tungsten carbide hard particles with a binder that is a eutectic or near eutectic composition of at least one of cobalt, iron, and nickel and tungsten carbide. It is believed that bit bodies comprising concentrations of discontinuous phase tungsten carbide of up to 95% by volume may be produced by methods of the present invention if a bed of tungsten is infiltrated with a molten eutectic or near eutectic composition of tungsten carbide and at least one of cobalt, iron, and nickel. In contrast, conventional infiltration methods for producing bit bodies may only be used to produce bit bodies having a maximum of about 72% by volume tungsten carbide. The inventors have determined that the volume concentration of tungsten carbide in the cast bit body and other articles can be 75% up to 95% if using as infiltrated a eutectic or near eutectic composition of tungsten carbide and at least one of cobalt, iron, and nickel. Presently, there are limitations in the volume percentage of hard phase that may be formed in a bit body due to limitations in the packing density of a mold with hard particles and the difficulties in infiltrating a densely packed mass of hard particles. However, precipitating carbide from an infiltrant binder comprising a eutectic or near eutectic composition avoids these difficulties. Upon freezing of the binder in the bit body mold, the additional hard phase is formed by precipitation from the molten infiltrant during cooling. Therefore, a greater concentration of hard phase is formed in the bit body than could be achieved if the molten binder lack dissolved tungsten carbide. Use of molten binder/infiltrant compositions at or near the eutectic allows higher volume percentages of hard phase in bit bodies and other articles than previously available.
  • The volume percent of tungsten carbide in the bit body may be additionally increased by incorporating cemented carbide inserts into the bit body. The cemented carbide inserts may be used for forming internal fluid courses, pockets for cutting elements, ridges, lands, nozzle displacements, junk slots, or other topographical features of the bit body, or merely to provide structural support, stiffness, toughness, strength, or wear resistance at selected locations with the body or holder. Conventional cemented carbide inserts may comprise from 70 to 99 volume % of tungsten carbide if prepared by conventional cemented carbide techniques. Any known cemented carbide may be used as inserts in the bit body, such as, but not limited to, composites of carbides of at least one of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten in a binder of at least one of cobalt, iron, and nickel. Additional alloying agents may be present in the cemented carbides as are known in the art.
  • Embodiments of the composition for forming a bit body also comprise at least one hard particle type. As stated above, the bit body also may comprise various regions comprising different types and/or concentrations of hard particles. For example, bit body 10 of FIG. 1 may comprise a bottom section 15 of a harder wear resistant discontinuous hard phase material with a fine particle size and a mid section 14 of a tougher discontinuous hard phase material with a relatively coarse particle size. The hard phase or hard particles of any section may comprise at least one carbide, nitride, boride, oxide, cast carbide, cemented carbide, mixtures thereof, and solid solutions thereof. In certain embodiments, the hard phase may comprise at least one cemented carbide comprising at least one of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten. The cemented carbides may have any suitable particle size or shape, such as, but not limited to irregular, spherical, oblate and prolate shapes.
  • Cemented carbide grades with tungsten carbide in a cobalt binder have a commercially attractive combination of strength, fracture toughness and wear resistance. “Strength” is the stress at which a material ruptures or fails. “Toughness” is the ability of a material to absorb energy and deform plastically before fracturing. Toughness is proportional to the area under the stress-strain curve from the origin to the breaking point. See MCGRAW-HILL DICTIONARY OF SCIENTIFIC AND TECHNICAL TERMS (5th ed. 1994). “Wear resistance” is the ability of a material to withstand damage to its surface. Wear generally involves progressive loss of material, due to a relative motion between a material and a contacting surface or substance. See METALS HANDBOOK DESK EDITION (2d ed. 1998). “Fracture Toughness” is the critical stress at a crack tip necessary to propagate that crack and is usually characterized by the “critical stress intensity factor (Kic).
  • The strength, toughness and wear resistance of a cemented carbide are related to the average grain size of the dispersed hard phase and the volume (or weight) fraction of the binder phase present in the conventional cemented carbide. Generally, an increase in the average grain size of tungsten carbide and/or an increase in the volume fraction of the cobalt binder will result in an increase in fracture toughness. However, this increase in toughness is generally accompanied by a decrease in wear resistance. The cemented carbide metallurgist is thus challenged to develop cemented carbides with both high wear resistance and high fracture toughness while attempting to design grades for demanding applications.
  • The bit body 140 of FIG. 14 may comprise sections comprising different concentrations or compositions of components to provide various properties to specific locations within the body, such as wear resistance, toughness, or corrosion resistance. For example, the insert pocket regions 141 in the area around the drill bit cutting inserts 142, the gage pad 143, or nozzle outlet region 144, a roller cone blade region, or the exterior of the crown 145 may comprise a more wear resistant material. In addition, embodiments of the bit body of the present invention may have regions of high toughness, such as in the internal region of a blade 146, an internal region of a roller cone, at least an internal region of the shank or pin, or a region adjacent to the shank. The properties of different regions of the bit body, roller cone, insert roller cone, or cone may also be tailored to provide a region that is more easily machined or corrosion resistant, for example.
  • Embodiments of the bit body, roller cone, insert roller cone, or cone may comprise unique properties that may not be achieved in conventional bit bodies, roller cones, insert roller cones, and cones. Samples of compositions suitable for the present invention were produced for testing. The nominal compositions of the test samples are shown in Table 1.
    Sample Cobalt, wt % Nickel, wt % WC, wt %
    FL-25 15 10 Bal.
    FL-30 18 12 Bal.
    FL-35 23 14 Bal.
  • As can be seen from Table 2, embodiments of the present invention comprise body materials having transverse rupture strength greater than 300 ksi. Conventional bit bodies comprising body materials of steel or hard particles infiltrated with brass or bronze do not have transverse rupture strengths as high as the embodiments of the present invention.
  • FIGS. 15 a, 15 b and 15 c are graphs of fully reversed Rotating Beam Fatigue Data for test samples of composition suitable for embodiments of the present invention listed in Table 1. As can be seen, test samples have a fully reversed bending stress of greater than 100 ksi at (10) 7 cycles.
  • Several properties of the body materials of the regions of earth boring tools contribute to the service life of tool. These properties of the body materials include, but may not be limited to, strength, stiffness, wear or abrasion resistance, and fatigue resistance. A bit body, roller one, insert roller cone, or cone may comprise more than one region each comprising different body materials. Strength is typically measured as a transverse rupture strength or ultimate tensile strength. Stiffness may be measured as a Young's modulus. The properties of embodiments of the present invention and prior art copper based matrices are listed in Table 2. As can be seen, the embodiments of the present invention have TRS values greater than 250 psi, in certain embodiments the TRS may be greater than 300 ksi or even greater than 400 ksi. The Young's modulus of embodiments of the present invention exceed 55×106 psi, and, preferably, for certain applications requiring greater stiffness, embodiments may have a Young's modulus of greater than 75×106 psi or even greater than 90×106 psi. In addition to the favorable TRS and Young's modulus values, embodiments of the present invention additionally comprise an increased hardness. Embodiments of the present invention may be tailored to have a hardness of greater than 65 HRA or by reducing the concentration of binder, for example, the hardness of specific embodiments may be increased to greater than 75 HRA or even greater than 85 HRA in certain embodiments.
