EP0918997A1 - Schaltungsanordnung zum erfassen des laststroms eines leistungs-halbleiterbauelements mit sourceseitiger last - Google Patents

Schaltungsanordnung zum erfassen des laststroms eines leistungs-halbleiterbauelements mit sourceseitiger last

Info

Publication number
EP0918997A1
EP0918997A1 EP97936576A EP97936576A EP0918997A1 EP 0918997 A1 EP0918997 A1 EP 0918997A1 EP 97936576 A EP97936576 A EP 97936576A EP 97936576 A EP97936576 A EP 97936576A EP 0918997 A1 EP0918997 A1 EP 0918997A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor component
load current
circuit arrangement
load
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97936576A
Other languages
English (en)
French (fr)
Inventor
Adam-Istvan Koroncai
Jenoe Tihanyi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0918997A1 publication Critical patent/EP0918997A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16504Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed
    • G01R19/16519Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed using FET's

Definitions

  • Circuit arrangement for detecting the Las current of a power semiconductor component with a load on the source side
  • the invention relates to a circuit arrangement for detecting the load current in the case of small currents of a power semiconductor component which can be controlled by a field effect according to the preamble of claim 1.
  • Such a circuit arrangement is e.g. from the article "Serviving Short Circuits" by R.Frank and A.Pshaenich, Machine Design, March 8, 1990, pages 89 to 96.
  • This article shows the principle that the load current of a power MOSFET is thereby detected can that the power MOSFET a similar, smaller in area MOSFET connected in parallel and this smaller MOSFET, the so-called “sense" -FET, a measuring resistor is connected in series on the source side. If the power FET is connected to a load on the drain side, a current flows through the further FET which is approximately proportional to the load current. The proportionality factor depends on the ratio of the current-carrying areas of the sense FET to that of the power FET. If a load current flows through the load and thus through the power FET, a part that is approximately proportional to the load current flows through the sense FET and the measuring resistor. A voltage approximately proportional to the load current can then be tapped at the measuring resistor.
  • the prerequisite is that the measuring resistor is matched to the load. With a different load, either the measuring resistance must be changed or the evaluation logic that detects the voltage.
  • the voltage drop across the power transistor is therefore measured. If this voltage drop drops below a specified value, e.g. 10 mV, a logic generated signal that reports the idle. The level of the idle threshold is therefore dependent on the on-resistance of the power transistor and is therefore inaccurate. Furthermore, the error when measuring with small load currents is getting bigger.
  • the object of the present invention is to provide a circuit arrangement for detecting the load current of a power semiconductor component with a load on the source side, with an accurate open circuit detection circuit.
  • the circuit according to the invention advantageously uses the “sense” current to determine a logic signal instead of the voltage drop.
  • control of the semiconductor switch can also be switched off in the absence of a load by the entire arrangement.
  • FIG. 1 shows a circuit arrangement according to the invention and FIG. 2 shows an embodiment for the block 5 shown in FIG. 1.
  • FIG. 1 shows a power semiconductor component in the form of a MOSFET, the drain of which is connected to a supply voltage terminal 11.
  • the source connection is connected to ground via a load 4. Furthermore is a
  • Sense-FET 2 is provided, the drain connection of which is also connected to the supply voltage terminal 11.
  • the source Connection is connected via the load path of a further MOSFET 6 to an input a of an evaluation device 5.
  • An O peration amplifier 3 is provided whose positive input is connected to the source terminal of the power MOSFET 1, and whose inverting input is connected to the source terminal of the MOSFET. 2
  • the output of the operational amplifier 3 is connected to the gate connection of the MOSFET 6.
  • the gate connections of the power MOSFET 1 and the sense MOSFET 2 are connected to one another and to the output of a charge pump 9.
  • the charge pump 9 is connected on the one hand to the supply voltage gauze 11 and is connected via a capacitor 8 to the output of an oscillator 7 which has an input which is connected to an input terminal 10.
  • the oscillator 7 is also connected to ground.
  • the evaluation device 5 is connected to the supply voltage and ground via corresponding connecting lines e and b. It also has outputs d and c, output c being connected to an output terminal 13.
  • the output d is connected to the non-inverting input of a further operational amplifier 14, the inverting input of which is connected to the source connection of the power MOSFET 1.
  • the gate connection of the power MOSFET 1 is connected to its source connection via a resistor 12.
  • the output of the operational amplifier 14 is coupled to a control input of the oscillator 7.
  • FIG. 2 shows an embodiment of the evaluation device 5 according to FIG. 1.
  • Terminal a is connected to the gate terminal and the drain terminal of a MOSFET 20. Furthermore, it is connected to the gate terminal of a MOSFET 21.
  • the drain connection of the MOSFET 21 is connected to the connection terminal e via a current source 22.
  • the connection terminal e is also connected via a resistor 23 to the drain connection of a further MOSFET 24.
  • a diode 25 is connected in parallel with the resistor 23 in the flow direction.
  • the terminal e is connected via a current source 26 to the drain connection of a MOSFET 28 and to the Output terminal c connected.
  • the source connections of the MOSFETs 20, 21, 24 and 28 are connected to the connection terminal b.
  • a zener diode 27 is connected in the reverse direction between the drain connection and the source connection of the MOSFET 28.
  • the drain of the MOSFET 21 is connected to the gate of the
  • MOSFET 24 and the gate connection of MOSFET 28 connected.
  • the drain connection of the MOSFET 24 is connected to the output terminal d.
  • Lastström a correspondingly high reference voltage and a logic signal.
  • the reference voltage is fed to the non-inverting input of the operational amplifier 14, which compares this reference voltage with the voltage drop across the load 4.
  • the oscillator 7 can be switched off by the output signal of the operational amplifier 14 in the absence of a load or in the event of a load loss.
  • the task of the evaluation device 5 is to generate a reference voltage at the output terminal d from the sense current at the input a and to generate a logic voltage for the no-load message at the output c.
  • the exemplary embodiment shown in FIG. 2 in this regard has a first comparator stage through transistors 20 and 21, which compare the incoming proportional load current with the current of current source 22.
  • the voltage drop across resistor 23 determines the reference voltage at output d.
  • the voltage drop of the power transistor 1 is corrected to this voltage.
  • the diode 25 limits the reference voltage to, for example, 0.7 V based on the supply voltage V b at the input terminal e.
  • the comparator 20, 21 switches the level auxiliary stage 26, 27, where the logic signal "No-Load" is generated. The entire circuit arrangement is therefore independent of the on-resistance of the power MOSFET 1 and therefore temperature constant.
  • the invention was explained using a high-boiling switch. However, it can also be used for a low-side switch.
  • Measuring resistor 5 remains connected on the source side of MOSFET 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

