CN103633617B - 一种应用于大功率电机驱动芯片的过流保护检测电路 - Google Patents

一种应用于大功率电机驱动芯片的过流保护检测电路 Download PDF

Info

Publication number
CN103633617B
CN103633617B CN201310636683.5A CN201310636683A CN103633617B CN 103633617 B CN103633617 B CN 103633617B CN 201310636683 A CN201310636683 A CN 201310636683A CN 103633617 B CN103633617 B CN 103633617B
Authority
CN
China
Prior art keywords
oxide
metal
semiconductor
grid
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310636683.5A
Other languages
English (en)
Other versions
CN103633617A (zh
Inventor
陈路鹏
王良坤
朱铁柱
张明星
夏存宝
黄武康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIAXING ZHONGRUN MICROELECTRONICS Co Ltd
Original Assignee
JIAXING ZHONGRUN MICROELECTRONICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIAXING ZHONGRUN MICROELECTRONICS Co Ltd filed Critical JIAXING ZHONGRUN MICROELECTRONICS Co Ltd
Priority to CN201310636683.5A priority Critical patent/CN103633617B/zh
Publication of CN103633617A publication Critical patent/CN103633617A/zh
Application granted granted Critical
Publication of CN103633617B publication Critical patent/CN103633617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种应用于大功率电机驱动芯片的过流保护检测电路,包括MOSFET管MI、电流采样管MII、电压比较器VC、MOS管M6和电流比较器IC。MOSFET管MI的源极和电源采样管MII的源极与电机电源电压VBB连接,MOSFET管MI的栅极和电源采样管MII的栅极连接在一起,MOSFET管MI的漏极和电源采样管MII的漏极分别与电压比较器VC的两个输入端连接,电压比较器VC的输出端与电流比较器IC的输入端连接,并在电流比较器IC中与基准电流Iref比较,根据比较结果进行电机电流充电模式下的最大峰值输出电流保护。