  • The abrasion resistance, as measured according to ASTM B611, of embodiments of the body materials of the present invention may be greater than 1.0, or greater than 1.4. In certain applications or regions of the earth boring tool, embodiments of the body materials of the present invention may have an abrasion resistance of from 2 to 14.
  • Embodiments of the present invention comprise body materials that also include combinations of properties that are applicable for the bit bodies, roller cones, insert roller cones, and cones. For example, embodiments of the present invention may comprise a body material having a transverse rupture strength greater than 200 ksi together, or greater than 250 ksi, with a Young's modulus greater than 40×106 psi. Other embodiments of the present invention may comprise a body material having a fatigue resistance greater than 30 ksi in combination with a Young's modulus greater than 30×106 psi. Such combinations of properties provide drilling articles that in certain applications will have a greater service life than conventional drilling articles.
    TABLE 2
    Comparison of Material Properties
    Prior Art
    Property Carbide 6-16% Co Carbide (FL30) Matrix (Broad) Test Method
    Density, g/cm3 13.94 to 14.95 12.70 10.0 to 13.5 Standard
    Wear 2 to 14 1.47 No data ASTM B611-85
    TRS, ksi 300 to 500 339 100 to 175 ASTM B-406-96
    Compression, ksi 400 to 800 388 136 to 225 ASTM E0-89
    Proportional Limit, ksi 125 to 350 69 28 to 54
    Modulus, ×106 psi 78 to 95 60 27 to 50 ASTM E494-95
    Hardness 84 to 92 HRA 78 HRA 10 to 50 HRC ASTM B94-92
  • Additionally, certain embodiments of the composition of the present invention may comprise from 30 to 95 volume % of hard phase and from 5 to 70 volume % of binder phase. Isolated regions of the bit body may be within a broader range of hard phase concentrations, from for example, 30 to 99 volume % hard phase. This may be accomplished, for example, by disposing hard particles in various packing densities in certain locations within the mold or by placing cemented carbide inserts in the mold prior to casting the bit body or other article. Additionally, the bit body may be formed by casting more than one binder into the mold.
  • A difficulty with fabricating a bit body or holder comprising a binder including at least one of cobalt, iron, and nickel by an infiltration method stems from the relatively high melting points of cobalt, iron, and nickel. The melting point of each of these metals at atmospheric pressure is approximately 1500° C. In addition, since cobalt, iron, and nickel have high solubilities in the liquid state for tungsten carbide, it is difficult to prevent premature freezing of, for example, a molten cobalt-tungsten or nickel-tungsten carbide alloy while attempting to infiltrate a bed of tungsten carbide particles when casting an earth-boring bit body. This phenomenon may lead to the formation of pin-holes in the casting even with the use of high temperatures, such as greater than 1400° C., during the infiltration process.
  • Embodiments of the method of the present invention may overcome the difficulties associated with cobalt, iron and nickel infiltrated cast composites by use of a prealloyed cobalt-tungsten carbide eutectic or near eutectic composition (30 to 60% tungsten carbide and 40 to 70% cobalt, by weight). For example, a cobalt alloy having a concentration of approximately 43 weight % of tungsten carbide has a melting point of approximately 1300° C. See FIG. 2. The lower melting point of the eutectic or near-eutectic alloy relative to cobalt, iron, and nickel, along with the negligible freezing range of the eutectic or near eutectic composition, can greatly facilitate the fabrication of cobalt-tungsten carbide based diamond bit bodies, as well as cemented carbide cones and roller cone bits. Eutectic or near-eutectic mixtures of cobalt-tungsten carbide, nickel-tungsten carbide, cobalt-nickel-tungsten carbide and iron-tungsten carbide alloys, for example, can be expected to exhibit far higher strength and toughness levels compared with brass- and bronze-based composites at equivalent abrasion/erosion resistance levels. These alloys can also be expected to be machinable using conventional cutting tools.
  • Certain embodiments of the method of the invention comprise infiltrating a mass of hard particles with a binder that is a eutectic or near eutectic composition comprising at least one of cobalt, iron, and nickel and tungsten carbide, and wherein the binder has a melting point less than 1350° C. As used herein, a near eutectic concentration means that the concentrations of the major constituents of the composition are within 10 weight % of the eutectic concentrations of the constituents. The eutectic concentration of tungsten carbide in cobalt is approximately 43 weight percent. Eutectic compositions are known or easily approximated by one skilled in the art. Casting the eutectic or near eutectic composition may be performed with or without hard particles in the mold. However, it may be preferable that upon solidification the composition forms a precipitated hard tungsten carbide phase and a binder phase. The binder may further comprise alloying agents, such as at least one of boron, silicon, chromium, manganese, silver, aluminum, copper, tin, and zinc.
  • Embodiments of the present invention may comprise as one aspect the fabrication of bodies and cones from eutectic or near-eutectic compositions employing several different methods. Examples of these methods include:
  • 1. Infiltrating a bed or mass of hard particles comprising a mixture of transition metal carbide particles and at least one of cobalt, iron, and nickel (i.e., a cemented carbide) with a molten infiltrant that is a eutectic or near eutectic composition of a carbide and at least one of cobalt, iron, and nickel.
  • 2. Infiltrating a bed or mass of transition metal carbide particles with a molten infiltrant that is a eutectic or near eutectic composition of a carbide and at least one of cobalt, iron, and nickel.
  • 3. Casting a molten eutectic or near eutectic composition of a carbide, such as tungsten carbide, and at least one of cobalt, iron, and nickel to net-shape or a near-net-shape in the form of a bit body, roller cone, or cone.
  • 4. Mixing powdered binder and hard particles together, placing the mixture in a mold, heating the powders to a temperature greater than the melting point of the binder, and cooling to cast the materials into the form of an earth-boring bit body, a roller cone, or a cone. This so-called “casting in place” method may allow the use of binders with relatively less capacity for infiltrating a mass of hard particles since the binder is mixed with the hard particles prior to melting and, therefore, shorter infiltration distances are required to form the article.
  • In certain methods of the present invention, infiltrating the hard particles may include loading a funnel with a binder, melting the binder, and introducing the binder into the mold with the hard particles and, optionally the inserts. The binder as discussed above may be a eutectic or near eutectic composition or may comprise at least one of cobalt, iron, and nickel and at least one melting point reducing constituent.
  • Another method of the present invention comprises preparing a mold and casting a eutectic or near eutectic mixture of at least one of cobalt, iron, and nickel and a hard phase component. As the eutectic mixture cools the hard phase may precipitate from the mixture to form the hard phase. This method may be useful for the formation of roller cones and teeth in tri-cone drill bits.
  • Another embodiment of the present invention involves casting in place, mentioned above. An example of this embodiment comprises preparing a mold, adding a mixture of hard particles and binder to the mold, and heating the mold above the melting temperature of the binder. This method results in the casting in place of the bit body, roller cone, and teeth for tri-cone drill bits. This method may be preferable when the expected infiltration distance of the binder is not sufficient for sufficiently infiltrating the hard particles conventionally.
  • The hard particles or hard phase may comprise one or more of carbides, oxides, borides, and nitrides, and the binder phase may be composed of the one or more of the Group VIII metals, namely, Co, Ni, and/or Fe. The morphology of the hard phase can be in the form of irregular, equiaxed, or spherical particles, fibers, whiskers, platelets, prisms, or any other useful form. In certain embodiments, the cobalt, iron, and nickel alloys useful in this invention can contain additives, such as boron, chromium, silicon, aluminum, copper, manganese, or ruthenium, in total amounts up to 20 weight % of the ductile continuous phase.