Die Erfindung beschreibt eine Schaltungsanordnung zum Erfassen des Laststroms eines durch Feldeffekt steuerbaren Leistungs-Halbleiterbauelements (1), mit einem weiteren durch Feldeffekt steuerbaren Halbleiterbauelement (2), wobei die Drainanschlüsse und Gateanschlüsse beider Halbleiterbauelemente jeweils miteinander verbunden sind, und durch das weitere Halbleiterbauelement (2) ein Bruchteil des Laststroms fließt, mit Mitteln (3, 6), die in Abhängigkeit von der Drain-Sourcespannung der beiden Halbleiterbauelemente (1, 2) den Laststrom des weiteren Halbleiterbauelements (2) einstellen, wobei weitere Mittel (5) vorgesehen sind, die den durch das weitere Halbleiterbauelement (2) fließenden Laststrom (I/n) mit einem Referenzstrom vergleichen und ein Ausgangssignal erzeugen, wenn der Laststrom einen eingestellten Wert unterschreitet.

Description

Beschreibung
Schaltungsanordnung zum Erfassen des Las Stroms eines Lei- stungs-Halbleiterbauelements mit sourceseitiger Last
Die Erfindung bezieht sich auf eine Schaltungsanordnung zum Erfassen des Laststroms bei kleinen Strömen eines durch Feldeffekt steuerbaren Leistungs-Halbleiterbauelements gemäß dem Oberbegriff des Anspruchs 1.
Eine derartige Schaltungsanordnung ist z.B. aus dem Artikel „Serviving Short Circuits" von R.Frank und A.Pshaenich, Machine Design, March 8, 1990, Seite 89 bis 96 beschrieben worden. In diesem Artikel ist das Prinzip dargestellt, daß der Laststrom eines Leistungs-MOSFET dadurch erfaßt werden kann, daß dem Leistungs-MOSFET ein ähnlicher, von der Fläche her kleinerer MOSFET parallel geschaltet und diesem kleineren MOSFET, dem sogenannten „Sense" -FET sourceseitig ein Meßwiderstand in Reihe geschaltet wird. Ist der Leistungs-FET drainseitig mit einer Last verbunden, so fließt durch den weiteren FET ein Strom, der dem Laststrom etwa proportional ist. Der Proportionalitätsfaktor hängt dabei vom Verhältnis der stromführenden Flächen des Sense-FET, zu der des Leistungs-FET ab. Fließt durch die Last und damit durch den Leistungs-FET ein Laststrom, so fließt damit ein dem Laststrom etwa proportionaler Teil durch den Sense-FET und den Meßwiderstand. Am Meßwiderstand kann dann eine dem Laststrom etwa proportionale Spannung abgegriffen werden.
Voraussetzung ist dabei, daß der Meßwiderstand auf die Last abgestimmt ist. Bei einer anderen Last muß daher entweder der Meßwiderstand geändert werden oder die die Spannung erfassende Auswertelogik.
Bei den bisherigen Lösungen wird demnach der Spannungsabfall am Leistungstransistor gemessen. Sinkt dieser Spannungsabfall unter einen vorgegebenen Wert, z.B 10 mV, wird ein Logik- signal erzeugt, das den Leerlauf meldet. Die Höhe der Leerlaufschwelle ist somit vom Einschaltwiderstand des Leistungstransistors abhängig und dadurch ungenau. Des weiteren wird der Fehler bei der Messung bei kleinen Lastströmen immer größer.
Aufgabe der vorliegenden Erfindung ist es, eine Schaltungsanordnung zum Erfassen des Laststroms eines Leistungs-Halblei- terbauelements mit sourceseitiger Last anzugeben, mit einer genauen Leerlauferkennungsschaltung.
