EP0917624B1 - Verfahren zur herstellung einer lochscheibe für ein einspritzventil - Google Patents

Verfahren zur herstellung einer lochscheibe für ein einspritzventil Download PDF

Info

Publication number
EP0917624B1
EP0917624B1 EP98924016A EP98924016A EP0917624B1 EP 0917624 B1 EP0917624 B1 EP 0917624B1 EP 98924016 A EP98924016 A EP 98924016A EP 98924016 A EP98924016 A EP 98924016A EP 0917624 B1 EP0917624 B1 EP 0917624B1
Authority
EP
European Patent Office
Prior art keywords
perforated
sheet
metal foils
disc
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98924016A
Other languages
English (en)
French (fr)
Other versions
EP0917624A1 (de
Inventor
Wilhelm Hopf
Kurt Schreier
Siegfried Goppert
Kurt Schraudner
Henning Teiwes
Jörg HEYSE
Dieter Holz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP03016782A priority Critical patent/EP1355061B1/de
Publication of EP0917624A1 publication Critical patent/EP0917624A1/de
Application granted granted Critical
Publication of EP0917624B1 publication Critical patent/EP0917624B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/30Foil or other thin sheet-metal making or treating
    • Y10T29/301Method
    • Y10T29/302Clad or other composite foil or thin metal making