  • The enclosed FIGS. 2 to 8 are graphs of the results of Differential Thermal Analysis (DTA) on embodiments of the binders of the present invention. FIG. 2 is a graph of the results of a two cycle DTA, from 900° C. to 1400° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 45% tungsten carbide and about 55% cobalt (all percentages are in weight percent unless noted otherwise). The graph shows the melting point of the alloy to be approximately 1339° C.
  • FIG. 3 is a graph of the results of a two cycle DTA, from 900° C. to 1300° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere of a sample comprising about 45% tungsten carbide, about 53% cobalt, and about 2% boron. The graph shows the melting point of the alloy to be approximately 1151° C. As compared to the DTA of the alloy of FIG. 2, the replacement of about 2% of cobalt with boron reduced the melting point of the alloy in FIG. 3 almost 200° C.
  • FIG. 4 is a graph of the results of a two cycle DTA, from 900° C. to 1400° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 45% tungsten carbide, about 53% nickel, and about 2% boron. The graph shows the melting point of the alloy to be approximately 1089° C. As compared to the DTA of the alloy of FIG. 3, the replacement of cobalt with nickel reduced the melting point of the alloy in FIG. 4 almost 60° C.
  • FIG. 5 is a graph of the results of a two cycle DTA, from 900° C. to 1200° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 96.3% nickel and about 3.7% boron. The graph shows the melting point of the alloy to be approximately 1100° C.
  • FIG. 6 is a graph of the results of a two cycle DTA, from 900° C. to 1300° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 88.4% nickel and about 11.6% silicon. The graph shows the melting point of the alloy to be approximately 1500° C.
  • FIG. 7 is a graph of the results of a two cycle DTA, from 900° C. to 1200° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 96% cobalt and about 4% boron. The graph shows the melting point of the alloy to be approximately 1100° C.
  • FIG. 8 is a graph of the results of a two cycle DTA, from 900° C. to 1300° C. at a rate of temperature increase of 10° C./minute in an argon atmosphere, of a sample comprising about 87.5% cobalt and about 12.5% silicon. The graph shows the melting point of the alloy to be approximately 1200° C.
  • FIGS. 9 to 11 show photomicrographs of materials formed by embodiments of the methods of the present invention. FIG. 9 is a scanning electron microscope (SEM) photomicrograph of a material produced by casting a binder consisting essentially of a eutectic mixture of cobalt and boron, wherein the boron is present at about 4 weight percent of the binder. The lighter colored phase 92 is Co3B and the darker phase 91 is essentially cobalt. The cobalt and boron mixture was melted by heating to approximately 1200° C. then allowed to cool in air to room temperature and solidify.
  • FIGS. 10-12 are SEM photomicrographs of different pieces and different aspects of the microstructure made from the same material. The material was formed by infiltrating hard particles with a binder. The hard particles were an cast carbide aggregate (W2C, WC) comprising approximately 60-65 volume percent of the material. The aggregate was infiltrated by a binder comprising approximately 96 weight percent cobalt and 4 weight percent boron. The infiltration temperature was approximately 1285° C.
  • FIG. 13 is a photomicrograph of a material produced by infiltrating a mass of cast carbide particles 130 and a cemented carbide insert 131 with a binder consisting essentially of cobalt and boron. To produce the material shown in FIG. 13, a cemented carbide insert 131 of approximately ¾″ diameter by 1.5″ height was placed in the mold prior to infiltrating the mass of hard cast carbide particles 130 with a binder comprising cobalt and boron. As may be seen in FIG. 13, the infiltrated binder and the binder of the cemented carbide blended to form one continuous matrix 132 binding both the cast carbides and the carbides of the cemented carbide.
  • In addition, hard facing may be added to embodiments of the present invention. Hard facing may be added on bit bodies, roller cones, insert roller cones, and cones wherever increased wear resistance is desired. For example, roller cone 160, as shown in FIG. 16, may comprise a hard facing on the plurality of teeth 161, the spear point 162. The bit body for the roller cone may also comprise hard facing, such as in a region surrounding any nozzles. Referring to FIG. 14, the bit body may comprise hard facing in the regions of nozzles 144, gage pad 143, and insert pockets 141, for example. A typical hard facing material comprises tungsten carbide in an alloy steel matrix.
  • It is to be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects of the invention that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although embodiments of the present invention have been described, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.

Claims (1)

  1. 1. A method for forming an earth-boring rotary drill bit, the method comprising forming a bit body, comprising:
    providing a powder mixture including a plurality of particles and a binder material;
    pressing the powder mixture to form a green powder component;
    sintering the green powder component to a final density; and
    attaching a shank to the sintered bit body using at least one of a pin, a keyway, an adhesive, a brazing process, and a diffusion bonding process.
US11932027 2004-04-28 2007-10-31 Sintered bodies for earth-boring rotary drill bits and methods of forming the same Abandoned US20080101977A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11116752 US7954569B2 (en) 2004-04-28 2005-04-28 Earth-boring bits
US11932027 US20080101977A1 (en) 2005-04-28 2007-10-31 Sintered bodies for earth-boring rotary drill bits and methods of forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11932027 US20080101977A1 (en) 2005-04-28 2007-10-31 Sintered bodies for earth-boring rotary drill bits and methods of forming the same
US13847282 US9428822B2 (en) 2004-04-28 2013-03-19 Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11116752 Continuation US7954569B2 (en) 2004-04-28 2005-04-28 Earth-boring bits

Publications (1)

Publication Number Publication Date
US20080101977A1 true true US20080101977A1 (en) 2008-05-01

Family

ID=39330396

Family Applications (1)

Application Number Title Priority Date Filing Date
US11932027 Abandoned US20080101977A1 (en) 2004-04-28 2007-10-31 Sintered bodies for earth-boring rotary drill bits and methods of forming the same

Country Status (1)

Country Link
US (1) US20080101977A1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024140A1 (en) * 2004-07-30 2006-02-02 Wolff Edward C Removable tap chasers and tap systems including the same
US20080196318A1 (en) * 2007-02-19 2008-08-21 Tdy Industries, Inc. Carbide Cutting Insert
US20080302576A1 (en) * 2004-04-28 2008-12-11 Baker Hughes Incorporated Earth-boring bits
