EP0938668A1 - Detecteur de gaz - Google Patents

Detecteur de gaz

Info

Publication number
EP0938668A1
EP0938668A1 EP98951451A EP98951451A EP0938668A1 EP 0938668 A1 EP0938668 A1 EP 0938668A1 EP 98951451 A EP98951451 A EP 98951451A EP 98951451 A EP98951451 A EP 98951451A EP 0938668 A1 EP0938668 A1 EP 0938668A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
electrode
pair
gas sensor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98951451A
Other languages
German (de)
English (en)
Inventor
Peter Van Geloven
Silvia Lenaerts
Patrick Van De Voorde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite International NV
Original Assignee
Heraeus Electro Nite International NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19757112A external-priority patent/DE19757112C2/de
Application filed by Heraeus Electro Nite International NV filed Critical Heraeus Electro Nite International NV
Publication of EP0938668A1 publication Critical patent/EP0938668A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases

Definitions

  • the invention relates to a gas sensor according to claim 1 and its use in methods for detecting gas components.
  • Gas sensors are known for example from DE 195 34 918 A1.
  • two electrodes with an interdigitated comb structure are arranged on the side of the solid electrolyte facing the measurement gas, opposite them, on the reference air side there is a reference electrode.
  • This invention focuses on reliable sealing, so that no information is given on the functions and advantages of the two electrodes (sensor contacts) on the measuring gas side of the solid electrolyte.
  • the design enables voltammetric measurement of two gas components in a gas mixture.
  • a generic gas sensor is known from DE 36 10 366 A1, in which several electrochemical measuring cells are arranged on a tubular support. Only gaseous pollutants can be measured there (not oxygen). The measurement signals are evaluated by calculating the characteristic curves of the pollutant concentrations.
  • Such a gas sensor is also known from DE 41 09 516 C2.
  • the solid electrolyte is in the form of a plate on which an electrode serving as a reference is applied on one side and at least two measuring electrodes are applied to the opposite side, which interact with different constituents in a gas mixture.
  • the plate-shaped sensor is installed in a housing and then used as a gas probe in the exhaust line from To be installed in motor vehicles, perpendicular to the direction of flow of the exhaust gas. This probe works without a reference gas, which requires an electrode potential that is independent of the environment.
  • the St ⁇ ckox ⁇ d (NO x ) measuring electrode and the negative pump electrode are two spatially separated electrodes. Setting a low oxygen concentration at the nitrogen oxide measuring electrode makes it more difficult because there is always oxygen that cannot be removed by the pump electrode because it is not reaches this pump electrode
  • the invention is based on the object of specifying a gas sensor with which at least two gaseous components can be reliably detected over a wide range of the gas mixture composition and which also ensures a stable reference signal with the aid of ambient air, which additionally and if necessary influences the oxygen content made possible by supplying or removing oxygen to the respective measuring electrodes
  • the solid electrolyte (generally a solid electrolyte body with almost any geometric shape) is advantageously designed as a tube closed on one side, on which a reference electrode is arranged on its inner wall, as close as possible to the closed end, and on the outside, facing the measuring gas, a plurality of electrodes for example made of partially or fully stabilized zirconium oxide (ZrO ⁇ ).
  • ZrO ⁇ partially or fully stabilized zirconium oxide
  • the heating element can also be applied in the form of a heating conductor on the outside of the solid electrolyte, but in order to avoid shunts, an electrically insulating layer is arranged between the heating conductor and the solid electrolyte.
  • One of the electrodes as the measuring electrode on the outside of the solid electrolyte tube, which is closed on one side, can expediently consist of a catalytically active material and is therefore particularly suitable for potentiometric oxygen measurement based on the principle of a Nernst probe.
  • the second measuring electrode can consist of a catalytically inactive material.
  • Platinum or platinum alloys have proven successful as materials for at least one of the electrodes. Rhodium, palladium or iridium or their alloys are also suitable as electrode materials (which may also be catalytically active). Among the (catalytically inactive) materials that are to be used for the second measuring electrode, gold and gold alloys as well as metal oxides have proven themselves. These (catalytically inactive) metal oxides include, for example, mixed conducting, perovskite compounds of the general formula Ln ⁇ A ⁇ F ⁇ Oa, where Ln is a lanthanide cation, A is an element from the group Cr, Ti and B is an element from the group Ga, Al, Sc, Is Mg or Ca.
  • M x O y can also be used as (non-catalytic) electrode material, for example SnO 2 , Ti0 2 , V 2 O 5 , Fe 2 O 3 , NiO, ZnO, Sb 2 O 3 , Cr 2 O 3 , CuO or MnO 2 Due to the different composition of the measuring electrodes, the different gas components on the electrodes can be made to interact.
  • the gas sensor When using the gas sensor in a method for nitrogen oxide measurement, voltage or current are applied to a pair of electrodes, formed from at least two measuring electrodes or from one of the two measuring electrodes and a reference electrode. At the common used electrode has a negative potential. This electrode is the "pump electrode", ie the oxygen is pumped away from it, so that the nitrogen oxide measurement can take place via the other pair of electrodes with a minimized oxygen concentration. If the sensor structure is expanded in such a way that a cascade of electrodes is arranged one above the other, but separated from one another by intermediate diffusion layers, the performance of the oxygen pump can be increased as required.