Description

一种应用于大功率电机驱动芯片的过流保护检测电路
技术领域
[0001]本发明涉及一种电机驱动芯片的过流保护检测电路,尤其涉及一种在高压大功率的电机驱动芯片的过流保护检测电路。
背景技术
[0002]在电极驱动应用中,为了提高电机的输出功率,要求流过电机马达线圈的电流足够大,这就要求电机的驱动电路有足够的驱动能力,能够为电机提供足够的驱动电流。在增大了驱动电流的同时,还要注意电机的安全工作电流限制,这就对电路的过载电流提出了限制,因此需要对通过电机的电流峰值进行监测;在驱动电路内部,设计一个过流保护模块,同步检测流过电机的上升电流,设定一个安全工作阈值,使得流过电机的电流超过这个预设的阈值时,能够自动启动过流保护功能,避免电机的过热损毁。
[0003]电机的马达需要的额定电流通常较大,一般大于1A,太大的电流不容易进行处理,技术难度很大。一般的做法是通过一个采样器件将大的电流采样等比例缩小后,再处理这个小的采样电流。对此采样电流的处理不外乎两个方式,一个是直接进行电流的比较,将采样电流与一个精密的基准电流作对比,共同输入一个电流比较器,当充电的电流上限到来,峰值电流超过了基准电流,使得比较器翻转,其输出提供给控制模块,控制电机驱动电路停止给电机充电。另一个方式是首先进行电流电压的转化,采样电流流过电阻后转化为电压,此电压同基准电压进行比较,比较输出送给控制模块,关断电机驱动电路。
[0004]因此,本领域的技术人员致力于开发一种新型的电流采样检测电路,采用采样电流与基准电流直接比较的方式,实现在电流充电过程中的过流关断保护。
发明内容
[0005]有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种应用于大功率电机驱动芯片的过流保护检测电路。
[0006]为实现上述目的,本发明提供了一种应用于大功率电机驱动芯片的过流保护检测电路,其特征在于,包括MOSFET管(MI)、电流采样管(MII)、M0S管(M6)、电流源(Itrip)、电压比较器(VC)和电流比较器(IC);
[0007]所述MOSFET管(MI)的源极与电机电源电压(VBB)连接,栅极与所述电流采样管(MII)的栅极连接在一起;漏极分别与所述电压比较器(VC)的负相输入端和所述电流源(I tr i P )的输入端连接;
[0008] 所述电流采样管(Mil)的源极与所述电机电源电压(VBB)连接,栅极与所述MOSFEN管(MI)的栅极连接,漏极分别与所述电压比较器(VC)的输入端和所述MOS管(M6)的漏极连接;
[0009] 所述电压比较器的输出端(IN)分别与所述MOS管(M6)的栅极和所述电流比较器的负相输入端连接;
[0010]所述电流源(I tr ip )是所述电机的线圈电流;[0011 ] 所述MOS管(M6)的源极直接与地相连;
[0012]所述电流比较器(IC)的输入端输入基准电流(Iref)。
[0013] 在本发明的一个较佳实施例中,所述过流保护电路还包括MOSFET管(M3)和MOSFET管(M4);增加的MOSFET管M3和M4保证了MOSFET管MI和电流采样管MII在关断是能够快速彻底关断,避免出现关断后静态电流仍然较大的问题。
[0014] 所述MOSFET管(M3)的栅极与所述MOSFET管的栅极相连,所述MOSFET管(M3)的源极分别与所述电机电源电压(VBB)和所述MOSFET管(MI)的栅极连接,所述MOSFET管(M3)的漏极分别与所述电压比较器(VC)的负相输入端和所述MOSFET管(MI)的漏极连接;
[0015] 所述MOSFET管(M4)的源极分别与所述电机电源电压(VDD)和所述MOSFET管(MII)的栅极连接,所述MOSFET管(M4)漏极分别与述电压比较器(VC)的输入端和所述功率MOSFET管(MI)的漏极连接。
[0016]在本发明的一个较佳实施例中,所述过流保护电路还包括MOS管(M5),所述MOS管(M5)连接在所述电流采样管(MII)的漏极与所述MOS管(M6)的漏极之间,所述MOS管(M5)的漏极与所述电流采样管(MII)的漏极连接,源极与所述MOS管(M6)的漏极连接,钳位电压(VREG )接入所述MOS管(M5 )的栅极。
[0017] 进一步地,所述电压比较器(VC)包括若干MOSFET管、若干MOS管、三极管(Ql)和三极管(Q2);