Definitions

  • the invention is based on a method of manufacture a perforated disc for an injection valve of the type of claim 1 or claim 2 or claim 3.
  • Fuel injector known to be a clad Has perforated disc element. It is made Perforated disk element made of a metal strip resistant metal like molybdenum and one on it overlying coating of a soft metal such as copper. By The flat layers are crimped over the valve seat support of the perforated disc element held on the valve seat body.
  • An injector is already known from the unpublished JP 10-018943 A, the downstream of his valve seat with two successive spray orifice plates has several spray orifices.
  • the two made separately Spray-poppet disks are immediately close to each other when they are installed fastened together by means of a weld seam on a valve seat body.
  • the Spray orifices are so slightly offset from each other in the two independent spray perforated disks introduced that in the contact area of both Injection-perforated disks are formed to improve atomization.
  • the inventive methods for producing a Perforated disc with the characterizing features of the claims 1 or 2 or 3 have the advantage that through their application in a simple way very effective multilayer Metal perforated disks in very large numbers are inexpensive to manufacture (line production).
  • line production In a simple and cost-effective location assignment of individual sheet metal foils or Sheet metal layers of the later perforated disks through auxiliary openings realized so that a very high level of manufacturing reliability is present.
  • the location assignment of the Sheet metal foils automatically via optical scanning and Image evaluation done.
  • On for the production of multilayer Perforated machines and machines can be provided very simple the material, the sheet thickness, the desired Opening geometries and other parameters for each Ideally adapted to the application.
  • the sheet metal foils are advantageously in rolled up form provided as an optimal Use of space on a production line is possible.
  • Sheet metal films at regular intervals auxiliary openings to provide, can engage in the centering devices, to bring the individual together precisely To ensure sheet metal foils. It's also very advantageous if crescent-shaped in the sheet metal foils Auxiliary openings are made with their inner Limits the diameter of the sheet metal blanks to be removed, which are the perforated disk blanks represent, set. These auxiliary openings run on hers Ends pointed and are next to each other Auxiliary opening only separated by a very narrow bridge. at a subsequent punching, deep drawing or cup these webs tear, causing the blanks or perforated disks to come off the perforated disc belt can be separated.
  • Embodiments of the invention are in the drawing shown in simplified form and in the following Description explained in more detail.
  • 1 shows it partially illustrated injection valve with a first perforated disc according to the invention
  • Figure 2 a Principle of the process flow in the manufacture of a Perforated disc with stations A to E and at Fastening a perforated disc in an injection valve with the stations F and G
  • Figure 3 embodiments of Film strips for the production of a three-layer Perforated disc
  • Figure 4 is a perforated disc band with several superimposed film strips
  • Figures 5 and 6 Thermoforming tool with one to be machined Perforated disc belt Figure 6a, a second embodiment of a Deep drawing tool
  • Figure 7 shows a first example of a deep-drawn, attached to a valve seat body Perforated disc
  • Figure 8 shows a second example of a deep-drawn, attached to a valve seat body Perforated disc
  • Figure 9 shows a third example of a deep-drawn, attached to a valve seat body Perforated
  • FIG. 1 is an exemplary embodiment of the Use of a perforated disc produced according to the invention a valve in the form of an injector for Fuel injection systems from mixture compressors spark-ignited internal combustion engines partially shown.
  • the injection valve has a tubular valve seat support 1, in which a valve axis 2 concentric Longitudinal opening 3 is formed.
  • a valve axis 2 concentric Longitudinal opening 3 is formed.
  • In the longitudinal opening 3 is a z.
  • tubular valve needle 5 arranged on the its downstream end 6 with a z.
  • the injection valve is actuated in a known manner Way, for example electromagnetic.
  • a known manner Way for example electromagnetic.
  • For axial Movement of the valve needle 5 and thus to open against the Spring force of a return spring (not shown) or Closing the injection valve serves an indicated electromagnetic circuit with a magnetic coil 10, one Anchor 11 and a core 12.
  • the anchor 11 is with the End of valve needle 5 facing away from valve closing body 7 through z. B. one produced by means of a laser Connected weld and aligned to the core 12.
  • Valve seat body 16 To guide the valve closing body 7 during the A guide opening 15 serves for axial movement Valve seat body 16.
  • the core 12 opposite end of the valve seat support 1 is in the concentric to the longitudinal axis 2 of the valve Longitudinal opening 3 of the z.
  • cylindrical valve seat body 16 tightly assembled by welding.
  • the valve seat body 16 with an inventive or produced according to the invention e.g. pot-shaped Perforated disc 21 concentrically and firmly connected, that is directly on the valve seat body 16 with a bottom part 22 is present.
  • the perforated disc 21 is at least two, in Embodiment of Figure 1 three a small thickness having, formed metal sheet layers 135, so that a so-called laminated perforated disc is present.
  • valve seat body 16 and perforated disk 21 takes place, for example, by a circular and dense first weld formed by means of a laser 25. Due to this type of assembly there is a risk of undesirable deformation of the perforated disc 21 in her middle area with that provided there Opening geometry 27 avoided.
  • To the bottom part 22 of the Pot-shaped perforated disk 21 encloses itself on the outside circumferential retaining edge 28, which is in the axial direction extends away from the valve seat body 16 and up to its end is slightly tapered outwards.
  • the Retaining edge 28 exerts a radial spring action on the wall the longitudinal opening 3. This will when inserting the Valve seat body 16 in the longitudinal opening 3 of the Valve seat carrier 1 chip formation at the longitudinal opening 3rd avoided.
  • the holding edge 28 of the perforated disc 21 is on his free end with the wall of the longitudinal opening 3 for example by a circumferential and dense second Weld 30 connected.
  • the tight welds prevent fuel from flowing through undesired Place in the longitudinal opening 3 directly in a Intake pipe of the internal combustion engine.
  • the insertion depth of the valve seat body 16 and pot-shaped perforated disk 21 existing valve seat part in the longitudinal opening 3 determines the size of the stroke Valve needle 5, since the one end position of the valve needle 5 at non-excited solenoid 10 by the system of Valve closing body 7 on a valve seat surface 29 of the Valve seat body 16 is fixed.