US20100044114A1 (en) * 2008-08-22 2010-02-25 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US20100108399A1 (en) * 2008-10-30 2010-05-06 Eason Jimmy W Carburized monotungsten and ditungsten carbide eutectic particles, materials and earth-boring tools including such particles, and methods of forming such particles, materials, and tools
WO2010056478A1 (en) * 2008-10-30 2010-05-20 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US20100192475A1 (en) * 2008-08-21 2010-08-05 Stevens John H Method of making an earth-boring metal matrix rotary drill bit
US20100193255A1 (en) * 2008-08-21 2010-08-05 Stevens John H Earth-boring metal matrix rotary drill bit
US20100270086A1 (en) * 2009-04-23 2010-10-28 Matthews Iii Oliver Earth-boring tools and components thereof including methods of attaching at least one of a shank and a nozzle to a body of an earth-boring tool and tools and components formed by such methods
US20110011965A1 (en) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Reinforced Roll and Method of Making Same
US20110052931A1 (en) * 2009-08-25 2011-03-03 Tdy Industries, Inc. Coated Cutting Tools Having a Platinum Group Metal Concentration Gradient and Related Processes
US8007922B2 (en) 2006-10-25 2011-08-30 Tdy Industries, Inc Articles having improved resistance to thermal cracking
US8137816B2 (en) 2007-03-16 2012-03-20 Tdy Industries, Inc. Composite articles
US20120067651A1 (en) * 2010-09-16 2012-03-22 Smith International, Inc. Hardfacing compositions, methods of applying the hardfacing compositions, and tools using such hardfacing compositions
US8201610B2 (en) 2009-06-05 2012-06-19 Baker Hughes Incorporated Methods for manufacturing downhole tools and downhole tool parts
US8221517B2 (en) 2008-06-02 2012-07-17 TDY Industries, LLC Cemented carbide—metallic alloy composites
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8318063B2 (en) 2005-06-27 2012-11-27 TDY Industries, LLC Injection molding fabrication method
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
CN102909368A (en) * 2012-10-25 2013-02-06 无锡中彩新材料股份有限公司 Powder metallurgy finishing machine
CN103069097A (en) * 2010-08-11 2013-04-24 钴碳化钨硬质合金公司 Cemented carbide compositions having cobalt-silicon alloy binder
RU2482202C2 (en) * 2011-07-11 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Wear-resistant composite material with eutectic infiltrate
US8490674B2 (en) 2010-05-20 2013-07-23 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools
US8647561B2 (en) 2005-08-18 2014-02-11 Kennametal Inc. Composite cutting inserts and methods of making the same
US20140124563A1 (en) * 2012-11-05 2014-05-08 Chris Obaditch Fsw tool with graduated composition change
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US8905117B2 (en) 2010-05-20 2014-12-09 Baker Hughes Incoporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US20150007505A1 (en) * 2013-07-03 2015-01-08 Diamond Products, Limited Method of making diamond mining core drill bit and reamer
US8978734B2 (en) 2010-05-20 2015-03-17 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US20160023327A1 (en) * 2005-11-10 2016-01-28 Baker Hughes Incorporated Methods of forming earth-boring tools including sinterbonded components
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US20160356305A1 (en) * 2015-06-02 2016-12-08 The Boeing Company Shanks and methods for forming such shanks
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
US9938776B1 (en) 2013-03-12 2018-04-10 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related applications
US10010945B2 (en) 2015-06-02 2018-07-03 The Boeing Company Receivers and methods for forming such receivers

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471921A (en) * 1965-12-23 1969-10-14 Shell Oil Co Method of connecting a steel blank to a tungsten bit body
US5311956A (en) * 1991-11-13 1994-05-17 Toyota Jidosha Kabushiki Kaisha Electric control apparatus for rear wheel steering mechanism of wheeled vehicle
US5348806A (en) * 1991-09-21 1994-09-20 Hitachi Metals, Ltd. Cermet alloy and process for its production
US5433280A (en) * 1994-03-16 1995-07-18 Baker Hughes Incorporated Fabrication method for rotary bits and bit components and bits and components produced thereby
US5443337A (en) * 1993-07-02 1995-08-22 Katayama; Ichiro Sintered diamond drill bits and method of making
US5452771A (en) * 1994-03-31 1995-09-26 Dresser Industries, Inc. Rotary drill bit with improved cutter and seal protection
US5479997A (en) * 1993-07-08 1996-01-02 Baker Hughes Incorporated Earth-boring bit with improved cutting structure
US5482670A (en) * 1994-05-20 1996-01-09 Hong; Joonpyo Cemented carbide
US5484468A (en) * 1993-02-05 1996-01-16 Sandvik Ab Cemented carbide with binder phase enriched surface zone and enhanced edge toughness behavior and process for making same
US5506055A (en) * 1994-07-08 1996-04-09 Sulzer Metco (Us) Inc. Boron nitride and aluminum thermal spray powder
US5543235A (en) * 1994-04-26 1996-08-06 Sintermet Multiple grade cemented carbide articles and a method of making the same
US5560440A (en) * 1993-02-12 1996-10-01 Baker Hughes Incorporated Bit for subterranean drilling fabricated from separately-formed major components
US5593474A (en) * 1988-08-04 1997-01-14 Smith International, Inc. Composite cemented carbide
US5612264A (en) * 1993-04-30 1997-03-18 The Dow Chemical Company Methods for making WC-containing bodies
US5641251A (en) * 1994-07-14 1997-06-24 Cerasiv Gmbh Innovatives Keramik-Engineering All-ceramic drill bit
US5641921A (en) * 1995-08-22 1997-06-24 Dennis Tool Company Low temperature, low pressure, ductile, bonded cermet for enhanced abrasion and erosion performance
US5662183A (en) * 1995-08-15 1997-09-02 Smith International, Inc. High strength matrix material for PDC drag bits
US5666864A (en) * 1993-12-22 1997-09-16 Tibbitts; Gordon A. Earth boring drill bit with shell supporting an external drilling surface
US5677042A (en) * 1994-12-23 1997-10-14 Kennametal Inc. Composite cermet articles and method of making
US5733649A (en) * 1995-02-01 1998-03-31 Kennametal Inc. Matrix for a hard composite
US5732783A (en) * 1995-01-13 1998-03-31 Camco Drilling Group Limited Of Hycalog In or relating to rotary drill bits
US5753160A (en) * 1994-10-19 1998-05-19 Ngk Insulators, Ltd. Method for controlling firing shrinkage of ceramic green body
US5765095A (en) * 1996-08-19 1998-06-09 Smith International, Inc. Polycrystalline diamond bit manufacturing
US5778301A (en) * 1994-05-20 1998-07-07 Hong; Joonpyo Cemented carbide
US5789686A (en) * 1994-12-23 1998-08-04 Kennametal Inc. Composite cermet articles and method of making
US5856626A (en) * 1995-12-22 1999-01-05 Sandvik Ab Cemented carbide body with increased wear resistance
US5865571A (en) * 1997-06-17 1999-02-02 Norton Company Non-metallic body cutting tools
US5880382A (en) * 1996-08-01 1999-03-09 Smith International, Inc. Double cemented carbide composites
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US5963775A (en) * 1995-12-05 1999-10-05 Smith International, Inc. Pressure molded powder metal milled tooth rock bit cone
US6051171A (en) * 1994-10-19 2000-04-18 Ngk Insulators, Ltd. Method for controlling firing shrinkage of ceramic green body