[0018]所述电压比较器(VC)的输入信号输入到所述三极管(Ql)的基极,负相输入信号输入到所述三极管(Q2)的基极;所述电压比较器(VC)的输出端位于所述MOS管(M24)和所述MOS管(M21)的漏极之间;
[0019] 所述MOSFET管(MI)和所述电流采样管(Mil)的栅极电压(G_UP)输入到所述MOSFET管(Mll)、所述MOSFET管(M12)、所述MOSFET管(M13)和所述MOSFET管(M14)的源极;所述MOSFET管(Ml I)和所述MOSFET管(M12)、所述MOSFET管(M13)和所述MOSFET管(M14)是电流镜结构;
[0020]所述三极管(Ql)的集电极与所述MOSFET管(M12)的栅极和漏极连接,发射极与所述MOSFET管(M16 )的漏极连接;所述三极管(Q2)的集电极与所述MOSFET管(M13 )的栅极和漏极连接,发射极与所述MOSFET管(M16)的漏极连接;
[0021] 所述钳位电压(VREG)输入到所述MOSFET管(M15)、所述MOSFET管(M16)和所述MOSFET管(Ml 7)的栅极;所述MOSFET管(Ml 5)的漏极与所述MOSFET管(Ml I)的漏极连接,源极与所述MOS管(M18)的栅极和漏极连接;所述MOSFET管(M16)的源极与所述MOS管(M20)的漏极连接;所述MOSFET管(M17)的漏极与所述MOSFET管(M14)的漏极连接,源极与所述MOS管(M12)的栅极和漏极连接;
[0022] 电源电压(VDD)接入所述MOS管(M23)和所述MOS管(M24)的源极;所述MOS管(M18)、所述MOS管(M19)、所述MOS管(M20 )、所述MOS管(M21)和所述MOS管(M22)的源极直接接地;所述MOS管(M20)的栅极与偏置电流(BIASN)连接;所述MOS管(M19)、所述MOS管(M21)、所述MOS管(M23)和所述MOS管(M24)是电流镜结构。
[0023]进一步地,所述三极管(Ql)和所述三极管(Q2)采用NPN管。
[0024]在本发明的一个较佳实施例中,所述电流比较器(IC)包括若干MOS管;
[0025]所述电流比较器的输入端(IN)与所述MOS管(M34)的栅极连接,所述基准电流(Iref)接入到所述MOS管(31)的栅极;所述电流比较器的输出端位于所述MOS管(M37)的漏极和所述MOS管(M38)的漏极之间;
[0026] 电源电压(VDD)接入所述MOS管(M32)、所述MOS管(M33)、所述MOS管(M35)和所述MOS管(M37)的源极;所述MOS管(M31)、所述MOS管(M34)、所述MOS管(M36)、和所述MOS管(M38)的源极直接接地;所述MOS管(M32 )的栅极和所述MOS管(M33 )的栅极连接;所述MOS管(M35)的栅极和所述MOS管(M36)的栅极连接;所述MOS管(M37)的栅极和所述MOS管(M38)的栅极连接。
[0027] 进一步地,在所述电流比较器(IC)中,所述MOS管(M35)和所述MOS管(M36)组成一个反相器;所述MOS管(M37)和所述MOS管(M38)组成一个反相器。
[0028] 进一步地,所述电流采样管(MII)的栅极电压(G_UP)要大于所述电机电源电压(VBB)0
[0029]在本发明的较佳实施方式中,采用MOSFET管M1、电流采样管MI1、电压比较器VC、电流比较器IC和MOS管M6 JOSFET管MI的宽长比与电流采样管M Π的宽长比之比为:(W/L) 1:(W/L)n=m:1,将大电流经过采样缩小m倍产生采样电流。电压比较器VC的负反馈环路保证MI与ΜΠ工作在相同的VDS,保证MI和MII的工作状态完全相同,确保流过两个管子的镜像比例精度,同时实现高电压向的电压控制的转换,提高电路的镜像比例精度C3MOS管M6是承接采样电流的调整管。采样电流和基准电流Iref经过比较器后输出送到控制电路进行关流关断操作。电流比较器IC的作用是将采样电流和Iref进行比较转换为过流保护电路的数字控制输出信号。
[0030]本发明为了保证功率管MI和采样管MII在关断时能够快速彻底关断,避免出现关断后静态电流仍较大问题,在保护电路中增加了MOSFET管M3和M4。还增加了MOSFET管M5,以实现高压工作时对低压管子的箝位保护。而且,考虑到电路中的工作电压问题和功率器件的耐压能力,对电压比较器VC和电流比较器IC的电路结构进行了优化。本发明的过流保护电路,实现了在高压大电流工作模式下的峰值电流检测,并将高电压转化为低压控制信号的功能;实现了低压控制电路对高压电路的控制操作。
