EP0931610A1 - Dispositif et procédé pour alimenter en métal des machines à coulée sous pression à chambre froide horizontales et verticales - Google Patents

Dispositif et procédé pour alimenter en métal des machines à coulée sous pression à chambre froide horizontales et verticales Download PDF

Info

Publication number
EP0931610A1
EP0931610A1 EP99101026A EP99101026A EP0931610A1 EP 0931610 A1 EP0931610 A1 EP 0931610A1 EP 99101026 A EP99101026 A EP 99101026A EP 99101026 A EP99101026 A EP 99101026A EP 0931610 A1 EP0931610 A1 EP 0931610A1
Authority
EP
European Patent Office
Prior art keywords
pressure
pressure chamber
melt
casting
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99101026A
Other languages
German (de)
English (en)
Other versions
EP0931610B1 (fr
Inventor
Gustav Ohnsmann
Gerold Bandt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohnsmann Gustav
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0931610A1 publication Critical patent/EP0931610A1/fr
Application granted granted Critical
Publication of EP0931610B1 publication Critical patent/EP0931610B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled

Definitions

  • the invention relates to a device for metal loading horizontal and vertical cold chamber - Die casting machines and methods of the prerequisite in the preamble of claim 1 Art.
  • DE 196 13 668 C1 shows Metal supply and supply system in which an oven functions by changing the cover of casting and holding furnace as well as a transport container.
  • the object of the invention is to demonstrate a device and its method in which the entire Casting process takes place in the absence of air. This is achieved: by a vertical or lateral arrangement of the casting furnaces to the pressure chamber, with one on the furnace cover over a housing attached pressure or suction line, the riser pipe in the casting furnace filled with melt - Immerses pressure vessel, with a movable connecting line and its actuator the hermetic and intermittent connection to the pressure chamber is guaranteed. There is also a gassing piston between the pressure piston and its drive linkage, which forms a hermetic gassing ring channel with its guide bush. By corresponding gas pressure build-up above the melt surface in the casting furnace - pressure vessel or the pressure chamber is filled with casting material by building up a vacuum over the casting mold.
  • the air flows through the air in the pressure or suction line as well as the inert pipe standing gas, displaced from the pressure chamber and casting mold.
  • the melt delivery and the return delivery of the non-pourable residual melt takes place directly to and from the smelter.
  • the casting furnace is retrofitted by changing the furnace lid into a liquid metal transport container, which can also be used for heating by liquid metal is used. To minimize melt movement during liquid metal transport dips a free-floating plate into the melt surface.
  • the connecting line is designed with an inclined separating surface so that at the start of the casting process a gasket located in the interface and the continuous contact pressure by the Actuator on the connecting line, the linear expansion of the pressure chamber is compensated.
  • Shrinkage forces of the pressure chamber on the movable connecting line are caused by a adjustable reset pulse from the die casting machine to the actuating device equalized the movable connecting line.
  • the casting metal feed of the pressure chamber can do this by means of an inert gas pressure build-up above the melt surface in the pressure vessel or by creating a vacuum over the mold.
  • the plunger presses the liquid metal into the mold, after the Pressure chamber - metal transfer opening through the retracting pressure piston, for gas pressure metal loading, the pressure above the melt surface in the pressure vessel is reduced and the am Pressurized piston jacket applied liquid metal column under suction of inert gas or by means of a corresponding inert gas pressure from the opening of the gassing flask is lowered into the pressure vessel.