  • the electrode with positive potential of the pair of electrodes to which a voltage or a current is present can consist of catalytically active or catalytically passive material, such as that mentioned above, if a catalytically active material is selected, it is possible for certain gaseous components to be present this electrode react or decompose and therefore do not reach the pump electrode. If nitrogen oxide (NO x ) is decomposed in this way into N 2 and Q, this is disadvantageous for the NO x determination. It can therefore be advantageous for a nitrogen oxide sensor to form the positive electrode from a catalytically inactive material.
  • FIG. 1 shows a section through a tubular gas sensor for amperometric or potentiometric determination of nitrogen oxide, and for potentiometric determination of hydrocarbons;
  • FIG. 2 shows a section through a tubular gas sensor for potentiometric oxygen or lambda determination and for amperometric nitrogen oxide determination
  • FIG. 3 family of characteristic curves for NO x and oxygen of a sensor according to FIG. 2;
  • Figure 4 shows a section through a further tubular gas sensor.
  • a catalytically inactive electrode 3 made of perovskite material is arranged on a tubular solid electrolyte 1 made of ZrO 2 , opposite it, in the reference air channel 4, the reference electrode 9 '. Furthermore, an insulating layer 8 made of Al 2 O 3 is arranged on the outside of the solid electrolyte 1 (ZrO 2 tube), on which a heating element 5 is arranged on the outside of the solid electrolyte tube 1 for faster heating of this gas sensor.
  • a catalytically inactive electrode 3 made of perovskite material and a catalytically active electrode 2 made of platinum are attached to the outside of the gas-tight solid electrolyte 1.
  • a ZrO 2 layer which can be designed as a diffusion layer 11.
  • a reference electrode 9, 9 '(or counter electrode 9') in the interior of the tube 1. arranged.
  • the hydrocarbon is determined potentiometrically by means of the measuring electrode 3 and the reference electrode 9 '.
  • a further measuring electrode 2 ' is arranged over the diffusion layer 11.
  • the diffusion layer 11 is designed here as a gas-permeable solid electrolyte, so that between the measuring electrodes 2 and 2 'by applying an electrical voltage between the negative electrode 2 and the positive electrode 2' of the oxygen from the measuring gas through the diffusion layer 11 to the electrode 2 at this electrode 2 is converted into ions and pumped to the electrode 2 ', where it leaves the sensor as molecular oxygen.
  • the electrode 2 is an electrode common to the pairs of electrodes 2.2 '(pair of pump electrodes) and 2.9 (pair of measuring electrodes), and that the low oxygen concentration is exactly at the required point, namely on the nitrogen oxide -Measuring electrode 2, arises.
  • the nitrogen oxide measurement is carried out potentiometrically or amperometrically using the electrodes 2.9.
  • the solid electrolyte tube 1 is, for example, held in a housing in a manner well known to a person skilled in the art from the prior art, it being possible for the individual layers and electrodes to be electrically contacted in a likewise known manner, for example at one end of the solid electrolyte tube 1.
  • the catalytically inactive measuring electrode 3 is replaced by a catalytically active measuring electrode 2 ".
  • the potentiometric lambda or oxygen determination is carried out here via the measuring electrode 2" compared to the reference electrode 9 '. If necessary, it can also be detected amperometrically by means of the electric current flowing through a pair of electrodes 2, 2 'or 2,9.
  • the nitrogen oxide determination follows the amperometric or potentiometric measuring principle, analogous to the example according to FIG. 1.
  • FIG. 3 shows characteristic curves of a sensor according to FIG. 2.
  • the measuring principle here is potentiometric for oxygen measurement and for NO x measurement.
  • the voltage U is in V on the left y-axis, and the O 2 and NO x concentrations in volume% are plotted on the right y-axis, each as a function of time.
  • the oxygen and sick oxide concentrations were determined using the potentiometric measuring principle.
  • the characteristic curve a represents the potentiometric oxygen signal, measured on the pair of electrodes 2 ", 9 '
  • the characteristic curve b represents the electrical voltage combined from the oxygen and nitrogen oxide concentration, which is applied to the Electrodes 2.9 was measured.
  • the nitrogen oxide concentration can be derived from the characteristic curves a and b
  • FIG. 4 shows a sensor similar to FIG. 1, wherein instead of the first pair of electrodes 2, 2 ', a cascade of electrodes 2, 2', 2 '', 2 '' and layers 11, 11 ', 11''are arranged between them.
  • the latter can be formed as a diffusion layer made of zirconium oxide (ZrQ), Al 2 O 3 or spinel.
  • the electrodes 2, 2 ', 2 ", 2'", 2 “” are connected so that the inside (towards the inside of the tube ) located electrode is designed as a cathode
  • the pairs of electrodes 2,2 'or 2', 2 '"or 2'", 2 "", which have a ZrO 2 -d ⁇ ffus ⁇ onssch ⁇ cht between them, can be used as an oxygen pump cell or as a potentiometric measuring cell to check the efficiency of pumping other pairs of electrodes can be used This cascade arrangement allows the effectiveness of oxygen pumping to be increased as desired
  • the signal of the oxygen and / or lambda sensor if installed as a sensor after a catalytic converter, can be used for the calibration of the lambda sensor upstream of the catalytic converter.
  • a correction can also be made with the measurement signal of the oxygen and / or lambda sensor of the nitrogen oxide sensor or a calibration of the nitrogen oxide sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

