EP0918181B1 - Metal diaphragm-type valve - Google Patents

Metal diaphragm-type valve Download PDF

Info

Publication number
EP0918181B1
EP0918181B1 EP98309307A EP98309307A EP0918181B1 EP 0918181 B1 EP0918181 B1 EP 0918181B1 EP 98309307 A EP98309307 A EP 98309307A EP 98309307 A EP98309307 A EP 98309307A EP 0918181 B1 EP0918181 B1 EP 0918181B1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
annular
valve
flat
metal diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98309307A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0918181A1 (en
Inventor
Shuhei Ogawa
Kazuhiro Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Publication of EP0918181A1 publication Critical patent/EP0918181A1/en
Application granted granted Critical
Publication of EP0918181B1 publication Critical patent/EP0918181B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings
    • F16K41/10Spindle sealings with diaphragm, e.g. shaped as bellows or tube
    • F16K41/12Spindle sealings with diaphragm, e.g. shaped as bellows or tube with approximately flat diaphragm

Definitions

  • This invention relates to a metal diaphragm type valve suitable for use in a fluid conveying line of, for example, a semiconductor manufacturing plant. More particularly, the invention relates to a seal structure providing a seal between the inner peripheral edge of the metal diaphragm and a seat holder extending through the diaphragm so as to result in a minimum space in which a fluid may be trapped, and distribution of bending stresses in different regions of the diaphragm depending on whether the valve is opened or closed.
  • a treatment chamber In the manufacture of semiconductors it is frequently necessary to supply precise volumes of different fluids, say gases, to a treatment chamber, the fluids being conveyed to the treatment chamber in sequence through a fluid feed line controlled by a diaphragm valve.
  • a first fluid is applied to the treatment chamber through the feed line after which a purge fluid is applied to the feed line to purge any traces of the first fluid.
  • the second fluid is then applied to the chamber through the feed line.
  • the valve interior should have no gaps, crevices or 'dead air spaces' within the chamber where fluid may be caught or trapped so that it is not purged from the valve during the purging operation.
  • Figs. 6 and 7 illustrate a metal diaphragm valve with a diaphragm seal structure as disclosed in EP-A-0708286.
  • This valve includes a valve body 100, a valve chamber 100a, a valve seat 100b, fluid passages 100c, a bonnet 50, a valve seat 160, a bushing 51, a ball 52, a stem 53 and bonnet insert 54.
  • a shaft 91a of a seat holder 91 is inserted through a mounting hole 93a of a diaphragm 93 and a center opening in a weld metal member 90.
  • the inner peripheral edge of the diaphragm 93 is disposed between an annular flat portion 90a formed on the lower surface of the weld metal member 90 and an annular flat portion 91b formed on the upper surface of the seat holder 91.
  • the end portion of the inner peripheral edge of the diaphragm and the portions of the member 90 and the seat holder abutting the end portions of the inner peripheral edge of the diaphragm 93 are welded together at a weld zone W around the entire circumference of the inner peripheral edge of the diaphragm thereby integrally affixing the diaphragm, the seat holder and the weld metal member.
  • the spacing between the lower surface of the diaphragm 93 and the planar upper surface 91b of the seat holder 91 is extremely small, so any fluid accumulation in the gap G between these surfaces is minute.
  • repeated vertical motion of the diaphragm during normal usage causes the thickness of the diaphragm to gradually decrease, and the volume of the gap G increases. This permits a greater volume of fluid to enter the small gap and the fluid replacement performance of the valve is lowered.