Diese Aufgabe wird durch den kennzeichnenden Teil des Anspruchs 1 gelöst. Weiterbildungen sind Kennzeichen der Unteransprüche.
Durch die erfindungsgemäße Schaltung wird vorteilhafterweise anstelle des Spannungsabfalls der „Sense"-Strom zur Ermittlung eines Logiksignals herangezogen.
Vorteilhafterweise kann durch die gesamte Anordnung zusätzlich die Ansteuerung des Halbleiterschalter bei fehlender Last abgeschaltet werden.
Die Erfindung wird nachfolgend anhand von zwei Figuren näher erläutert.
Es zeigen
Figur 1 eine Schaltungsanordnung gemäß der Erfindung und Figur 2 eine Ausführungsform für den in Figur 1 gezeigten Block 5.
In Figur 1 ist mit 1 ein Leistungs-Halbleiterbauelement in Form eines MOSFET dargestellt, dessen Drain mit einer Versor- gungsspannungsklemme 11 verbunden ist. Der Sourceanschluß ist über eine Last 4 mit Masse verschaltet. Des weiteren ist ein
Sense-FET 2 vorgesehen, dessen Drainanschluß ebenfalls mit der Versorgungsspannungsklemme 11 verbunden ist. Der Source- anschluß ist über die Laststrecke eines weiteren MOSFET 6 mit einem Eingang a einer Auswertevorrichtung 5 verschaltet . Ein Operationsverstärker 3 ist vorgesehen, dessen positiver Eingang mit dem Sourceanschluß des Leistungs-MOSFET 1 und dessen invertierender Eingang mit dem Sourceanschluß des MOSFET 2 verschaltet ist. Der Ausgang des Operationsverstärkers 3 ist mit dem Gateanschluß des MOSFET 6 verschaltet. Die Gateanschlüsse des Leistungs-MOSFET 1 und des Sense-MOSFET 2 sind miteinander und mit dem Ausgang einer Ladungspumpe 9 ver- schaltet. Die Ladungspumpe 9 wird einerseits mit der Versorgungsspannungskiemme 11 verbunden und ist über einen Kondensator 8 mit dem Ausgang eines Oszillators 7 verschaltet, der einen Eingang aufweist, der mit einer Eingangsklemme 10 verbunden ist. Der Oszillator 7 ist des weiteren mit Masse ver- schaltet. Ober entsprechende Anschlußleitungen e und b ist die Auswertevorrichtung 5 mit der Versorgungsspannung und Masse verbunden. Sie weist des weiteren Ausgänge d und c auf, wobei der Ausgang c mit einer Ausgangsklemme 13 verschaltet ist. Der Ausgang d ist mit dem nichtinvertierenden Eingang eines weiteren Operationsverstärkers 14 verschaltet, dessen invertierender Eingang mit dem Sourceanschluß des Leistungs- MOSFET 1 verbunden ist. Der Gateanschluß des Leistungs-MOSFET 1 ist über einen Widerstand 12 mit seinem Sourceanschluß verbunden. Der Ausgang des Operationsverstärkers 14 ist mit ei- nem Steuereingang des Oszillators 7 gekoppelt.
In Figur 2 ist eine Ausführungsform der Auswertevorrichtung 5 gemäß Figur 1 dargestellt. Die Anschlußklemme a ist mit dem Gateanschluß und dem Drainanschluß eines MOSFET 20 verbunden. Des weiteren ist sie mit dem Gateanschluß eines MOSFET 21 verbunden. Der Drainanschluß des MOSFET 21 ist über eine Stromquelle 22 mit der Anschlußklemme e verbunden. Die Anschlußklemme e ist des weiteren über einen Widerstand 23 mit dem Drainanschluß eines weiteren MOSFET 24 verbunden. Paral- lel zum Widerstand 23 ist in Flußrichtung eine Diode 25 geschaltet. Außerdem ist die Anschlußklemme e über eine Stromquelle 26 mit dem Drainanschluß eines MOSFET 28 und mit der Ausgangsklemme c verbunden. Die Sourceanschlüsse der MOSFETs 20, 21, 24 und 28 sind mit der Anschlußklemme b verbunden. Zwischen dem Drainanschluß und dem Sourceanschluß des MOSFET 28 ist eine Zenerdiode 27 in Sperrichtung geschaltet. Der Drainanschluß des MOSFET 21 ist mit dem Gateanschluß des