US6063333A (en) * 1996-10-15 2000-05-16 Penn State Research Foundation Method and apparatus for fabrication of cobalt alloy composite inserts
US6068070A (en) * 1997-09-03 2000-05-30 Baker Hughes Incorporated Diamond enhanced bearing for earth-boring bit
US6073518A (en) * 1996-09-24 2000-06-13 Baker Hughes Incorporated Bit manufacturing method
US6086980A (en) * 1996-12-20 2000-07-11 Sandvik Ab Metal working drill/endmill blank and its method of manufacture
US6200514B1 (en) * 1999-02-09 2001-03-13 Baker Hughes Incorporated Process of making a bit body and mold therefor
US6209420B1 (en) * 1994-03-16 2001-04-03 Baker Hughes Incorporated Method of manufacturing bits, bit components and other articles of manufacture
US6214134B1 (en) * 1995-07-24 2001-04-10 The United States Of America As Represented By The Secretary Of The Air Force Method to produce high temperature oxidation resistant metal matrix composites by fiber density grading
US6214287B1 (en) * 1999-04-06 2001-04-10 Sandvik Ab Method of making a submicron cemented carbide with increased toughness
US6220117B1 (en) * 1998-08-18 2001-04-24 Baker Hughes Incorporated Methods of high temperature infiltration of drill bits and infiltrating binder
US6228139B1 (en) * 1999-05-04 2001-05-08 Sandvik Ab Fine-grained WC-Co cemented carbide
US6241036B1 (en) * 1998-09-16 2001-06-05 Baker Hughes Incorporated Reinforced abrasive-impregnated cutting elements, drill bits including same
US6254658B1 (en) * 1999-02-24 2001-07-03 Mitsubishi Materials Corporation Cemented carbide cutting tool
US6287360B1 (en) * 1998-09-18 2001-09-11 Smith International, Inc. High-strength matrix body
US6290438B1 (en) * 1998-02-19 2001-09-18 August Beck Gmbh & Co. Reaming tool and process for its production
US6293986B1 (en) * 1997-03-10 2001-09-25 Widia Gmbh Hard metal or cermet sintered body and method for the production thereof
US20020004105A1 (en) * 1999-11-16 2002-01-10 Kunze Joseph M. Laser fabrication of ceramic parts
US6375706B2 (en) * 1999-08-12 2002-04-23 Smith International, Inc. Composition for binder material particularly for drill bit bodies
US6454030B1 (en) * 1999-01-25 2002-09-24 Baker Hughes Incorporated Drill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same
US6454028B1 (en) * 2001-01-04 2002-09-24 Camco International (U.K.) Limited Wear resistant drill bit
US6454025B1 (en) * 1999-03-03 2002-09-24 Vermeer Manufacturing Company Apparatus for directional boring under mixed conditions
US6453899B1 (en) * 1995-06-07 2002-09-24 Ultimate Abrasive Systems, L.L.C. Method for making a sintered article and products produced thereby
US6511265B1 (en) * 1999-12-14 2003-01-28 Ati Properties, Inc. Composite rotary tool and tool fabrication method
US20030041922A1 (en) * 2001-09-03 2003-03-06 Fuji Oozx Inc. Method of strengthening Ti alloy
US6576182B1 (en) * 1995-03-31 2003-06-10 Institut Fuer Neue Materialien Gemeinnuetzige Gmbh Process for producing shrinkage-matched ceramic composites
US6589640B2 (en) * 2000-09-20 2003-07-08 Nigel Dennis Griffin Polycrystalline diamond partially depleted of catalyzing material
US6599467B1 (en) * 1998-10-29 2003-07-29 Toyota Jidosha Kabushiki Kaisha Process for forging titanium-based material, process for producing engine valve, and engine valve
US6607693B1 (en) * 1999-06-11 2003-08-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and method for producing the same
US20040013558A1 (en) * 2002-07-17 2004-01-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Green compact and process for compacting the same, metallic sintered body and process for producing the same, worked component part and method of working
US6685880B2 (en) * 2000-11-22 2004-02-03 Sandvik Aktiebolag Multiple grade cemented carbide inserts for metal working and method of making the same
US6742608B2 (en) * 2002-10-04 2004-06-01 Henry W. Murdoch Rotary mine drilling bit for making blast holes
US6756009B2 (en) * 2001-12-21 2004-06-29 Daewoo Heavy Industries & Machinery Ltd. Method of producing hardmetal-bonded metal component
US6766870B2 (en) * 2002-08-21 2004-07-27 Baker Hughes Incorporated Mechanically shaped hardfacing cutting/wear structures
US20050008524A1 (en) * 2001-06-08 2005-01-13 Claudio Testani Process for the production of a titanium alloy based composite material reinforced with titanium carbide, and reinforced composite material obtained thereby
US6849231B2 (en) * 2001-10-22 2005-02-01 Kobe Steel, Ltd. α-β type titanium alloy
US20050084407A1 (en) * 2003-08-07 2005-04-21 Myrick James J. Titanium group powder metallurgy
US20050117984A1 (en) * 2001-12-05 2005-06-02 Eason Jimmy W. Consolidated hard materials, methods of manufacture and applications
US20050126334A1 (en) * 2003-12-12 2005-06-16 Mirchandani Prakash K. Hybrid cemented carbide composites
US6918942B2 (en) * 2002-06-07 2005-07-19 Toho Titanium Co., Ltd. Process for production of titanium alloy
US20050211475A1 (en) * 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US20060016521A1 (en) * 2004-07-22 2006-01-26 Hanusiak William M Method for manufacturing titanium alloy wire with enhanced properties
US20060032677A1 (en) * 2003-02-12 2006-02-16 Smith International, Inc. Novel bits and cutting structures
US20060043648A1 (en) * 2004-08-26 2006-03-02 Ngk Insulators, Ltd. Method for controlling shrinkage of formed ceramic body
US20060057017A1 (en) * 2002-06-14 2006-03-16 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US7044243B2 (en) * 2003-01-31 2006-05-16 Smith International, Inc. High-strength/high-toughness alloy steel drill bit blank
US7048081B2 (en) * 2003-05-28 2006-05-23 Baker Hughes Incorporated Superabrasive cutting element having an asperital cutting face and drill bit so equipped
US20060131081A1 (en) * 2004-12-16 2006-06-22 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US20070042217A1 (en) * 2005-08-18 2007-02-22 Fang X D Composite cutting inserts and methods of making the same
US20070102199A1 (en) * 2005-11-10 2007-05-10 Smith Redd H Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US20070102198A1 (en) * 2005-11-10 2007-05-10 Oxford James A Earth-boring rotary drill bits and methods of forming earth-boring rotary drill bits
US20070102202A1 (en) * 2005-11-10 2007-05-10 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US20070102200A1 (en) * 2005-11-10 2007-05-10 Heeman Choe Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US7250069B2 (en) * 2002-09-27 2007-07-31 Smith International, Inc. High-strength, high-toughness matrix bit bodies
US7261782B2 (en) * 2000-12-20 2007-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US7270679B2 (en) * 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471921A (en) * 1965-12-23 1969-10-14 Shell Oil Co Method of connecting a steel blank to a tungsten bit body
US5593474A (en) * 1988-08-04 1997-01-14 Smith International, Inc. Composite cemented carbide
US5348806A (en) * 1991-09-21 1994-09-20 Hitachi Metals, Ltd. Cermet alloy and process for its production
US5311956A (en) * 1991-11-13 1994-05-17 Toyota Jidosha Kabushiki Kaisha Electric control apparatus for rear wheel steering mechanism of wheeled vehicle
US5484468A (en) * 1993-02-05 1996-01-16 Sandvik Ab Cemented carbide with binder phase enriched surface zone and enhanced edge toughness behavior and process for making same