  • valve illustrated in Figs. 6 and 7 has a further disadvantage in that it requires a large number of parts such as ball 52, bushing 51, bonnet insert 54 and weld metal member 90. Assembly of these parts is complicated and difficult, and it requires much time and labor to complete its assembly.
  • DE-C-3928678 also discloses a diaphragm valve of the type comprising a metallic diaphragm which is clamped at an outer peripheral edge between a valve body and a bonnet, and mounted on a reciprocable shaft between a diaphragm support and a deflection limiter.
  • the diaphragm support and deflection limiter are formed with opposing flat annular portions for contacting and supporting said diaphragm therebetween, and said diaphragm, diaphragm support and deflection limiter are joined together by a unitary weld about an inner peripheral edge of said diaphragm.
  • An object of the present invention is to provide a metal diaphragm type valve having none of the disadvantages of the prior art described above yet requiring fewer parts, less assembly time and being less expensive to manufacture.
  • Another object of the invention is to provide a metal diaphragm type valve having a seal structure which results in longer diaphragm life.
  • a further object of the invention is to provide a metal diaphragm type valve exhibiting excellent replacement or cleaning performance as compared to the prior art.
  • a metal diaphragm-type valve comprising:
  • the deflection limiter diaphragm and seat holder may be welded together by a circumferential weld which provides an air-tight seal between the diaphragm and the annular flat surface portion of the seat holder, the weld extending to the outer circumference of the annular flat surface portion of the seat holder so that no crevice exists between the diaphragm and annular flat surface in which fluid may be trapped.
  • Fig. 1 is a longitudinal sectional view of a metal diaphragm type valve employing a seal structure according to a first embodiment of the invention wherein the inner peripheral edge of a metal diaphragm 7, the inner peripheral edge of a deflection limiter 6, and a seat holder 5 are integrally affixed by welding.
  • the weld eliminates the requirement of any mechanism for clamping (gripping) of the inner peripheral edge of the diaphragm, as used in the prior art.
  • the metal diaphragm valve comprises a body 1 having a fluid inlet passage 1a, a fluid outlet passage 1b, a valve chamber 1c, and a valve seat 1d.
  • a bonnet nut 2 is screwed into the body 1 and a stem 3 is screwed into and supported for vertical movement, by the bonnet nut.
  • a handle 4 is attached to the upper end of the stem 3 and a seat holder 5 is attached to the lower end of the stem so as to move vertically therewith.
  • a deflection limiter 6 has a central opening and the upwardly projecting support shaft 5a of a seat holder 5 extends through the opening.
  • the deflection limiter 6 rests on the diaphragm which in turn rests on a shoulder or support step 5c provided on the lower portion of the shaft 5a.
  • the metal diaphragm 7 has an outer peripheral edge gripped and supported between the body 1 and the bonnet nut 2 as the bonnet nut is screwed into the body.
  • the inner peripheral edge of the diaphragm is welded to the seat holder 5 and deflection limiter 6.
  • the stem 3 is made of stainless steel (SS316) in a nearly columnar form, and an engaging recess 10, having an expanded middle portion 10a, is formed in the lower part of the stem.
  • SS316 stainless steel
  • Screw threads 3a are formed on the outer circumference of the stem 3, and engage screw threads 2a formed on the interior of bonnet nut 2 so that the stem 3 is supported elevatably in the bonnet nut.
  • the stem 3 may be raised or lowered by rotating the stem relative to the bonnet nut.
  • the handle 4 is attached to the stem by a screw 14 so that rotation of the handle raises or lowers the stem relative to the bonnet nut.
  • An O-ring 9 is provided to prevent contaminants from entering the valve between the bonnet nut 2 and the stem 3.