  • the metal is provided directly from Transport container delivered to the smelter, the liquid metal passing through in the transport container Heating can be buffered or immediately cast by changing the furnace lid. To minimize the metal movement, is in the delivery as well as in the residual quantity return of and a submerged free-floating plate to the smelting unit on the melt surface intended.
  • the device designed according to the invention for feeding metal horizontally and vertically Die casting machines and their processes enable casting production to the exclusion of chemical ones Reactions as well as gas absorption of the melt to be cast.
  • the buffering of liquid metal in the transport containers, the delivery of liquid metal and the return of non-pourable liquid metal from and to the smelter, a holding operation as well as the metal supply of the Pouring furnaces no longer required on the die casting machines. This results in high savings regarding investment, personnel and repair costs.
  • FIG.1 and Fig.2 Schematically in Fig.1 and Fig.2 shown horizontally - and vertical cold chamber - die casting machine 1,1a and 2,2a shows a mold 3,4, a 5,6 casting to be manufactured, the pressure chamber 8, the pressure chamber flange 9, the plunger 10 , the gassing piston 11 with the guide bushing 12 , the pressure or suction line 16 , 28 with the movable connecting line 46, the actuating device 45 , the casting furnace 55 , and the furnace riser pipe 59 which is immersed in the melt 62 of the pressure vessel 58 .
  • the pressure or suction line 16 and the casting furnace 55 are arranged vertically below the pressure chamber 8 as well as the die casting machine 1, 1 a.
  • the pressure die casting machine 2,2a is - or suction line 28 obliquely runs and installs the casting furnace 55 laterally of the pressure chamber 8 of the die casting machine 2,2a to the pressure chamber.
  • the recesses in the fixed machine plates 1, 2 in the horizontal and vertical die casting machine 1, 1, 2, 2 guarantee the use of the previous pressure chamber dimensions.
  • the variable executable in the spatial dimensions steel housing 18,36 of the pressure - g.Saugtechnisch 16, 28 all the dimensional specifications of the die casting machines is hereby - sizes, as well as their different positions meet pressure chamber.
  • the casting furnace 55 can be used on any cold chamber die casting machine.
  • the pressure or suction line 16 , the steel housing 17 , the actuating device 45 , the pressure chamber flange 9 , the gassing piston 11 and the guide bush 12 are shown in detail for a horizontal cold chamber die casting machine 1, 1 a .
  • the pressure or suction line 16 is formed via a furnace riser 59 and a movable connecting line 46 .
  • the centering and guiding of the movable connecting line 46 takes place here through the inner jacket of the furnace riser 59 '.
  • the pressure or suction line 16 is locked and positioned via the steel housing 17 and the actuating device 45 .
  • the steel housing 17 which is fastened vertically on the furnace cover 56 is formed by a spacer housing 18 , a coupling 19 , a sleeve 22 , a bearing ring 23 and a bearing shell 24 .
  • the position of the steel housing 17 is locked and fixed by a central collar 18a on the bottom surface of the spacer housing 18 and a recess 56a on the furnace cover 56 .
  • the sleeve 22 inserted into the cavity 18 'of the spacer housing 18 is positioned by a shoulder 22a with the furnace cover opening 56 '.
  • the coupling 19 is centered and screwed to the spacer housing 18 by a shoulder 20b in the bottom surface of the clutch housing 20 and the cover plate shoulder 21a .
  • the furnace riser pipe 59 is fixed here via the openings in the furnace cover lining 57 ', the sleeve 22' and the bearing ring 23 '.
  • the shoulder 23b in the upper cover surface of the bearing ring 23 receives the furnace riser collar 59a .