MOSFET 24 und dem Gateanschluß des MOSFET 28 verschaltet. Der Drainanschluß des MOSFET 24 ist mit der Ausgangsklemme d verbunden .
Gemäß Figur 1 wird bei Anlegen einer Eingangsspannung an die Klemme 10 der Oszillator aktiviert, wodurch die Ladunspumpe in Betrieb geht, und den Leistungs-MOSFET 1 und den Sense- MOSFET 2 leitend schaltet. Dadurch fließt Strom durch die Last 4 und es stellt sich ein unterschiedliches Potential an den Eingangsklemmen des Operationsverstärkers 3 ein. Der Operationsverstärker 3 gleicht diesen Unterschied durch Ansteue- rung des MOSFETs 6 aus. Auf diese Weise wird praktisch der Lastwiderstand 4 durch die Laststrecke des MOSFET 6 proportional nachgebildet. Bei kleinen Strömen durch den Leistungs- MOSFET 1 wird jedoch auch die Spannung an der Last 4 klein und der Fehler eines Operationsverstärkers geht in zunehmenden Maße in den Regelvorgang ein. Um dies zu vermeiden wird der Laststrom I/n durch den MOSFET 6 einen Bruchteil des Laststroms I durch die Last 4 bildet, der dem Eingang der Auswertevorrichtung 5 zugeführt. Diese erzeugt aus diesem
Lastström eine entsprechend hohe Referenzspannung und ein Logiksignal. Die Referenzspannung wird dem nichtinvertierenden Eingang des Operationsverstärkers 14 zugeführt, der diese Referenzspannung mit der an der Last 4 abfallenden Spannung vergleicht. Durch das Ausgangssignal des Operationsverstärkers 14 kann der Oszillator 7 bei Fehlen einer Last oder bei Lastverlust abgeschaltet werden. Die Aufgabe der Auswertevorrichtung 5 ist es, aus dem Sensestrom am Eingang a eine Referenzspannung an der Ausgangsklemme d zu erzeugen und eine Lo- gikspannung zur No-Load-Meldung am Ausgang c zu generieren. Das in Figur 2 diesbezüglich gezeigte Ausführungsbeispiel verfügt über eine erste Ko paratorstufe durch die Transistoren 20 und 21, die den eingehenden proportionalen Lastström mit dem Strom der Stromquelle 22 vergleichen. Ist der propor- tionale Laststrom am Eingang a kleiner als der Referenzstrom 22, so bestimmt der Spannungsabfall über den Widerstand 23 die Referenzspannung am Ausgang d. Auf diese Spannung wird der Spannungsabfall des Leistungstransistors 1 ausgeregelt. Die Diode 25 limitiert die Referenzspannung auf z.B. 0,7 V bezogen auf die VersorgungsSpannung Vb an der Eingangsklemme e. Gleichzeitig schaltet der Komparator 20, 21 die Levelhilfsstufe 26, 27, wo das Logiksignal „No-Load" generiert wird. Die gesamte Schaltungsanordnung ist demnach unabhängig vom Einschaltwiderstand des Leistungs-MOSFET 1 und da- durch temperaturkonstant.
Die Erfindung wurde anhand eines High-Siede-Schalters erläutert. Sie ist jedoch auch für einen Low-Side-Schalter anwendbar. Hier befindet sich die Last 4 auf der Drainseite der beiden MOSFET' s während der steuerbare Schalter 6 und der
Meßwiderstand 5 auf der Sourceseite des MOSFET 2 angeschlossen bleibt.