[0031]以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
[0032]图1是本发明的应用于大功率电机驱动芯片的过流保护检测电路的一个较佳实施例的电路结构图;
[0033]图2是本发明的应用于大功率电机驱动芯片的过流保护检测电路的另一个较佳实施例的电路结构图;
[0034]图3是本发明的应用于大功率电机驱动芯片的过流保护检测电路中的电压比较器VC的电路结构图;
[0035]图4是本发明的应用于大功率电机驱动芯片的过流保护检测电路中的电流比较器IC的电路结构图。
具体实施方式
[0036]下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
[0037]如图1所示,本发明的一种应用于大功率电机驱动芯片的过流保护检测电路包括MOSFET管M1、电流采样管Mil、M0S管M6、电流源I trip、电压比较器VC和电流比较器1C。
[0038] MOSFET管MI的源极与电机电源电压VBB连接,栅极与电流采样管MII的栅极连接在一起,漏极分别与电压比较器VC的负相输入端和电流源Itrip的输入端连接。
[0039]电流采样管MII的源极与电机电源电压VBB连接,栅极与MOSFE匪I的栅极连接,漏极分别与电压比较器VC的正相输入端和MOS管M6的漏极连接。
[0040]电压比较器的输出端IN分别与MOS管M6的栅极和电流比较器的负相输入端连接;MOS管M6的源极直接与地相连;所述电流比较器IC的正相输入端输入基准电流Iref。
[0041 ]如图1所示,由于电机驱动的MOSFET管MI工作于开关模式,导通时处于MOS管的线性区,VDS约是0.1V,电机驱动电路的门级驱动电压一般都要大于其源级电压,使得门级驱动的栅极电压G_UP高于电机电源电压VBB。对于30V的VBB—般设计为35V,此部分功能由电路的电荷栗产生。而电路的逻辑控制部分的电源电压VDD常常采用5V的低压。在电路的设计中要注意高低压间的转换和保护。在本发明的一个较佳实施例中,设定高压G_UP = 35V,而VBB=30V,VDD=5V,因此,本发明的电路结构是高压采样电路与低压输出的电路结构。
[0042]在本发明的一个较佳实施例中,过流保护电路进行了改进,增加了MOSFET管M3和MOSFET管M4和MOS管M5。增加MOSFET管M3和M4是为了保证MOSFET管MI和电流采样管MII在关断是能够快速彻底关断,避免出现关断后静态电流仍然较大的问题。而MOS管M5是为了实现高压工作时对低压管子的箝位保护
[0043]增加了M3、M4和M5的过流保护电路具体如图2所示。M3的栅极与MI的栅极相连,M3的源极分别与电机电源电压VBB和MI的栅极连接,M3的漏极分别与电压比较器VC的负相输入端和MI的漏极连接。
[0044] M4的源极分别与电机电源电压VDD和MII的栅极连接,M4漏极分别与VC的正相输入端和MI的漏极连接。
[0045] M5的漏极与电流采样管MII的漏极连接,源极与M6的漏极连接,钳位电压VREG接入M5的栅极。
[0046]进一步地,考虑到电路中的工作电压问题和功率器件的耐压能力,本发明对电压比较器VC和电流比较器IC的电路结构进行了重新设计,电压比较器VC的电路如图3所示,电流比较器IC的电路如图4所示。
[0047] 电压比较器VC如图3所示,包括MOSFET管Mll〜M17、M0S管M18〜M24、三极管Ql和Q2o
[0048] ]\0和]\01的栅极电压6_1]?输入到肌1、]\112、]\113和肌4的源极;]\111和肌2、]\113和肌4是电流镜结构。
[0049] Ql的集电极与M12的栅极和漏极连接,Ql的发射极与M16的漏极连接;Q2的集电极与Ml 3的栅极和漏极连接,Q2的发射极与Ml 6的漏极连接。
[0050] 钳位电压VREG输入到M15、M16和M17的栅极;M15的漏极与Mll的漏极连接,M15的源极与M18的栅极和漏极连接;M16的源极与M20的漏极连接;M17的漏极与M14的漏极连接,M17的源极与M12的栅极和漏极连接。