  • the seat holder 5 is made of metal such as stainless steel (SS316L) and has, in addition to the upwardly projecting cylindrical support shaft 5a, an expanded lower part 5b.
  • the support step 5c for supporting the diaphragm is formed at the boundary of the columnar support shaft 5a and the lower part 5b.
  • the diaphragm support step comprises a flat annular surface portion 5d and a smooth arcuate shoulder 5e formed continuously therewith, as shown in Fig. 3.
  • a seat insert (seat) 8 made of a polymer or synthetic resin or metal, is provided at the lower end of the lower part 5b.
  • the upper part of the support shaft 5a is inserted into engaging recess 10 of the stem 3, and a washer 11 and a retaining ring 12 secure the support shaft 5a within the expanded portion 10a of the recess while permitting relative rotation between the shaft and the stem.
  • a bearing 13 may be provided between the upper surface of support shaft 5a and the upper end surface of recess 10 to reduce friction between the stem 3 and the support shaft. This bearing may be omitted in some cases.
  • the deflection limiter 6 (Fig. 2) is made of metal such as stainless steel (SS304L) in a circular dish form.
  • An insertion hole 6a is provided in the center of the deflection limiter and the support shaft 5a (Fig. 1) of the seat holder 5 extends through the insertion hole.
  • the inner peripheral edge 6b of the deflection limiter 6 is formed with a thickness t of about 2mm.
  • the length l of the peripheral edge 6b having the thickness t defines a weld zone W (Fig. 3) where the deflection limiter is welded to the upper surface of the metal diaphragm.
  • the lower side of the deflection limiter (left side as viewed in Fig. 2) has a flat annular surface portion 6c of length l 0 larger than or nearly as large as, the length l.
  • a moderate curvature 6d extends upwardly and continuously from the outer end P of the flat portion 6c to the outer periphery of the deflection limiter.
  • the metal diaphragm 7 is formed by overlaying a plurality of (two or three) ultrathin metal plates (thickness: about 0.1 to 0.2mm) in a dish form.
  • the plates may be made of stainless steel (SS316L), a Co-Ni alloy steel such as ElgiloyTM, or the like.
  • a mounting hole 7a is provided at the center of the diaphragm for receiving the shaft 5a of the seat holder 5.
  • the outer diameter of the diaphragm 7 is selected to be about 38mm.
  • the inner peripheral edge of the metal diaphragm 7 is, as shown in Fig. 3, positioned between the flat annular surface portion 6c of the deflection limiter 6, and the flat annular surface portion 5d of the diaphragm support step 5c on the seat holder 5, and is welded to both the limiter and the support step.
  • the inner peripheral edge of the diaphragm 7, the flat portion 6c of the deflection limiter 6 abutting against the inner peripheral edge of the diaphragm 7, and the flat portion 5d of the seat holder abutting the inner peripheral edge of the diaphragm 7 are welded together by a weld W.
  • the weld is in ring form, extending around the whole circumference of the deflection limiter 6 in the portion of length Q. This integrally affixes, in an airtight manner, the inner peripheral edge of the diaphragm 7, the inner peripheral edge of the deflection limiter 6, and the flat portion 5d of the seat holder 5.
  • the valve operates in the following manner.
  • the stem 3 is moved up or down by rotating the handle 4, the seat holder 5 ascends or descends, and the seat 8 contacts the valve seat 1d or departs from the valve seat and the fluid passage 1a is opened or closed so that fluid may flow between passages 1a and 1b.
  • the metal diaphragm 7 When the fluid passage 1a of the valve is open, the metal diaphragm 7 returns to an initial state of upward curvature as shown in Fig. 1, and almost no bending stress is applied to the inner peripheral edge of the diaphragm. If, however, the diaphragm 7 is pulled up at a time the valve is opened, a downward bending stress is applied to the inner peripheral edge of the diaphragm so that the diaphragm tends to bend downwardly radially outwardly of the support step 5c. The resulting curved portion of the diaphragm is supported by the arcuate shoulder 5e on the seat holder 5. That is, the lower surface of the diaphragm in the region A (Fig. 3) contacts and is supported by the shoulder 5e.