Claims

Patentansprüche
1. Schaltungsanordnung zum Erfassen des Laststroms eines durch Feldeffekt steuerbaren Leistungs-Halbleiterbauelements, mit
- einem weiteren durch Feldeffekt steuerbaren Halbleiterbaueiement, wobei die Drainanschlüsse und Gateanschlüsse beider Halbleiterbauelemente jeweils miteinander verbunden sind, und durch das weitere Halbleiterbaueiement ein Bruch- teil des Laststroms fließt,
- Mittel, die in Abhängigkeit von der Drain-Sourcespannung der beiden Halbleiterbauelemente den Laststrom des weiteren Halbleiterbauelements einstellen, d a d u r c h g e k e n n z e i c h n e t , daß weitere Mittel (5) vorgesehen sind, die den durch das weitere Halbleiterbaueiement (2) fließenden Laststrom (I/n) mit einem Referenzstrom vergleichen und ein Ausgangssignal erzeugen, wenn der Laststrom einen eingestellten Wert unterschreitet.
2. Schaltungsanordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß eine steuerbare Einrichtung (7, 8, 9) zur Erzeugung eines Ansteu- ersignals für die Halbleiterbauelemente (1, 2) vorgesehen ist, und daß dritte Mittel (5, 14) vorgesehen sind, die in Abhängigkeit vom Laststrom (I/n) des weiteren Halbleiterbauelements und in Abhängigkeit vom Laststrom des Halbleiterbaueiementε (1) die steuerbare Einrichtung (7, 8, 9) zur Erzeugung eines Ansteuersignais ein- bzw. ausschalten.
3. Schaltungsanordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß der Gateanschluß des Halbleiterbauelements (1) über einen Widerstand (12) mit dem Sourceanschluß des Halbleiterbauelements (1) verbunden ist .
4. Schaltungsanordnung nach Anspruch 2 oder 3 , d a d u r c h g e k e n n z e i c h n e t , daß ein Operationsverstärker (14) vorgesehen ist, dem einerseits eine aus dem Laststrom (I/n) des weiteren Halbleiterbauelements (2) abgeleitete Referenzspannung (Uref) und andererseits die Spannung an der Last (4) zugeführt wird und dessen Ausgang mit dem Steuereingang der steuerbaren Einrichtung (7) verbunden ist .
5. Schaltungsanordnung nach einem der vorhergehenden Ansprü- ehe, d a d u r c h g e k e n n z e i c h n e t , daß die Mittel zum Einstellen des Laststroms (I/n) durch das weitere Halbleiterbaueiement (7) einen Operationsverstärker (3) aufweisen, dessen Eingänge jeweils mit den Sourceanschlüssen der Halbleiterbauelemente (1, 2) verbunden sind und dessen Ausgang mit dem Gate eines dritten Halbleiterbauelements (6) verbunden ist, dessen Laststrecke in Reihe zur Laststrecke des weiteren Halbleiterbauelementε (2) geschaltet ist.
6. Schaltungsanordnung nach einem der Ansprüche 2 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Einrichtung zur Erzeugung eines Steuersignals einen steuerbaren Oszillator (7) mit nachgeschalteter Ladungspumpe (9) aufweisen.
7. Schaltungsanordnung nach einem der Ansprüche 2 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die Mittel zur Auswertung des Laststroms durch das weitere Halbleiterbaueiement (1) den Laststrom (I/n) mit einem Referenzstrom vergleichen und eine Referenzspannung (Uref) erzeugen, die bei Unterschreiten des Referenzstroms in Abhängigkeit vom Last- strom erzeugt wird und andernfalls konstant bleibt.
8. Schaltungsanordnung nach einem der Ansprüche 2 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß eine Ausgangsstufe (26, 27, 28) vorgesehen ist, die ein digitales Ausgangssignal erzeugt.
EP97936576A 1996-08-14 1997-07-31 Schaltungsanordnung zum erfassen des laststroms eines leistungs-halbleiterbauelements mit sourceseitiger last Withdrawn EP0918997A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19632812 1996-08-14
DE19632812 1996-08-14
PCT/DE1997/001621 WO1998007038A1 (de) 1996-08-14 1997-07-31 Schaltungsanordnung zum erfassen des laststroms eines leistungs-halbleiterbauelements mit sourceseitiger last