  • the furnace riser pipe 59 , the bearing shell 24 and the bearing ring 23 are locked via the bottom cover surface of the bearing shell 24 and the pressure acting on the collar 24a of the bearing shell 24 through the clutch cover plate 21 .
  • the bearing shell 24 has on the upper end face a through opening 24 ', the offset from the collar 24a merging into a smaller aperture 24 ". In this case takes the large bearing shell opening 24' to the insulation jacket 47 of the connecting pipe 46 and, through the remaining free space the Movement of the connecting line 46 without interrupting its continuous heat insulation
  • the time-controllable actuating device 45 of the connecting line 46 is connected and centered with the cover plate surface 21b of the coupling 19.
  • the connecting line 46 is connected to the actuating device 45 by means of a claw 49.
  • the sleeve 22, the bearing ring 23, the bearing shell 24 and the shell 47 of the connection pipe 46 made of ceramic or fiber-ceramic materials.
  • the pressure chamber flange 9 inserted in the pressure chamber 8 via a shoulder 8a forms with d.
  • the melt is between the pressure piston 10 and its drive rod 13
  • a gas injection piston 11 is arranged with a guide sleeve 12 in this case, the connected to the pressure piston 10 gas injection piston 11 forms with the guide bush 12 by a shoulder 11a at the gas injection piston 11 has a hermetic Begasungsringkanal. 11 'in. in this case, the guide bush 12 is centrally connected to the end face 8b with the pressure chamber 8. via the channels 11' and 13 'is the Begasungsringkanal 11' connected to an inert gas source through the drive linkage 13.
  • the pressure or suction line 28 is designed obliquely to the pressure chamber 8 due to the vertical pressure chamber 8 and the required metal lowering.
  • the pressure or suction line 28 is formed by an oven riser pipe 59 , a plug-in bearing 29 , a spacer pipe 37 and a movable connecting line 46 .
  • the pressure or suction line 28 is locked in its position by a coupling 30 fastened and centered on the furnace cover 60 , a coupling 39 positioned on the steel housing 36 , the actuating device 45 fastened on the coupling cover plate 41 and the steel housing 36 screwed onto the furnace cover 60 and fixed.
  • the coupling 30 is formed by a housing 31 , a cover plate 32 , a disk 33 , a bearing ring 34 and a bearing sleeve 35 .
  • the coupling housing 31 is screwed and centered with the furnace cover 60 via a shoulder 60a and the collar 31a .
  • the furnace cover opening 60 ' and the housing opening 31' receive the disk 33 .
  • the cavity of the clutch housing 31 is formed by the bearing ring 34 and the bearing sleeve 35 .
  • the furnace riser collar 59a receives the bearing ring 34 and the plug-in bearing collar 29a the bearing sleeve 35 .
  • the cover plate 32 which is centered and connected to the coupling housing 31 via a shoulder 32a, locks the bearing sleeve 35 , the bearing ring 34 , the plug-in bearing 29 and the furnace riser pipe 59 through a shoulder 35a .
  • the openings 57 ', 33', 34 ' and 35' are centered on each other.
  • the disk 33 , the bearing ring 34 and the bearing sleeve 35 are made of ceramic or fiber-ceramic materials.
  • the offset opening 29 " in the plug-in bearing 29 which is implemented in the inclined position of the spacer tube 37 , receives the correspondingly offset spacer tube 37.
  • the thermal length changes of the spacer tube 37 are compensated for by the flexible seal 38 interposed on the plug-in bearing and spacer tube heel.
  • the end face in the inclined position of the spacer tube 37 attached to the steel casing 36 clutch 39 is a housing 40, a cover plate 41, a bearing ring 23 and a bearing shell 24 is formed.
  • the housing 40 in this case forms a projecting in the steel housing 36 inside collar 40 as well as a at the front side of the steel casing 36 outwardly projecting collar 40b., via a shoulder 41a, the cover plate 41 and the housing is bolted 40 via the port 36a with the steel housing 36 and centered.
  • the mounted on the furnace lid 60 and fixed steel housing 36 protects and insulates the plug bearing 29 and the spacer tube 37 from damage and gr ßeren heat losses.