US5560440A (en) * 1993-02-12 1996-10-01 Baker Hughes Incorporated Bit for subterranean drilling fabricated from separately-formed major components
US5612264A (en) * 1993-04-30 1997-03-18 The Dow Chemical Company Methods for making WC-containing bodies
US5443337A (en) * 1993-07-02 1995-08-22 Katayama; Ichiro Sintered diamond drill bits and method of making
US6029544A (en) * 1993-07-02 2000-02-29 Katayama; Ichiro Sintered diamond drill bits and method of making
US5611251A (en) * 1993-07-02 1997-03-18 Katayama; Ichiro Sintered diamond drill bits and method of making
US5479997A (en) * 1993-07-08 1996-01-02 Baker Hughes Incorporated Earth-boring bit with improved cutting structure
US5666864A (en) * 1993-12-22 1997-09-16 Tibbitts; Gordon A. Earth boring drill bit with shell supporting an external drilling surface
US5544550A (en) * 1994-03-16 1996-08-13 Baker Hughes Incorporated Fabrication method for rotary bits and bit components
US5433280A (en) * 1994-03-16 1995-07-18 Baker Hughes Incorporated Fabrication method for rotary bits and bit components and bits and components produced thereby
US6209420B1 (en) * 1994-03-16 2001-04-03 Baker Hughes Incorporated Method of manufacturing bits, bit components and other articles of manufacture
US5957006A (en) * 1994-03-16 1999-09-28 Baker Hughes Incorporated Fabrication method for rotary bits and bit components
US5452771A (en) * 1994-03-31 1995-09-26 Dresser Industries, Inc. Rotary drill bit with improved cutter and seal protection
US5518077A (en) * 1994-03-31 1996-05-21 Dresser Industries, Inc. Rotary drill bit with improved cutter and seal protection
US5543235A (en) * 1994-04-26 1996-08-06 Sintermet Multiple grade cemented carbide articles and a method of making the same
US5482670A (en) * 1994-05-20 1996-01-09 Hong; Joonpyo Cemented carbide
US5778301A (en) * 1994-05-20 1998-07-07 Hong; Joonpyo Cemented carbide
US5506055A (en) * 1994-07-08 1996-04-09 Sulzer Metco (Us) Inc. Boron nitride and aluminum thermal spray powder
US5641251A (en) * 1994-07-14 1997-06-24 Cerasiv Gmbh Innovatives Keramik-Engineering All-ceramic drill bit
US6051171A (en) * 1994-10-19 2000-04-18 Ngk Insulators, Ltd. Method for controlling firing shrinkage of ceramic green body
US5753160A (en) * 1994-10-19 1998-05-19 Ngk Insulators, Ltd. Method for controlling firing shrinkage of ceramic green body
US5792403A (en) * 1994-12-23 1998-08-11 Kennametal Inc. Method of molding green bodies
US5789686A (en) * 1994-12-23 1998-08-04 Kennametal Inc. Composite cermet articles and method of making
US5679445A (en) * 1994-12-23 1997-10-21 Kennametal Inc. Composite cermet articles and method of making
US5677042A (en) * 1994-12-23 1997-10-14 Kennametal Inc. Composite cermet articles and method of making
US5776593A (en) * 1994-12-23 1998-07-07 Kennametal Inc. Composite cermet articles and method of making
US5806934A (en) * 1994-12-23 1998-09-15 Kennametal Inc. Method of using composite cermet articles
US5732783A (en) * 1995-01-13 1998-03-31 Camco Drilling Group Limited Of Hycalog In or relating to rotary drill bits
US5733649A (en) * 1995-02-01 1998-03-31 Kennametal Inc. Matrix for a hard composite
US5733664A (en) * 1995-02-01 1998-03-31 Kennametal Inc. Matrix for a hard composite
US6576182B1 (en) * 1995-03-31 2003-06-10 Institut Fuer Neue Materialien Gemeinnuetzige Gmbh Process for producing shrinkage-matched ceramic composites
US6453899B1 (en) * 1995-06-07 2002-09-24 Ultimate Abrasive Systems, L.L.C. Method for making a sintered article and products produced thereby
US6214134B1 (en) * 1995-07-24 2001-04-10 The United States Of America As Represented By The Secretary Of The Air Force Method to produce high temperature oxidation resistant metal matrix composites by fiber density grading
US5662183A (en) * 1995-08-15 1997-09-02 Smith International, Inc. High strength matrix material for PDC drag bits
US5641921A (en) * 1995-08-22 1997-06-24 Dennis Tool Company Low temperature, low pressure, ductile, bonded cermet for enhanced abrasion and erosion performance
US5963775A (en) * 1995-12-05 1999-10-05 Smith International, Inc. Pressure molded powder metal milled tooth rock bit cone
US5856626A (en) * 1995-12-22 1999-01-05 Sandvik Ab Cemented carbide body with increased wear resistance
US5880382A (en) * 1996-08-01 1999-03-09 Smith International, Inc. Double cemented carbide composites
US5765095A (en) * 1996-08-19 1998-06-09 Smith International, Inc. Polycrystalline diamond bit manufacturing
US6073518A (en) * 1996-09-24 2000-06-13 Baker Hughes Incorporated Bit manufacturing method
US6089123A (en) * 1996-09-24 2000-07-18 Baker Hughes Incorporated Structure for use in drilling a subterranean formation
US6063333A (en) * 1996-10-15 2000-05-16 Penn State Research Foundation Method and apparatus for fabrication of cobalt alloy composite inserts
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US6086980A (en) * 1996-12-20 2000-07-11 Sandvik Ab Metal working drill/endmill blank and its method of manufacture
US6293986B1 (en) * 1997-03-10 2001-09-25 Widia Gmbh Hard metal or cermet sintered body and method for the production thereof
US6227188B1 (en) * 1997-06-17 2001-05-08 Norton Company Method for improving wear resistance of abrasive tools
US5865571A (en) * 1997-06-17 1999-02-02 Norton Company Non-metallic body cutting tools
US6068070A (en) * 1997-09-03 2000-05-30 Baker Hughes Incorporated Diamond enhanced bearing for earth-boring bit
US6290438B1 (en) * 1998-02-19 2001-09-18 August Beck Gmbh & Co. Reaming tool and process for its production
US6220117B1 (en) * 1998-08-18 2001-04-24 Baker Hughes Incorporated Methods of high temperature infiltration of drill bits and infiltrating binder
US6742611B1 (en) * 1998-09-16 2004-06-01 Baker Hughes Incorporated Laminated and composite impregnated cutting structures for drill bits
US6241036B1 (en) * 1998-09-16 2001-06-05 Baker Hughes Incorporated Reinforced abrasive-impregnated cutting elements, drill bits including same
US6287360B1 (en) * 1998-09-18 2001-09-11 Smith International, Inc. High-strength matrix body
US6599467B1 (en) * 1998-10-29 2003-07-29 Toyota Jidosha Kabushiki Kaisha Process for forging titanium-based material, process for producing engine valve, and engine valve
US6454030B1 (en) * 1999-01-25 2002-09-24 Baker Hughes Incorporated Drill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same
US6200514B1 (en) * 1999-02-09 2001-03-13 Baker Hughes Incorporated Process of making a bit body and mold therefor
US6254658B1 (en) * 1999-02-24 2001-07-03 Mitsubishi Materials Corporation Cemented carbide cutting tool
US6454025B1 (en) * 1999-03-03 2002-09-24 Vermeer Manufacturing Company Apparatus for directional boring under mixed conditions
US6214287B1 (en) * 1999-04-06 2001-04-10 Sandvik Ab Method of making a submicron cemented carbide with increased toughness
US6228139B1 (en) * 1999-05-04 2001-05-08 Sandvik Ab Fine-grained WC-Co cemented carbide
US6607693B1 (en) * 1999-06-11 2003-08-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and method for producing the same
US6375706B2 (en) * 1999-08-12 2002-04-23 Smith International, Inc. Composition for binder material particularly for drill bit bodies