[0051 ] 电源电压VDD接入M23和M24的源极;M18、M19、M20、M21和M22的源极直接接地;M20的栅极与偏置电流BIASN连接;M19、M21、M23和M24是电流镜结构。
[0052]在本发明的一个较佳实施例中,三极管Ql和Q2采用NPN管。
[0053 ] 如图4所示,电流比较器IC包括MOS管M31〜M38。
[0054] 电源电压¥00接入]«32、]\03、]\05和]\07的源极;]\01、]\04、]\06、和]\08的源极直接接地;M32的栅极和M33的栅极连接;M35的栅极和M36的栅极连接;M37的栅极和M38的栅极连接。
[0055]本发明的过流保护电流在进行过流保护过程中,
[0056]首先,使用G_UP作为过流保护电路的高压电源,由于电压比较器的负相输入INN和电压比较器的正相输入INP的采样电压都是近似等于电机电源电压VBB的高电压,使得图3中[1、112、113和肌4的工作电压要求高于¥88,使得电路的功耗很大。并且,通过添加同步控制关断结构,使得电路相当复杂。而采用6_1^作为过流保护电路的高压电源,由于H桥的工作方式,电机时,相应半桥的上端功率管才导通,而相对的半桥上管关断。利用这个特性,只需要使得过流保护电路工作在开启的半桥即可,关断的半桥过流保护电路不需要工作,当然其功耗也就可以不考虑。由于采用的都是N型MOSFET作功率管,对上管MOSFET,只有当G_UP为高电平时才能开启工作,G_UP为低电压时N型MOSFET关断。当半桥的上管导通充电时,过流保护电路同步开启,检测该半桥通路的充电电流,相对半桥的过流保护电流可以关闭以降低功耗。当半桥由导通转为关断时,G_UP降为低电平,此时,该半桥的过流保护也被关断XJJP的电压上升沿要快,由于过流保护分流了部分电流,使得MOSFET的开启速度会变慢,设计时要注意开启瞬间GJJP的上升速度。
[0057] 如图3所示,电压比较器是跨导放大器,G_UP = 35V,VDD和VREG—般为2.7〜6V,在本实施例中,VDD=5V,VREG = 5V,而INN和INP电压约为VBB电压30V,高压MOSFET管M15、M16、M17可以理解为高压有源电阻,使得高电压值大都降在其VDS上,同时他们的栅极由VREG =5V钳位,其VGS约为2V,其源级电压VS = 3.0V左右,这样,他们的源级连接的器件都能安全的工作在5V以下的安全工作区。实现高压到低压的转换。由于他们的作用等同于有缘电阻,而流过他们的电流由他们连接的电流源提供,所以通过调整其W/L(宽长比)选取适当的电阻值可以使得G_UP在相当大的范围内变化时,电路都能满足对电源电压的要求。Q1、Q2使用npn管子,是利用npn管子的耐压高于MOS的栅极耐压,满足对MI和MII源级大电压的工作需要。M12/M13为二极管负载,将INN和INP上的差模电压经过差分对Q1/Q2的跨导级转化为电流,经过M11/M12和M13/M14的镜像传到低压管M18/M22。由于没有电流的分路,其上的电流保持1:1的传送。此时完成了高压向低压的转化。转化下来的低压电流通过电流镜M19/M21/M23/M24的镜像,汇聚到M21、M24的漏极,完成两路电流的叠加,实现IN处高电压到OUT处低电压的转变。
[0058]电压比较器VC为反馈环路提供环路增益,其输出控制了 M6的栅极,M6为共源放大器,进一步增大了环路的增益,通过反馈环路的作用,控制流过M6的电流精确镜像马达电流Itrip J5的加入,能够使得低压M6管工作在安全电压范围。
[0059]图4所示的电流比较器IC为最后的过流保护低压控制信号形成过程。IN连接VC的OUT输出,也就是M6和M34的VGS电压相同,形成了一个比例系数为η:1的电流镜,将M6流过的电流进一步缩小为I/η。调整M33的宽长比,使得M33和M34构成的比较器翻转阈值约为M6流过Imax/m时的VDS电压。Iref为基准电流,通过确定下来的M33、M34选择M32、M31的W/L比。反向器M35/M36和M37/M38对M33、M34比较器输出的电压信号进行整形,其工作电压都是VDD=5V。到此,整个过流保护电路的输出信号得到了完好的处理。高压VBB工作信号实现了到VDD低电压控制信号的转变。
[0060]以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (7)