  • the cavity of the steel housing 36 is formed by the coupling 30 , the plug-in bearing 29 , the spacer tube 37 and the coupling 39 projecting into the housing cavity.
  • the remaining cavity of the steel housing 36 is lined or filled with ceramic or fiber-ceramic materials 42 .
  • the further design of the pressure or suction line 28 as well as the gassing piston 11 and the guide bushing 12 are identical to the first exemplary embodiment according to FIG.
  • the transport container 65 shown in FIG. 5 has a free-floating plate 66 immersed in the melt surface, the depth of immersion in the melt 62 being determined via the melt buoyancy and the plate weight.
  • the plate 66 consisting of metallic materials is designed with a ceramic or fiber-ceramic sheath 66a .
  • the dash-dotted representation shows the non-castable residual melt 62a with the plate 66 immersed in the melt. It should also be pointed out that structural details can be designed quite differently from the exemplary embodiment shown, without departing from the content of the claims.
  • the device for feeding horizontal and vertical cold chamber die casting machines works as follows:
  • the connecting pipe 46 is hermetically pressed by means of an actuator 45, under a continuous pressure at the mouth surface 46a on the metal conversion surface of the Druckschlansches 9 via the Control of the die casting machine takes place the metal loading of the pressure chamber 8 ' by inert gas pressure build-up over the melt surface 61 in the pressure vessel 58 or by creating a vacuum 7 via the casting mold 3, 4 .
  • the liquid metal is' 46 ',' 9 ', supported 62 at the horizontal die casting machine 1,1a via the openings 59 48 8 "in the pressure chamber 8' of the pressure chamber.
  • the air sucked into the pressure chamber 8 ' is released by the air in the metal loading cavities 59', 46 ' or 59', 29 ', 37', 46 'of the inert gas, in the case of the metal loading of the pressure chamber 8' by means of gas pressure, is displaced from this and the casting mold 3 , 4.
  • the transport container 65 has been converted into a casting furnace 55, there is a manual inert gassing of the metal loading openings 59 ', 46' or 59 ', 29', 37 ' , and 46 ' . It is thus possible for the entire casting process to take place in the absence of air.
  • the thermal change in length of the pressure chamber 8 at the start of the casting process is hermetically compensated for by the inclined separating surface of the connecting line 46 and the pressure chamber flange 9 with the interposition of a seal 48 and the pressure continuously acting on the connecting line 46 via the actuating device 45 .
  • the connecting line 46 is reset from the pressure chamber flange transition surface by an adjustable, time-controlled pulse from the die casting machine 1, 1, 2, 2 a to the actuating device 45 .
  • the casting metal is provided and buffered via heatable transport containers 65 supplied by the smelter, which can be inserted directly into the metal loading position of the horizontal and vertical cold chamber die casting machines 1,1a, 2,2a by changing the furnace lid .
  • the non-pourable residual melt 62a in the casting furnace 55 is returned to the melting plant as a transport container 65 by changing the furnace lid.
  • a free-floating plate 66 immersed in the surface of the melt is provided for the delivery of the liquid metal and the return of the remaining quantities to and from the smelter, in order to minimize the movement of the melt bath during transport.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
EP99101026A 1998-01-22 1999-01-21 Dispositif et procédé pour alimenter en métal des machines à coulée sous pression à chambre froide horizontales et verticales Expired - Lifetime EP0931610B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19802342A DE19802342C1 (de) 1998-01-22 1998-01-22 Einrichtung zur Metallbeschickung waage- und senkrechter Kaltkammer - Druckgießmaschinen und Verfahren
DE19802342 1998-01-22