  • the inner peripheral edge of the diaphragm 7 is not clamped. Instead, the inner peripheral edge of the diaphragm is supported by the curvature 6d of the deflection limiter 6 or the arcuate curvature 5e of the seat holder 5 when the diaphragm is bent. Accordingly, bending stress is not directly applied to the weld zone W. As a result, cracks and the like are not formed in the weld zone.
  • the diaphragm 7 bends at two different positions A and B (Fig. 3) as compared to the conventional case where bending occurs at the clamped portion only regardless of the direction in which the diaphragm is flexed.
  • the life or durability of the diaphragm is improved substantially.
  • Fig. 4 is a magnified partial view showing a second embodiment of the invention.
  • the length l 0 of the flat portion 6c at the lower side of the deflection limiter 6 is made shorter than in the case of Fig. 3 so that the bending region A at the lower side of the diaphragm and the bending region B at the upper side of the diaphragm during operation of the diaphragm 7 are closer to each other as compared to the embodiment of Fig. 3.
  • this arrangement tends to reduce the advantage of distributing stresses in the diaphragm depending on the direction it is flexed, this arrangement tends to make more equal the support provided to the diaphragm by the seat holder and the deflection limiter.
  • Fig. 5 is a partial magnified view showing essential parts of the metal diaphragm type valve according to a third embodiment of the invention.
  • the length l 0 of the flat portion 6c at the lower side of the deflection limiter 6 is selected longer than in the case of the first embodiment (Fig. 3), and a recess 6e is formed in the flat portion 6c, so that a portion in the region of recess 6e does not contact the diaphragm 7.
  • the space between the bending region A at the lower side and the bending region B at the upper side during operation of the diaphragm 7 is wider, so that the life span of the diaphragm is further increased.
  • the diaphragm comprised two pieces of ElgiloyTM having an outer diameter of 38mm and a thickness of 0.1 to 0.2 mm.
  • the fluid pressure of the fluid being controlled was 375psi.
  • the valve was cycled (opened and closed) at a rate of once/sec and the diaphragm did not crack or fail after 16470 cycles.
  • the bending stress applied to the inner peripheral edge of the diaphragm 7 when the valve is closed is mainly supported at the lower side 6d of the deflection limiter 6, and the bending stress applied to the inner peripheral edge when the valve is opened is mainly supported at the arcuate shoulder 5e of the diaphragm support step 5c.
  • bending stress is not directly applied to the weld zone W of the inner peripheral edge of the diaphragm, and cracks or the like do not form in the weld zone W.
  • the bending stress receiving regions of the diaphragm 7 differ and are spaced from each other in the radial direction so that, depending on whether the valve is opened or closed, the bending stress is dispersed in two regions.
  • the gap G 1 between the lower side of the metal diaphragm 7 and the upper side of the seat holder 5 is not formed by a structure for clamping the diaphragm, the gap is almost nil and very little fluid is caught therein. As a result, the fluid replacement performance and the cleaning/purging performance of the inside of the valve are extremely enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Diaphragms And Bellows (AREA)
  • Lift Valve (AREA)
EP98309307A 1997-11-24 1998-11-13 Metal diaphragm-type valve Expired - Lifetime EP0918181B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/976,639 US5881997A (en) 1997-11-24 1997-11-24 Metal diaphragm type valve
US976639 1997-11-24