L'invention concerne un détecteur de gaz utilisé pour mesurer le coefficient proportionnel lambda d'oxygène et/ou d'air/de carburant et l'oxyde d'azote dans des mélanges gazeux. Afin qu'il soit possible de mesurer, de façon fiable, plusieurs constituants gazeux, ledit détecteur est pourvu d'une électrode de référence indiquant une pression partielle d'oxygène constante, avec au moins deux paires d'électrodes. Deux paires d'électrodes sont affectées chaque fois à une électrode commune, un électrolyte solide étant disposé entre les deux électrodes d'une paire d'électrodes, directement sur ces électrodes. L'électrolyte solide est perméable aux gaz entre les électrodes d'une première paire, et l'électrolyte solide est étanche aux gaz entre les électrodes d'une seconde paire, la seconde paire d'électrodes étant destinée à la mesure potentiomètrique ou ampèrométrique de la concentration en oxyde d'azote. La première paire d'électrodes est conçue pour l'application d'un courant ou d'une tension servant au pompage de l'oxygène, l'électrode commune constitue la cathode de la première paire d'électrodes, et la seconde électrode de la seconde paire d'électrodes est conçue comme électrode de référence et est placée sur le côté gaz de référence de l'électrolyte solide de la seconde paire d'électrodes. En outre, des lignes électriques sont prévues pour les raccordements et les prises nécessaires à la transmission des signaux de mesure électriques.
EP98951451A 1997-09-15 1998-09-14 Detecteur de gaz Withdrawn EP0938668A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19740500 1997-09-15
DE19740500 1997-09-15
DE19757112 1997-12-20
DE19757112A DE19757112C2 (de) 1997-09-15 1997-12-20 Gassensor
PCT/EP1998/006036 WO1999014586A1 (fr) 1997-09-15 1998-09-14 Detecteur de gaz

Publications (1)

Publication Number Publication Date
EP0938668A1 true EP0938668A1 (fr) 1999-09-01

Family

ID=26039988

Family Applications (3)

Application Number Title Priority Date Filing Date
EP98946449A Withdrawn EP0938666A1 (fr) 1997-09-15 1998-09-11 Detecteur de gaz
EP98950029A Withdrawn EP0938667A1 (fr) 1997-09-15 1998-09-14 Detecteur de gaz
EP98951451A Withdrawn EP0938668A1 (fr) 1997-09-15 1998-09-14 Detecteur de gaz

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP98946449A Withdrawn EP0938666A1 (fr) 1997-09-15 1998-09-11 Detecteur de gaz
EP98950029A Withdrawn EP0938667A1 (fr) 1997-09-15 1998-09-14 Detecteur de gaz

Country Status (5)