1.一种应用于大功率电机驱动芯片的过流保护检测电路,其特征在于,包括MOSFET管M1、电流采样管MI1、MOS管M6、MOSFET管M3、MOSFET管M4、电流源I tr i P、电压比较器VC和电流比较器IC; 所述MOSFET管MI的源极与电机电源电压VBB连接,栅极与所述电流采样管MII的栅极连接在一起,漏极分别与所述MOSFET管M3的漏极、所述电压比较器VC的输入端、和所述电流源I tr i P的输入端连接; 所述电流采样管MII的源极与所述电机电源电压VBB连接,栅极与所述MOSFET管MI的栅极连接,漏极分别与所述MOSFET管M4的漏极、所述电压比较器VC的输入端和所述MOS管M6的漏极连接; 所述MOSFET管M3的栅极与所述MOSFET管M4的栅极连接,源极与所述MOSFET管MI的栅极连接; 所述MOSFET管M4的源极与所述电流采样管MII的栅极连接; 所述电压比较器的输出端IN分别与所述MOS管M6的栅极和所述电流比较器IC的输入端连接; 所述电流源I tr i P是所述电机的线圈电流; 所述MOS管M6的源极直接与地相连; 所述电流比较器IC的输入端输入基准电流Ir ef。
2.如权利要求1所述的一种应用于大功率电机驱动芯片的过流保护检测电路,其中,所述电流采样管MII的栅极电压GJJP要大于所述电机电源电压VBB。
3.如权利要求1所述的一种应用于大功率电机驱动芯片的过流保护检测电路,其中,所述过流保护检测电路还包括MOS管M5,所述MOS管M5连接在所述电流采样管MII的漏极与所述MOS管M6的漏极之间,所述MOS管M5的漏极与所述电流采样管MII的漏极连接,源极与所述MOS管M6的漏极连接,钳位电压VREG接入所述MOS管M5的栅极。
4.如权利要求3所述的一种应用于大功率电机驱动芯片的过流保护检测电路,其中,所述电压比较器VC包括若干MOSFET管、若干MOS管、三极管Ql和三极管Q2; 所述电压比较器VC的输入信号输入到所述三极管Ql的基极,负相输入信号输入到所述三极管Q2的基极;所述电压比较器VC的输出端位于MOS管M24和MOS管M21的漏极之间; 所述MOSFET管MI和所述电流采样管MII的栅极电压GJJP输入到MOSFET管Ml 1、MOSFET管M12、M0SFET管M13和M0SFET管M14的源极;所述M0SFET管M11和所述M0SFET管M12、所述MOSFET管M13和所述MOSFET管M14是电流镜结构; 所述三极管Ql的集电极与所述MOSFET管M12的栅极和漏极连接,发射极与MOSFET管M16的漏极连接;所述三极管Q2的集电极与所述MOSFET管M13的栅极和漏极连接,发射极与所述MOSFET管M16的漏极连接; 所述钳位电压VREG输入到MOSFET管M15、所述MOSFET管Ml 6和MOSFET管Ml 7的栅极;所述MOSFET管M15的漏极与所述MOSFET管Ml I的漏极连接,源极与MOS管M18的栅极和漏极连接;所述MOSFET管M16的源极与MOS管M20的漏极连接;所述MOSFET管M17的漏极与所述MOSFET管M14的漏极连接,源极与所述MOS管M22的栅极和漏极连接; 电源电压VDD接入MOS管M23和所述MOS管M24的源极;所述MOS管M18、M0S管M19、所述MOS管M20、所述MOS管M21和MOS管M22的源极直接接地;所述MOS管M20的栅极与偏置电流BIASN连接; 所述MOS管M19、所述MOS管M21、所述MOS管M23和所述MOS管M24是电流镜结构。
5.如权利要求4所述的一种应用于大功率电机驱动芯片的过流保护检测电路,其中,所述三极管Ql和所述三极管Q2采用NPN管。
6.如权利要求3所述的一种应用于大功率电机驱动芯片的过流保护检测电路,其中,所述电流比较器IC包括若干MOS管, 所述电流比较器的输入端IN与MOS管M34的栅极连接,所述基准电流Iref接入到MOS管31的栅极;所述电流比较器的输出端位于MOS管M37的漏极和MOS管M38的漏极之间; 电源电压VDD接入MOS管M32、M0S管M33、所述MOS管M35和所述MOS管M37的源极;所述MOS管M31、M0S管M34、M0S管M36、和所述MOS管M38的源极直接接地;所述MOS管M32的栅极和所述MOS管M33的栅极连接;所述MOS管M35的栅极和所述MOS管M36的栅极连接;所述MOS管M37的栅极和所述MOS管M38的栅极连接。
7.如权利要求6所述的一种应用于大功率电机驱动芯片的过流保护检测电路,其中,在所述电流比较器IC中,所述MOS管M35和所述MOS管M36组成一个反相器;所述MOS管M37和所述MOS管M38组成一个反相器。
CN201310636683.5A 2013-12-02 2013-12-02 一种应用于大功率电机驱动芯片的过流保护检测电路 Active CN103633617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310636683.5A CN103633617B (zh) 2013-12-02 2013-12-02 一种应用于大功率电机驱动芯片的过流保护检测电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310636683.5A CN103633617B (zh) 2013-12-02 2013-12-02 一种应用于大功率电机驱动芯片的过流保护检测电路