Publications (1)

Publication Number Publication Date
EP0918997A1 true EP0918997A1 (de) 1999-06-02

Family

ID=7802648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936576A Withdrawn EP0918997A1 (de) 1996-08-14 1997-07-31 Schaltungsanordnung zum erfassen des laststroms eines leistungs-halbleiterbauelements mit sourceseitiger last

Country Status (4)

Country Link
US (1) US5986441A (de)
EP (1) EP0918997A1 (de)
JP (1) JP2000516338A (de)
WO (1) WO1998007038A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326567A (ja) * 2000-03-10 2001-11-22 Rohm Co Ltd Mosfet駆動回路
DE60238900D1 (de) * 2002-04-02 2011-02-24 Dialog Semiconductor Gmbh Leistungsschalter mit Stromabfühlschaltung
TWI249090B (en) * 2003-01-16 2006-02-11 Shindengen Electric Mfg Switching circuit
US7372685B2 (en) * 2003-05-20 2008-05-13 On Semiconductor Multi-fault protected high side switch with current sense
DE102004030129A1 (de) * 2004-06-22 2006-01-19 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zur Einstellung der Leistungsaufnahme einer an einem Gleichspannungsnetz betreibbaren Last
JP4689473B2 (ja) * 2005-05-16 2011-05-25 シャープ株式会社 直流安定化電源回路
WO2008083165A2 (en) * 2006-12-28 2008-07-10 Draeger Medical Systems, Inc. An electronic device identification system
JP5552288B2 (ja) * 2009-10-09 2014-07-16 新日本無線株式会社 スイッチング電源装置
JP5674687B2 (ja) * 2012-01-17 2015-02-25 株式会社東芝 スイッチ回路、および電力供給装置
CN103633617B (zh) * 2013-12-02 2016-06-22 嘉兴中润微电子有限公司 一种应用于大功率电机驱动芯片的过流保护检测电路
US9360879B2 (en) * 2014-04-28 2016-06-07 Microsemi Corp.-Analog Mixed Signal Group, Ltd. Sense current generation apparatus and method
DE102014223486A1 (de) * 2014-11-18 2016-05-19 Robert Bosch Gmbh Schutzschaltung für einen Überspannungs- und/oder Überstromschutz
JP2021047057A (ja) * 2019-09-17 2021-03-25 ルネサスエレクトロニクス株式会社 半導体装置、および、パワーデバイス
DE102021206080A1 (de) * 2021-06-15 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Integrierte Schaltung und Verfahren zum Begrenzen eines schaltbaren Laststroms