US20020004105A1 (en) * 1999-11-16 2002-01-10 Kunze Joseph M. Laser fabrication of ceramic parts
US20030010409A1 (en) * 1999-11-16 2003-01-16 Triton Systems, Inc. Laser fabrication of discontinuously reinforced metal matrix composites
US6511265B1 (en) * 1999-12-14 2003-01-28 Ati Properties, Inc. Composite rotary tool and tool fabrication method
US6589640B2 (en) * 2000-09-20 2003-07-08 Nigel Dennis Griffin Polycrystalline diamond partially depleted of catalyzing material
US6685880B2 (en) * 2000-11-22 2004-02-03 Sandvik Aktiebolag Multiple grade cemented carbide inserts for metal working and method of making the same
US7261782B2 (en) * 2000-12-20 2007-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US6454028B1 (en) * 2001-01-04 2002-09-24 Camco International (U.K.) Limited Wear resistant drill bit
US20050008524A1 (en) * 2001-06-08 2005-01-13 Claudio Testani Process for the production of a titanium alloy based composite material reinforced with titanium carbide, and reinforced composite material obtained thereby
US20030041922A1 (en) * 2001-09-03 2003-03-06 Fuji Oozx Inc. Method of strengthening Ti alloy
US6849231B2 (en) * 2001-10-22 2005-02-01 Kobe Steel, Ltd. α-β type titanium alloy
US20050117984A1 (en) * 2001-12-05 2005-06-02 Eason Jimmy W. Consolidated hard materials, methods of manufacture and applications
US6756009B2 (en) * 2001-12-21 2004-06-29 Daewoo Heavy Industries & Machinery Ltd. Method of producing hardmetal-bonded metal component
US6918942B2 (en) * 2002-06-07 2005-07-19 Toho Titanium Co., Ltd. Process for production of titanium alloy
US20060057017A1 (en) * 2002-06-14 2006-03-16 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US20040013558A1 (en) * 2002-07-17 2004-01-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Green compact and process for compacting the same, metallic sintered body and process for producing the same, worked component part and method of working
US6766870B2 (en) * 2002-08-21 2004-07-27 Baker Hughes Incorporated Mechanically shaped hardfacing cutting/wear structures
US7250069B2 (en) * 2002-09-27 2007-07-31 Smith International, Inc. High-strength, high-toughness matrix bit bodies
US6742608B2 (en) * 2002-10-04 2004-06-01 Henry W. Murdoch Rotary mine drilling bit for making blast holes
US7044243B2 (en) * 2003-01-31 2006-05-16 Smith International, Inc. High-strength/high-toughness alloy steel drill bit blank
US20060032677A1 (en) * 2003-02-12 2006-02-16 Smith International, Inc. Novel bits and cutting structures
US7048081B2 (en) * 2003-05-28 2006-05-23 Baker Hughes Incorporated Superabrasive cutting element having an asperital cutting face and drill bit so equipped
US7270679B2 (en) * 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
US20050084407A1 (en) * 2003-08-07 2005-04-21 Myrick James J. Titanium group powder metallurgy
US20050126334A1 (en) * 2003-12-12 2005-06-16 Mirchandani Prakash K. Hybrid cemented carbide composites
US20050211475A1 (en) * 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US20060016521A1 (en) * 2004-07-22 2006-01-26 Hanusiak William M Method for manufacturing titanium alloy wire with enhanced properties
US20060043648A1 (en) * 2004-08-26 2006-03-02 Ngk Insulators, Ltd. Method for controlling shrinkage of formed ceramic body
US20060131081A1 (en) * 2004-12-16 2006-06-22 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US20070042217A1 (en) * 2005-08-18 2007-02-22 Fang X D Composite cutting inserts and methods of making the same
US20070102198A1 (en) * 2005-11-10 2007-05-10 Oxford James A Earth-boring rotary drill bits and methods of forming earth-boring rotary drill bits
US20070102202A1 (en) * 2005-11-10 2007-05-10 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US20070102200A1 (en) * 2005-11-10 2007-05-10 Heeman Choe Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US20070102199A1 (en) * 2005-11-10 2007-05-10 Smith Redd H Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8087324B2 (en) 2004-04-28 2012-01-03 Tdy Industries, Inc. Cast cones and other components for earth-boring tools and related methods
US20080302576A1 (en) * 2004-04-28 2008-12-11 Baker Hughes Incorporated Earth-boring bits
US8403080B2 (en) 2004-04-28 2013-03-26 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US8172914B2 (en) 2004-04-28 2012-05-08 Baker Hughes Incorporated Infiltration of hard particles with molten liquid binders including melting point reducing constituents, and methods of casting bodies of earth-boring tools
US20060024140A1 (en) * 2004-07-30 2006-02-02 Wolff Edward C Removable tap chasers and tap systems including the same
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8808591B2 (en) 2005-06-27 2014-08-19 Kennametal Inc. Coextrusion fabrication method
US8318063B2 (en) 2005-06-27 2012-11-27 TDY Industries, LLC Injection molding fabrication method
US8647561B2 (en) 2005-08-18 2014-02-11 Kennametal Inc. Composite cutting inserts and methods of making the same
US9700991B2 (en) * 2005-11-10 2017-07-11 Baker Hughes Incorporated Methods of forming earth-boring tools including sinterbonded components
US20160023327A1 (en) * 2005-11-10 2016-01-28 Baker Hughes Incorporated Methods of forming earth-boring tools including sinterbonded components
US8789625B2 (en) 2006-04-27 2014-07-29 Kennametal Inc. Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US8007922B2 (en) 2006-10-25 2011-08-30 Tdy Industries, Inc Articles having improved resistance to thermal cracking
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
US20080196318A1 (en) * 2007-02-19 2008-08-21 Tdy Industries, Inc. Carbide Cutting Insert
US8512882B2 (en) 2007-02-19 2013-08-20 TDY Industries, LLC Carbide cutting insert
US8137816B2 (en) 2007-03-16 2012-03-20 Tdy Industries, Inc. Composite articles
US20120237386A1 (en) * 2008-06-02 2012-09-20 TDY Industries, LLC Cemented carbide - metallic alloy composites
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8221517B2 (en) 2008-06-02 2012-07-17 TDY Industries, LLC Cemented carbide—metallic alloy composites
US20100193255A1 (en) * 2008-08-21 2010-08-05 Stevens John H Earth-boring metal matrix rotary drill bit
US20100192475A1 (en) * 2008-08-21 2010-08-05 Stevens John H Method of making an earth-boring metal matrix rotary drill bit
US8459380B2 (en) 2008-08-22 2013-06-11 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8225886B2 (en) 2008-08-22 2012-07-24 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US20100044114A1 (en) * 2008-08-22 2010-02-25 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8858870B2 (en) 2008-08-22 2014-10-14 Kennametal Inc. Earth-boring bits and other parts including cemented carbide
US8220566B2 (en) 2008-10-30 2012-07-17 Baker Hughes Incorporated Carburized monotungsten and ditungsten carbide eutectic particles, materials and earth-boring tools including such particles, and methods of forming such particles, materials, and tools
US10047882B2 (en) 2008-10-30 2018-08-14 Baker Hughes Incorporated Coupling members for coupling a body of an earth-boring drill tool to a drill string, earth-boring drilling tools including a coupling member, and related methods