Publications (2)

Publication Number Publication Date
EP0931610A1 true EP0931610A1 (fr) 1999-07-28
EP0931610B1 EP0931610B1 (fr) 2003-06-25

Family

ID=7855366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99101026A Expired - Lifetime EP0931610B1 (fr) 1998-01-22 1999-01-21 Dispositif et procédé pour alimenter en métal des machines à coulée sous pression à chambre froide horizontales et verticales

Country Status (4)

Country Link
US (1) US6318444B1 (fr)
EP (1) EP0931610B1 (fr)
DE (2) DE19802342C1 (fr)
ES (1) ES2201575T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521709A1 (de) * 2018-10-05 2020-04-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Vorrichtung zum Zudosieren von Metallschmelze in eine Druckgusseinheit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006814B4 (de) * 2000-02-15 2007-09-06 Bühler Druckguss AG Verfahren und Vorrichtung zum Befüllen einer Giesskammer
DE20019843U1 (de) 2000-11-22 2001-03-22 Ritter Aluminium Giesserei GmbH, 73240 Wendlingen Gießkammer für Vakuum-Druckgießmaschinen
EP1410861A1 (fr) * 2002-10-10 2004-04-21 Gustav Ohnsmann Récipient contenant du métal liquide
DE102004008157A1 (de) * 2004-02-12 2005-09-01 Klein, Friedrich, Prof. Dr. Dr. h.c. Gießmaschine zur Herstellung von Gussteilen
CN102513517B (zh) * 2011-12-23 2013-12-11 华南理工大学 一种分段可拆式间接挤压铸造合金熔体的输料管道
DE102023100621A1 (de) * 2023-01-12 2024-07-18 Thomas Ninkel Vorrichtung zum Schmelze-Dosieren an einer Druckgießmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290658A (ja) * 1989-04-27 1990-11-30 Toshiba Mach Co Ltd ダイカストマシンの射出方法
US4989663A (en) * 1989-04-14 1991-02-05 Toshiba Kikai Kabushiki Kaisha Casting apparatus
DE4123464A1 (de) * 1991-07-16 1993-01-21 Audi Ag Verfahren zum betreiben einer druckgiessmaschine
JPH06106330A (ja) * 1992-09-28 1994-04-19 Nissan Motor Co Ltd ダイカスト鋳造装置
JPH08150459A (ja) * 1994-11-24 1996-06-11 Kobe Steel Ltd 高圧鋳造装置
DE19613668C1 (de) * 1996-04-04 1997-05-28 Gustav Ohnsmann Gießanlage und Verfahren zur Herstellung von Gußstücken

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3409995C1 (de) * 1984-03-19 1985-03-14 Norsk Hydro Magnesiumgesellschaft mbH, 4300 Essen Steigrohr, insbesondere für eine Niederdruck-Gießvorrichtung
FR2605913A1 (fr) * 1986-10-31 1988-05-06 Pechiney Aluminium Procede de moulage sous pression de pieces metalliques contenant eventuellement des fibres en ceramiques
FR2642686B1 (fr) * 1989-01-16 1991-05-17 Creusot Loire Dispositif et procede d'alimentation en metal liquide pour la coulee sous pression de produits metalliques
US5076344A (en) * 1989-03-07 1991-12-31 Aluminum Company Of America Die-casting process and equipment
DE4002263C2 (de) * 1990-01-26 1995-04-06 Audi Ag Kolben-Zylindereinheit
US5429174A (en) * 1993-07-15 1995-07-04 Aluminum Company Of America Vacuum die casting machine having improved siphon tube and associated method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989663A (en) * 1989-04-14 1991-02-05 Toshiba Kikai Kabushiki Kaisha Casting apparatus
JPH02290658A (ja) * 1989-04-27 1990-11-30 Toshiba Mach Co Ltd ダイカストマシンの射出方法
DE4123464A1 (de) * 1991-07-16 1993-01-21 Audi Ag Verfahren zum betreiben einer druckgiessmaschine
JPH06106330A (ja) * 1992-09-28 1994-04-19 Nissan Motor Co Ltd ダイカスト鋳造装置
JPH08150459A (ja) * 1994-11-24 1996-06-11 Kobe Steel Ltd 高圧鋳造装置
DE19613668C1 (de) * 1996-04-04 1997-05-28 Gustav Ohnsmann Gießanlage und Verfahren zur Herstellung von Gußstücken

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 061 (M - 1081) 13 February 1991 (1991-02-13) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 380 (M - 1639) 18 July 1994 (1994-07-18) *
PATENT ABSTRACTS OF JAPAN vol. 096, no. 010 31 October 1996 (1996-10-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521709A1 (de) * 2018-10-05 2020-04-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Vorrichtung zum Zudosieren von Metallschmelze in eine Druckgusseinheit

Also Published As

Publication number Publication date
US6318444B1 (en) 2001-11-20
DE19802342C1 (de) 1999-03-04
EP0931610B1 (fr) 2003-06-25
DE59906050D1 (de) 2003-07-31
ES2201575T3 (es) 2004-03-16