Publications (2)

Publication Number Publication Date
EP0918181A1 EP0918181A1 (en) 1999-05-26
EP0918181B1 true EP0918181B1 (en) 2003-04-23

Family

ID=25524320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98309307A Expired - Lifetime EP0918181B1 (en) 1997-11-24 1998-11-13 Metal diaphragm-type valve

Country Status (9)

Country Link
US (1) US5881997A (ko)
EP (1) EP0918181B1 (ko)
JP (1) JP4286934B2 (ko)
KR (1) KR100286130B1 (ko)
CA (1) CA2253988C (ko)
DE (1) DE69813730T2 (ko)
IL (1) IL126914A (ko)
SG (1) SG67581A1 (ko)
TW (1) TW368578B (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201212A (ja) * 2000-01-18 2001-07-27 Fuji Koki Corp 温度膨張弁
US6378548B1 (en) 2000-05-31 2002-04-30 United Dominion Industries, Inc. Varying size diaphragm valve assemblies utilizing diaphragm of uniform size
ES2524802T3 (es) 2002-04-26 2014-12-12 Emd Millipore Corporation Dispositivo de transferencia de fluido estéril, desechable
US7222636B2 (en) * 2002-08-20 2007-05-29 Applied Materials, Inc. Electronically actuated valve
US6698671B1 (en) * 2002-12-17 2004-03-02 Shin Tai Spurt Water Of The Garden Tools Co., Ltd. Movable shield structure of a flow control valve rod of a pistol-type nozzle
US6941963B2 (en) * 2003-06-26 2005-09-13 Planar Systems, Inc. High-speed diaphragm valve for atomic layer deposition
US7021330B2 (en) * 2003-06-26 2006-04-04 Planar Systems, Inc. Diaphragm valve with reliability enhancements for atomic layer deposition
US6907897B2 (en) * 2003-06-26 2005-06-21 Planar Systems, Inc. Diaphragm valve for high-temperature precursor supply in atomic layer deposition
JP4340119B2 (ja) 2003-10-02 2009-10-07 シーケーディ株式会社 薬液弁
JP2005113778A (ja) * 2003-10-07 2005-04-28 Seiko Epson Corp ポンプ
JP4807554B2 (ja) * 2005-08-11 2011-11-02 旭有機材工業株式会社 流路付開閉弁
EP1906066A1 (fr) * 2006-09-28 2008-04-02 Luxembourg Patent Company S.A. Robinet, notamment pour bouteille de gaz ultra-haute pureté
SG153002A1 (en) * 2007-11-16 2009-06-29 Millipore Corp Fluid transfer device
EP2267312A4 (en) * 2008-03-14 2017-01-11 Tacmina Corporation Metal diaphragm
US9874883B2 (en) * 2009-07-02 2018-01-23 Tescom Corporation Diaphragm interface apparatus to improve a cycle life of a diaphragm
JP3177094U (ja) * 2012-05-08 2012-07-19 イハラサイエンス株式会社 ダイヤフラム弁
US9863542B2 (en) 2013-02-01 2018-01-09 Swagelok Company Diaphragm valve with welded diaphragm seat carrier
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
JP2018507997A (ja) * 2015-03-19 2018-03-22 ゲーエーアー トゥーヘンハーゲン ゲーエムベーハー 回転減結合装置を備えた玉形弁
JP6033912B2 (ja) * 2015-04-17 2016-11-30 株式会社キッツエスシーティー ダイヤフラムバルブ
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
CN112673204A (zh) * 2018-09-27 2021-04-16 株式会社富士金 阀、阀的阀芯单元的更换方法以及阀的组装方法
CN111237473B (zh) * 2020-03-06 2021-12-03 西华大学 一种密封装置的密封性能控制系统
JP2023548331A (ja) 2020-11-04 2023-11-16 スウェージロック カンパニー 一体型オリフィス絞り付きバルブ
JP2023550601A (ja) 2020-11-06 2023-12-04 スウェージロック カンパニー バルブキャビティキャップ機構