Country Link
US (2) US6355151B1 (fr)
EP (3) EP0938666A1 (fr)
JP (3) JP2001505311A (fr)
BR (3) BR9806177A (fr)
WO (3) WO1999014584A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565739B2 (ja) * 2000-01-31 2010-10-20 京セラ株式会社 空燃比センサ素子
JP4573939B2 (ja) * 2000-02-29 2010-11-04 京セラ株式会社 ガスセンサ素子
DE10064668A1 (de) * 2000-12-22 2002-07-04 Siemens Ag Mehrelektroden-Gassensorsystem mit Gasreferenz
DE10111586A1 (de) * 2001-03-10 2002-09-12 Volkswagen Ag Verfahren zum Betrieb von Brennkraftmaschinen
US6910371B2 (en) * 2002-02-21 2005-06-28 General Motors Corporation Extended durability sensing system
US7258772B2 (en) * 2002-05-17 2007-08-21 Hitachi, Ltd. Oxygen sensor and method of manufacturing same
GB0319455D0 (en) * 2003-08-19 2003-09-17 Boc Group Plc Electrochemical sensor
JP4739716B2 (ja) * 2003-09-29 2011-08-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサ素子
GB0323417D0 (en) * 2003-10-07 2003-11-05 Boc Group Plc Electrochemical sensor
US20050155871A1 (en) * 2004-01-15 2005-07-21 Grant Robert B. Electrochemical sensor
JP4593979B2 (ja) * 2004-06-07 2010-12-08 トヨタ自動車株式会社 ガスセンサ及びガス検出方法
CA2632982A1 (fr) * 2005-12-12 2007-10-18 Nextech Materials, Ltd. Capteur de h2s a base de ceramique
US20080154432A1 (en) * 2006-12-20 2008-06-26 Galloway Douglas B Catalytic alloy hydrogen sensor apparatus and process
US20080154434A1 (en) * 2006-12-20 2008-06-26 Galloway Douglas B Catalytic Alloy Hydrogen Sensor Apparatus and Process
DE102007048049A1 (de) * 2007-10-05 2009-04-16 Heraeus Sensor Technology Gmbh Verwendung eines Ionenleiters für einen Gassensor
WO2010003826A1 (fr) * 2008-07-10 2010-01-14 Robert Bosch Gmbh Élément capteur et procédé de détermination de composants gazeux dans des mélanges gazeux et leur utilisation
CN102424457B (zh) * 2011-10-27 2013-06-12 湖南万容科技股份有限公司 含重金属工业废水的处理系统及其处理方法
DE102013210903A1 (de) * 2013-06-11 2014-12-11 Heraeus Sensor Technology Gmbh Gassensor zur Messung unterschiedlicher Gase und dazugehöriges Herstellungsverfahren
DE102016014068A1 (de) * 2015-11-27 2017-06-01 Lamtec Meß - und Regeltechnik für Feuerungen GmbH Verfahren zur Funktionsüberprüfung eines Gassensors
JP6669616B2 (ja) * 2016-09-09 2020-03-18 日本碍子株式会社 ガスセンサ
WO2018209082A1 (fr) * 2017-05-12 2018-11-15 Carrier Corporation Capteur et procédé d'analyse de gaz

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413199A (en) * 1965-09-29 1968-11-26 Fischer & Porter Co Method for measurement of residual chlorine or the like
US3514377A (en) * 1967-11-27 1970-05-26 Gen Electric Measurement of oxygen-containing gas compositions and apparatus therefor
JPS5274385A (en) * 1975-12-18 1977-06-22 Nissan Motor Airrfuel ratio detector
JPS5625408Y2 (fr) * 1976-08-23 1981-06-16
DE3017947A1 (de) * 1980-05-10 1981-11-12 Bosch Gmbh Robert Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen und verfahren zum herstellen von sensorelementen fuer derartige messfuehler
JPS5824855A (ja) * 1981-08-05 1983-02-14 Nippon Denso Co Ltd 酸素濃度検出器
JPS58148946A (ja) 1982-02-27 1983-09-05 Nissan Motor Co Ltd 空燃比検出器
US4427525A (en) * 1982-05-24 1984-01-24 Westinghouse Electric Corp. Dual gas measuring solid electrolyte electrochemical cell apparatus
JPS5967454A (ja) * 1982-10-12 1984-04-17 Nippon Denso Co Ltd 酸素濃度検出器
JPS63218852A (ja) * 1987-03-09 1988-09-12 Yokogawa Electric Corp 排ガス中のo↓2及び可燃ガス濃度測定装置
US4828671A (en) * 1988-03-30 1989-05-09 Westinghouse Electric Corp. Unitary self-referencing combined dual gas sensor
DE4109516C2 (de) 1991-01-30 1997-08-07 Roth Technik Gmbh Vorrichtung zum kontinuierlichen Überwachen der Konzentrationen von gasförmigen Bestandteilen in Gasgemischen
DE4225775C2 (de) 1992-08-04 2002-09-19 Heraeus Electro Nite Int Anordnung zum kontinuierlichen Überwachen der Konzentration von NO in Gasgemischen
DE4243733C2 (de) 1992-12-23 2003-03-27 Bosch Gmbh Robert Sensor zur Bestimmung von Gaskomponenten und/oder Gaskonzentrationen von Gasgemischen
DE59404036D1 (de) * 1993-02-26 1997-10-16 Roth Technik Gmbh Kombination von lambda-sonden
US5482609A (en) * 1993-04-27 1996-01-09 Shinko Electric Industries Co., Ltd. Solid electrolyte gas sensor
US5397442A (en) * 1994-03-09 1995-03-14 Gas Research Institute Sensor and method for accurately measuring concentrations of oxide compounds in gas mixtures
DE4408361C2 (de) * 1994-03-14 1996-02-01 Bosch Gmbh Robert Elektrochemischer Sensor zur Bestimmung der Sauerstoffkonzentration in Gasgemischen
GB2288873A (en) 1994-04-28 1995-11-01 Univ Middlesex Serv Ltd Multi-component gas analysis apparatus
US5472580A (en) * 1994-06-09 1995-12-05 General Motors Corporation Catalytic converter diagnostic sensor
DE4442272A1 (de) * 1994-11-28 1996-05-30 Roth Technik Gmbh Vorrichtung und Verfahren zur Bestimmung von gasförmigen Bestandteilen in Gasgemischen
DE19534918C2 (de) 1995-07-18 1999-09-09 Heraeus Electro Nite Int Sensor zur Messung von Gaskonzentrationen
JPH09203313A (ja) * 1995-11-20 1997-08-05 Mazda Motor Corp 触媒の劣化検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9914586A1 *