Similar Documents

Publication Publication Date Title
DE19613668C1 (de) Gießanlage und Verfahren zur Herstellung von Gußstücken
EP0035675B1 (fr) Procédé et dispositif pour la coulée continue horizontale des métaux liquides, notamment l'acier
DE112006003540B4 (de) Entgasungsvorrichtung mit Duplex-Vakuumbehälter
EP0931610B1 (fr) Dispositif et procédé pour alimenter en métal des machines à coulée sous pression à chambre froide horizontales et verticales
US3874440A (en) Moulds for producing light alloy and other castings
DE2258993C3 (de) Vakuumgießanlage und Verfahren zum Betrieb derselben
EP3152335B1 (fr) Station et procédé de transfert d'un métal en fusion d'un four de fusion dans un creuset de transport, ainsi qu'agencement et système équipés d'une telle station
DE2307846A1 (de) Verfahren zum selbsttaetigen entnehmen von schmelzfluessigem metall
RU2246375C2 (ru) Способ и устройство для производства изделий из легких металлов, в частности, деталей из магния и магниевых сплавов
EP0055210B1 (fr) Dispositif et procédé de coulée sous basse pression
US6460604B1 (en) Apparatus for uphill low pressure casting of molten metal
DE10258370A1 (de) Verfahren und Vorrichtungen zum automatischen Dosieren, Transportieren und Gießen von Schmelzen und anderen fluiden Stoffen
DE2128425A1 (de) Giessverfahren mit druckanwendung und einrichtung zur durchfuehrung des verfahrens
DE19821946A1 (de) Verfahren und Vorrichtungen zum automatischen Gießen von Bauteilen durch quantifiziertes Füllen eines Raumes mit geschmolzenem Metall
DE2362702C3 (de) Vorrichtung zum Zuführen, Fördern und Dosieren einer Metallschmelze zu einer Stranggießkokille
MXPA03000286A (es) Metodo y dispositivo para la fundicion ascendente con un cierre deslizable que esta montado sobre el armazon del molde.
DE60019877T2 (de) Feingiessen unter Verwendung eines Giesstümpelreservoirs mit invertiertem Schmelzzuführungsanschnitt
DE2133421C3 (de) Vorrichtung zum Gießen von Aluminium legierungen m vorgewärmte, mehrteilige Kokillen
DE19832192A1 (de) Verfahren zur Zuführung von Metallschmelze zu einer Füllkammer einer Gußanlage und Gußanlage zur Durchführung des Verfahrens
CN220018136U (zh) 一种可自动下料的铜棒熔炼炉
EP4192637B1 (fr) Dispositif de coulée par induction sous vide permettant la coulée de métal et d'alliages métalliques sous vide et/ou à une atmosphère de gaz de protection, et procédé de changement d'une quenouille et/ou d'un corps de fermeture d'un dispositif de coulée de quenouille sur un dispositif de coulée par induction sous vide
DE19943096B4 (de) Verfahren und Vorrichtungen zum Befüllen der Druckkammer einer horizontalen Druckgiessmaschine mit Metall und -Legierungen
DE9401594U1 (de) Dosierofen
DE2041588C3 (de) Schmelz- und Niederdruckgieß-Verfahren und Einrichtung zur Durchführung des Verfahrens
DE102019004255A1 (de) Verfahren zum Schwerkraftgießen, Faltenbalg und Verwendung eines Faltenbalgs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000120

AKX Designation fees paid

Free format text: DE ES FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OHNSMANN, GUSTAV

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BANDT, GEROLD

Inventor name: OHNSMANN, GUSTAV

AK Designated contracting states

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59906050

Country of ref document: DE

Date of ref document: 20030731

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2201575

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080717

Year of fee payment: 10

Ref country code: DE

Payment date: 20080725

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080716

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080709

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090121

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080729

Year of fee payment: 10

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616