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH351465A (de) * 1957-07-30 1961-01-15 Werner Dipl Ing Imobersteg Ventil
JPS5446927U (ko) * 1977-09-08 1979-03-31
JPS6036777Y2 (ja) * 1979-02-01 1985-10-31 三菱自動車工業株式会社 排気ガス再循環流量制御弁
JPH0234532Y2 (ko) * 1985-12-04 1990-09-17
US4750709A (en) * 1986-05-16 1988-06-14 Nupro Company Diaphragm valve
US4732363A (en) * 1986-05-16 1988-03-22 Nupro Company Diaphragm valve
US4671490A (en) * 1986-05-16 1987-06-09 Nupro Co. Diaphragm valve
JP2775176B2 (ja) * 1989-06-22 1998-07-16 愛三工業株式会社 ダイアフラムの取付構造
DE3928678C1 (ko) * 1989-08-30 1990-12-20 Messer Griesheim Gmbh, 6000 Frankfurt, De
AT394626B (de) * 1990-05-17 1992-05-25 Balik Gmbh Membranventil
JPH05288280A (ja) * 1992-04-08 1993-11-02 Hitachi Metals Ltd メタルダイヤフラムバルブ
JPH0680958U (ja) * 1993-04-28 1994-11-15 清原 まさ子 金属製ダイヤフラムの取付構造
JPH07317925A (ja) * 1994-05-27 1995-12-08 Hitachi Metals Ltd ダイアフラムシール弁及びその金属ダイアフラム
JP3469331B2 (ja) * 1994-10-17 2003-11-25 株式会社フジキン 金属製ダイヤフラムの内周縁部のシール構造
JPH08200525A (ja) * 1995-01-31 1996-08-06 Hitachi Metals Ltd 液体原料気化器用弁
JP3291151B2 (ja) * 1995-02-15 2002-06-10 株式会社フジキン ダイヤフラム弁
JP3291152B2 (ja) * 1995-02-15 2002-06-10 株式会社フジキン ダイヤフラム弁
JP3190566B2 (ja) * 1995-03-14 2001-07-23 セイコーインスツルメンツ株式会社 超塑性Ni−Co基合金およびその超塑性加工方法
JPH09138709A (ja) * 1995-11-14 1997-05-27 Yamato Sangyo Kk 圧力調整弁
JP3414914B2 (ja) * 1995-12-26 2003-06-09 大日本スクリーン製造株式会社 グラビア彫刻機の彫刻ヘッド

Also Published As

Publication number Publication date
TW368578B (en) 1999-09-01
IL126914A (en) 2002-07-25
DE69813730T2 (de) 2003-10-16
IL126914A0 (en) 1999-09-22
KR100286130B1 (ko) 2002-05-09
CA2253988A1 (en) 1999-05-24
JP4286934B2 (ja) 2009-07-01
EP0918181A1 (en) 1999-05-26
US5881997A (en) 1999-03-16
SG67581A1 (en) 1999-09-21
JPH11182708A (ja) 1999-07-06
CA2253988C (en) 2001-05-29
DE69813730D1 (de) 2003-05-28
KR19990062597A (ko) 1999-07-26

Similar Documents

Publication Publication Date Title
EP0918181B1 (en) Metal diaphragm-type valve
US5730423A (en) All metal diaphragm valve
EP0932781B1 (en) High pressure actuated metal seated diaphragm valve
EP0727603B1 (en) Diaphragm valve
EP0727604B1 (en) Diaphragm valve
JP2740154B2 (ja) 閉止弁向けのステム先端のシール構造体
EP0500207B1 (en) Fluid flow controller
EP1671055B1 (en) Valve assembly
EP1281898B1 (en) Diaphragm valve
JP2006090386A (ja) ダイヤフラムバルブ
US5624102A (en) Structure for sealing an inner peripheral portion of a metallic diaphragm
US10774938B2 (en) Diaphragm valve with metal seat
KR20190039025A (ko) 다이아프램 밸브와 반도체 제조 장치용 유량 제어 기기
EP0993575B1 (en) High flow diaphragm valve
US5516078A (en) Gas cylinder valve with non-perforated diaphragms
US5967492A (en) Sealing device for diaphragm valves
WO2002065003A2 (en) Flexible valve seat
JP3764574B2 (ja) 金属ダイヤフラム型バルブ
US7028709B2 (en) One-way valve with poppet member
KR102384889B1 (ko) 라이징 스템 볼 밸브
CA2197790C (en) Gas cylinder valve with non-perforated diaphragms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20000523

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69813730

Country of ref document: DE

Date of ref document: 20030528

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FUJIKIN INCORPORATED

Free format text: FUJIKIN INCORPORATED#3-2, ITACHIBORI 2-CHOME, NISHI-KU#OSAKA (JP) -TRANSFER TO- FUJIKIN INCORPORATED#3-2, ITACHIBORI 2-CHOME, NISHI-KU#OSAKA (JP)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080930

Year of fee payment: 11

Ref country code: CH

Payment date: 20081014

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080930

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081230

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081126

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100514

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101113