US20100133805A1 (en) * 2008-10-30 2010-06-03 Stevens John H Coupling members for coupling a body of an earth-boring drill tool to a drill string, earth-boring drilling tools including a coupling member, and related methods
US20100108399A1 (en) * 2008-10-30 2010-05-06 Eason Jimmy W Carburized monotungsten and ditungsten carbide eutectic particles, materials and earth-boring tools including such particles, and methods of forming such particles, materials, and tools
US9206651B2 (en) 2008-10-30 2015-12-08 Baker Hughes Incorporated Coupling members for coupling a body of an earth-boring drill tool to a drill string, earth-boring drilling tools including a coupling member, and related methods
WO2010056478A1 (en) * 2008-10-30 2010-05-20 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US20100270086A1 (en) * 2009-04-23 2010-10-28 Matthews Iii Oliver Earth-boring tools and components thereof including methods of attaching at least one of a shank and a nozzle to a body of an earth-boring tool and tools and components formed by such methods
US9803428B2 (en) 2009-04-23 2017-10-31 Baker Hughes, A Ge Company, Llc Earth-boring tools and components thereof including methods of attaching a nozzle to a body of an earth-boring tool and tools and components formed by such methods
US8973466B2 (en) 2009-04-23 2015-03-10 Baker Hughes Incorporated Methods of forming earth-boring tools and components thereof including attaching a shank to a body of an earth-boring tool
US8381844B2 (en) 2009-04-23 2013-02-26 Baker Hughes Incorporated Earth-boring tools and components thereof and related methods
US9435010B2 (en) 2009-05-12 2016-09-06 Kennametal Inc. Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8201610B2 (en) 2009-06-05 2012-06-19 Baker Hughes Incorporated Methods for manufacturing downhole tools and downhole tool parts
US8317893B2 (en) 2009-06-05 2012-11-27 Baker Hughes Incorporated Downhole tool parts and compositions thereof
US8869920B2 (en) 2009-06-05 2014-10-28 Baker Hughes Incorporated Downhole tools and parts and methods of formation
US8464814B2 (en) 2009-06-05 2013-06-18 Baker Hughes Incorporated Systems for manufacturing downhole tools and downhole tool parts
US9266171B2 (en) 2009-07-14 2016-02-23 Kennametal Inc. Grinding roll including wear resistant working surface
US20110011965A1 (en) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Reinforced Roll and Method of Making Same
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US8440314B2 (en) 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
US20110052931A1 (en) * 2009-08-25 2011-03-03 Tdy Industries, Inc. Coated Cutting Tools Having a Platinum Group Metal Concentration Gradient and Related Processes
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
EP2571648A4 (en) * 2010-05-20 2016-10-05 Baker Hughes Inc Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US8978734B2 (en) 2010-05-20 2015-03-17 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US8490674B2 (en) 2010-05-20 2013-07-23 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools
US9687963B2 (en) 2010-05-20 2017-06-27 Baker Hughes Incorporated Articles comprising metal, hard material, and an inoculant
US8905117B2 (en) 2010-05-20 2014-12-09 Baker Hughes Incoporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US9790745B2 (en) 2010-05-20 2017-10-17 Baker Hughes Incorporated Earth-boring tools comprising eutectic or near-eutectic compositions
EP2571647A4 (en) * 2010-05-20 2017-04-12 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
CN103069097A (en) * 2010-08-11 2013-04-24 钴碳化钨硬质合金公司 Cemented carbide compositions having cobalt-silicon alloy binder
DE112011102668T5 (en) 2010-08-11 2013-06-06 Kennametal Inc. Carbide compositions having a cobalt-silicon alloy binder
US20120067651A1 (en) * 2010-09-16 2012-03-22 Smith International, Inc. Hardfacing compositions, methods of applying the hardfacing compositions, and tools using such hardfacing compositions
RU2482202C2 (en) * 2011-07-11 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Wear-resistant composite material with eutectic infiltrate
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
CN102909368A (en) * 2012-10-25 2013-02-06 无锡中彩新材料股份有限公司 Powder metallurgy finishing machine
US20140124563A1 (en) * 2012-11-05 2014-05-08 Chris Obaditch Fsw tool with graduated composition change
US9440288B2 (en) * 2012-11-05 2016-09-13 Fluor Technologies Corporation FSW tool with graduated composition change
US9938776B1 (en) 2013-03-12 2018-04-10 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related applications
US20150007505A1 (en) * 2013-07-03 2015-01-08 Diamond Products, Limited Method of making diamond mining core drill bit and reamer
US9701042B2 (en) * 2013-07-03 2017-07-11 Diamond Products, Limited Method of making diamond mining core drill bit and reamer
US20160356305A1 (en) * 2015-06-02 2016-12-08 The Boeing Company Shanks and methods for forming such shanks
US10010945B2 (en) 2015-06-02 2018-07-03 The Boeing Company Receivers and methods for forming such receivers
US10071438B2 (en) * 2015-06-02 2018-09-11 The Boeing Company Methods of forming shanks

Similar Documents

Publication Publication Date Title
US7234550B2 (en) Bits and cutting structures
US6511265B1 (en) Composite rotary tool and tool fabrication method
US20110023375A1 (en) Polycrystalline diamond compacts, and related methods and applications
US20110067929A1 (en) Polycrystalline diamond compacts, methods of making same, and applications therefor
US4608318A (en) Casting having wear resistant compacts and method of manufacture
US6908688B1 (en) Graded composite hardmetals
US20110031037A1 (en) Polycrystalline diamond material with high toughness and high wear resistance
US20080017421A1 (en) Diamond impregnated bits using a novel cutting structure
US7048080B2 (en) Roller cone bits with wear and fracture resistant surface
US20080230280A1 (en) Polycrystalline diamond having improved thermal stability
US5090491A (en) Earth boring drill bit with matrix displacing material
US7753143B1 (en) Superabrasive element, structures utilizing same, and method of fabricating same
US5348108A (en) Rolling cone bit with improved wear resistant inserts
US20080202814A1 (en) Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same
US5880382A (en) Double cemented carbide composites
US5355750A (en) Rolling cone bit with improved wear resistant inserts
US7128773B2 (en) Compositions having enhanced wear resistance
US20110083908A1 (en) Diamond Bonded Construction Comprising Multi-Sintered Polycrystalline Diamond
US20080029310A1 (en) Particle-matrix composite drill bits with hardfacing and methods of manufacturing and repairing such drill bits using hardfacing materials
US8007922B2 (en) Articles having improved resistance to thermal cracking
US7398840B2 (en) Matrix drill bits and method of manufacture
US7250069B2 (en) High-strength, high-toughness matrix bit bodies
US7776256B2 (en) Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US20080282618A1 (en) Impregnated material with variable erosion properties for rock drilling and the method to manufacture
US20090301788A1 (en) Composite metal, cemented carbide bit construction