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8503394A (nl) * 1985-12-10 1987-07-01 Philips Nv Stroomaftastschakeling voor een vermogenshalfgeleiderinrichting, in het bijzonder geintegreerde intelligente vermogenshalfgeleiderschakelaar voor met name automobieltoepassingen.
GB2206010A (en) * 1987-06-08 1988-12-21 Philips Electronic Associated Differential amplifier and current sensing circuit including such an amplifier
GB2207315B (en) * 1987-06-08 1991-08-07 Philips Electronic Associated High voltage semiconductor with integrated low voltage circuitry
JPH07113861B2 (ja) * 1988-01-29 1995-12-06 株式会社日立製作所 半導体素子の状態検出及び保護回路とそれを用いたインバータ回路
GB2217938A (en) * 1988-04-29 1989-11-01 Philips Electronic Associated Current sensing circuit
DE3882708D1 (de) * 1988-10-25 1993-09-02 Siemens Ag Schaltungsanordnung zum erkennen des leerlaufs einer mit einem elektronischen schalter in reihe liegenden last.
US4914542A (en) * 1988-12-27 1990-04-03 Westinghouse Electric Corp. Current limited remote power controller
FR2642176B1 (fr) * 1989-01-20 1991-05-03 Sgs Thomson Microelectronics Dispositif et procede de detection du passage d'un courant dans un transistor mos
IT1238305B (it) * 1989-11-30 1993-07-12 Sgs Thomson Microelectronics "circuito di rilevamento della corrente in un transistore di potenza di tipo mos"
US5164659A (en) * 1991-08-29 1992-11-17 Warren Schultz Switching circuit
US5220207A (en) * 1991-09-03 1993-06-15 Allegro Microsystems, Inc. Load current monitor for MOS driver
JP3080823B2 (ja) * 1993-10-15 2000-08-28 モトローラ株式会社 半導体集積回路装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9807038A1 *

Also Published As

Publication number Publication date
JP2000516338A (ja) 2000-12-05
US5986441A (en) 1999-11-16
WO1998007038A1 (de) 1998-02-19

Similar Documents

Publication Publication Date Title
DE19706946C2 (de) Battierüberwachungseinheit
DE102008059853B4 (de) Schaltungsanordnung mit einem Lasttransistor und einem Messtransistor
DE19520735C2 (de) Schaltungsanordnung zum Erfassen des Laststroms eines Leistungs-Halbleiterbauelementes mit sourceseitiger Last
DE10042585C1 (de) Schaltungsanordnung zur Erfassung des Stromes in einem Lasttransistor
DE4207568C2 (de) Überstrom-Detektorschaltung für eine Leistungshalbleiteranordnung
DE10258766B4 (de) Schaltungsanordnung zur Steuerung und Erfassung des Laststroms durch eine Last
WO1998007038A1 (de) Schaltungsanordnung zum erfassen des laststroms eines leistungs-halbleiterbauelements mit sourceseitiger last
DE102008032556B3 (de) Leistungsschalter mit einer Überstromschutzvorrichtung
DE102004032697A1 (de) Energieversorgungs-Steuergerät mit einer hochzuverlässigen Überstrom-Erfassungsschaltung
DE102009028217B4 (de) Schaltungsanordnung mit einem Lasttransistor und einem Messtransistor
EP0369048A1 (de) Schaltungsanordnung zur Laststromregelung in einem Leistungs-MOSFET
DE112018005588T5 (de) Überstrom-erfassungseinrichtung, steuereinrichtung und überstrom-erfassungsverfahren
DE602004003382T2 (de) Unterstromsensoranordnung und verfahren
DE10308546A1 (de) Sensorausgangs-Verarbeitungsvorrichtung mit Eigendiagnose-Funktion
DE102005020803A1 (de) Schaltungsanordnung mit einer Verstärkeranordnung und einer Offset-Kompensationsanordnung
EP1095453B1 (de) Schaltungsanordnung zum ansteuern einer schaltvorrichtung zum schalten eines elektrischen verbrauchers
DE10245133A1 (de) Kalibrierungsanordnung
DE19838657B4 (de) Schaltungsanordnung zum Erfassen des Laststromes eines Leistungs-Feldeffekt-Halbleiterbauelementes
DE19743346C2 (de) Schaltungsanordnung zur getakteten Stromregelung von induktiven Lasten
EP1066552A1 (de) Schaltungsanordnung zur steuerung und erfassung des laststromes durch eine last
EP0763746A2 (de) Schaltungsanordnung zum Erkennen des Leerlaufs einer Last
DE4005813A1 (de) Vorrichtung zur ueberwachung des laststromes eines elektronisch geschalteten verbrauchers
DE102015015479B3 (de) Schaltungsanordnung zum Ermitteln einer Stromstärke eines elektrischen Stroms
DE102007059498A1 (de) Linearer Spannungsregler mit präziser Detektion einer offenen Last
DE19604041C1 (de) Schaltungsanordnung zur Erkennung eines durch eine Last fließenden Laststroms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030201