Also Published As

Publication number Publication date
EP0938667A1 (fr) 1999-09-01
JP2001505315A (ja) 2001-04-17
US6355151B1 (en) 2002-03-12
US6342151B1 (en) 2002-01-29
WO1999014586A1 (fr) 1999-03-25
BR9806176A (pt) 1999-10-19
BR9806178A (pt) 1999-10-19
EP0938666A1 (fr) 1999-09-01
JP2001505311A (ja) 2001-04-17
WO1999014585A1 (fr) 1999-03-25
JP2001505316A (ja) 2001-04-17
BR9806177A (pt) 1999-10-19
WO1999014584A1 (fr) 1999-03-25

Similar Documents

Publication Publication Date Title
DE69714112T2 (de) Oxidsensor
DE69521451T2 (de) Verfahren und Vorrichtung zum Messen von einem Gaskomponenten
WO1999014586A1 (fr) Detecteur de gaz
DE69713698T2 (de) Gasfühler
DE3010632C2 (fr)
DE3782584T2 (de) Elektrochemischer nox-sensor.
DE69713650T2 (de) Gassensor
DE69735302T2 (de) Gas sensor
DE69730810T2 (de) Gas Sensor
DE4445033A1 (de) Verfahren zur Messung der Konzentration eines Gases in einem Gasgemisch sowie elektrochemischer Sensor zur Bestimmung der Gaskonzentration
DE102004008233B4 (de) Verfahren zur Steuerung des Betriebs eines Gassensorelements
EP0795127B1 (fr) Dispositif et procede de determination de constituants gazeux dans des melanges gazeux
DE19757112C2 (de) Gassensor
DE3120159A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen
DE10048240B4 (de) Gassensorelement und Verfahren zur Bestimmung der Konzentration einer Gaskomponente in einem Gasgemisch
DE69733509T2 (de) Sensoranordnung zur Bestimmung von Stickstoffoxiden
WO2010097296A1 (fr) Capteur de gaz à électrolyte solide pour la mesure de différentes espèces gazeuses
DE102007049715A1 (de) Sensorelement mit abgeschirmter Referenzelektrode
DE3104986A1 (de) Polarographischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen
DE4225775C2 (de) Anordnung zum kontinuierlichen Überwachen der Konzentration von NO in Gasgemischen
DE102009001672A1 (de) Gassensorsteuerungssystem zur Sicherstellung einer erhöhten Messgenauigkeit
EP1144829A2 (fr) Procede d'exploitation d'une sonde de gaz d'echappement a potentiel mixte et circuits pour mettre ledit procede en oeuvre
DE3313783C2 (fr)
DE10064667A1 (de) Mehrstufiger, Gassensor, Betriebs- und Herstellungsverfahren
DE10023062B4 (de) Messeinrichtung zur Konzentrationsbestimmung von Gaskomponenten im Abgas einer Brennkraftmaschine und Verfahren zur Steuerung eines Betriebs der Messeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030401