Publications (2)

Publication Number Publication Date
CN103633617A CN103633617A (zh) 2014-03-12
CN103633617B true CN103633617B (zh) 2016-06-22

Family

ID=50214364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310636683.5A Active CN103633617B (zh) 2013-12-02 2013-12-02 一种应用于大功率电机驱动芯片的过流保护检测电路

Country Status (1)

Country Link
CN (1) CN103633617B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446239A (zh) * 2016-01-11 2016-03-30 浙江大学 一种适用于大电流控制驱动的8位串并转换驱动芯片
CN105699915B (zh) * 2016-02-02 2019-02-26 苏州美思迪赛半导体技术有限公司 一种开关电源自适应动态检测电路
CN105954570B (zh) * 2016-06-13 2018-09-11 王良坤 一种简化的高端功率管过流检测电路
CN110416976A (zh) * 2017-09-23 2019-11-05 华为技术有限公司 一种电源保护装置以及使用所述装置的终端
CN109600878B (zh) * 2017-09-30 2021-07-06 周凯迪 Led驱动器
CN110890738A (zh) * 2018-09-07 2020-03-17 深圳市芯卓微科技有限公司 一种充电接口过流关断保护电路
CN111337735A (zh) * 2020-02-17 2020-06-26 上海艾为电子技术股份有限公司 芯片和电流采样电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986441A (en) * 1996-08-14 1999-11-16 Siemens Aktiengesellschaft Circuit configuration for capturing the load current of a power semiconductor component with a load on the source side
CN102832599A (zh) * 2012-08-24 2012-12-19 电子科技大学 一种过流保护电路
CN202797925U (zh) * 2012-09-21 2013-03-13 郑州单点科技软件有限公司 过流保护电路
CN202817742U (zh) * 2012-10-25 2013-03-20 佛山市顺德区瑞德电子实业有限公司 一种过流保护电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986441A (en) * 1996-08-14 1999-11-16 Siemens Aktiengesellschaft Circuit configuration for capturing the load current of a power semiconductor component with a load on the source side
CN102832599A (zh) * 2012-08-24 2012-12-19 电子科技大学 一种过流保护电路
CN202797925U (zh) * 2012-09-21 2013-03-13 郑州单点科技软件有限公司 过流保护电路
CN202817742U (zh) * 2012-10-25 2013-03-20 佛山市顺德区瑞德电子实业有限公司 一种过流保护电路

Also Published As

Publication number Publication date
CN103633617A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN103633617B (zh) 一种应用于大功率电机驱动芯片的过流保护检测电路
CN206506286U (zh) 一种开关电源过流保护电路
CN206863618U (zh) 电压调节电路
CN101976095B (zh) 一种基于发射极电流补偿的高精度带隙基准源电路
CN106647914B (zh) 线性稳压器
CN107943182B (zh) 带隙基准源启动电路
CN105871180A (zh) 一种大电流cmos推挽驱动电路及其控制方法
CN206195635U (zh) 控制器以及采用该控制器的开关电源
CN108173425A (zh) 一种启动电路
CN207819757U (zh) 一种启动电路
CN109842279A (zh) 一种SiC MOSFET开环主动驱动电路
CN104539145B (zh) 一种Boost型DC‑DC转换器同步功率管限流电路
CN103809645A (zh) 一种用于宽电源带隙基准源的启动电路
CN203983941U (zh) 一种应用于大功率电机驱动芯片的过流保护检测电路
CN107508468A (zh) 隔离式开关电源的控制电路和方法及隔离式开关电源
CN105680431B (zh) 一种可调节限流保护电路
CN107102673A (zh) 具有迟滞功能的欠压锁定电路
CN102790516B (zh) 用于电源管理的反馈箝位功率mos管驱动电路
CN109116908A (zh) 一种应用于稳压器的限流电路
CN104038041B (zh) 一种用于双极型误差放大器的开关电源软启动电路
CN102064678B (zh) 一种开关电源的栅极驱动电路
CN208766549U (zh) 启动电路、核心电路、耗材芯片、耗材
CN106487248A (zh) 控制器、开关电源以及线电压补偿方法
CN208890764U (zh) 带有过流保护功能的功放电路及芯片
CN210518098U (zh) 低EMI常通型SiCJFET的驱动电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model