  • the other end position the valve needle 5 is when the solenoid 10 is excited for example by the anchor 11 resting against the core 12 established.
  • the path between these two end positions Valve needle 5 thus represents the stroke.
  • the spherical valve closing body 7 acts with the in Direction of flow tapering in the shape of a truncated cone Valve seat surface 29 of the valve seat body 16 together, the in the axial direction between the guide opening 15 and the lower end face 17 of the valve seat body 16 is formed is.
  • FIG. 2 shows a schematic diagram of the process flow in the Production of a perforated disc 21 according to the invention, wherein the individual manufacturing and processing stations only are represented symbolically. Based on the following Figures 3 to 6 are still individual processing steps explained in more detail.
  • A. Station are located according to the desired number of Sheet layers 135 of the later perforated disc 21 sheet foils as for example, rolled up film strips 35.
  • at Use of three film strips 35a, 35b and 35c for Production of a three sheet layers comprising 135 Sheet metal laminated perforated disc 21 is for the later Processing, especially when joining, expedient, the middle To coat film strips 35b.
  • the film strips 35 are subsequently in large numbers per slide 35 same opening geometries 27 of the perforated disc 21 and Auxiliary openings for centering and adjusting the Film strips 35 or for later exposure of the Perforated disks 21 introduced from the film strips 35.
  • This processing of the individual film strips 35 takes place in station B.
  • station B there are tools 36 provided with which in the individual film strips 35 the desired opening geometries 27 and the auxiliary openings be molded. All essential contours are included through micro punching, laser cutting, eroding, etching or comparable processes. Examples of such Figure 35 illustrates film strip 35 processed in this way 3.
  • the film strips 35 run through the processed Station C, which is a heater 37 in the film strips 35, for example, in preparation of a soldering process are heated inductively.
  • Station C is only provided as an option, as others, one at any time Joining processes that do not require heating to connect the Film strips 35 can be applied.
  • the individual parts are joined Foil strips 35 one on top of the other, the foil strips 35 with the help of centering devices to each other exactly be positioned and for example by rotating Pressure rollers 38 pressed together and transported on become.
  • Laser welding, Light beam welding, electron beam welding, Ultrasonic welding, pressure welding, induction soldering, Laser beam soldering, electron beam soldering, gluing or others known methods are used.
  • Perforated disc belt 39 in station E processed such that Perforated disks 21 in the for installation in the injection valve desired size and contour.
  • the perforated disks 21 are separated, for example by punching out the perforated disc band 39 with a Tool 40, in particular a punching tool.
  • the levels punched-out perforated disks 21 can already be so in one Injector are used.
  • a tool 40 ' in particular one Thermoforming tool, the perforated disks 21 from the Perforated disc band 39 by tearing or cutting to separate and thus separate, the Perforated disks 21 at the same time directly with a cup-shaped Be given shape. Is punching out and a cup-shaped shape of the perforated disks 21 is desired, so is a deep-drawing process or a after punching out Flanging required.
  • the method steps for producing the perforated disks 21 are so far that only below the perforated disks 21 are installed.
  • the isolated and perforated disks 21 are formed in the desired manner in a next process step at the bottom End face 17 of the valve seat body 16 with the aid of a Joining device 45 fastened, advantageously to achieve a tight and tight connection
  • Laser welding device is used (station F).
  • laser radiation 46 is the circular weld seam 25 achieved.
  • various machining tools 48 with which methods how honing (drawing grinding) or hard turning can be carried out, especially the inner contours of the valve seat body 16 (e.g. guide opening 15, valve seat surface 29) reworked.
  • FIG. 3 Foil strip 35a which later becomes the valve closing body 7 facing upper sheet metal layer 135a and the film strip 35c the lower valve valve 7 facing away later Sheet layer 135c of the perforated disc 21, during the Film strip 35b the one lying between these two Forms sheet layer 135b in the perforated disk 21.
  • Film strip 35a which later becomes the valve closing body 7 facing upper sheet metal layer 135a and the film strip 35c the lower valve valve 7 facing away later Sheet layer 135c of the perforated disc 21, during the Film strip 35b the one lying between these two Forms sheet layer 135b in the perforated disk 21.
  • two to five film strips 35 one above the other arranged, each a thickness of 0.05 mm to 0.3 mm, in particular about 0.1 mm.
  • Each film strip 35 is in station B with an opening geometry 27 provided, which extends over the length of the film strip 35 in repeated large numbers.
  • the upper film strip 35a has an exemplary embodiment Opening geometry 27 in the form of a cross-like Inlet opening 27a, the middle film strip 35b one Opening geometry 27 of a passage opening 27b in a circular shape with a larger diameter than the extent of the cruciform Inlet opening 27a and the lower film strip 35c one Opening geometry 27 in the form of four circular, in Cover area of the passage opening 27b lying Spray openings 27c.
  • In station B next to these opening geometries 27 further auxiliary openings 49, 50 brought in.
  • auxiliary openings 49 as Centering recesses molded in according to the shape the tools or aids that will later intervene there be angular, rounded, tapered or beveled can.
  • Other auxiliary openings 50 become crescent-shaped respective opening geometries 27 surrounding in the Film strips 35 are provided as openings.
  • the e.g. four crescent-shaped auxiliary openings 50 close with their inner Contour a circle with a diameter of later Perforated disc 21 a.
  • the from the auxiliary openings 50 enclosed circular areas in the Film strips 35 are referred to as blanks 53.
  • auxiliary openings 50 taper to a point, with between the individual auxiliary openings 50 narrow webs 55 are formed which are in the range of the round diameter a width of have only 0.2 to 0.3 mm.
  • punching or deep drawing in station E the webs 55 tear, causing the perforated disks 21 are exposed.
  • Can in a particularly effective manner also several film strips 35 to a larger one Foil carpet can be summarized on the disc 53 in two Dimensions are arranged.
  • FIG 4 shows schematically a perforated disc band 39 in the Station D, where the film strips are brought together 35 is shown staggered. Starting from the left first only the lower film strip 35c, on which the middle film strip 35b opens. The upper Film strip 35a completes the perforated disc band 39, the there are three layers in the two right round blanks 53. In the top view of the round blanks 53 shows that the Spray openings 27c offset from the inlet opening 27a are arranged so that a perforated disc 21st medium flowing through, e.g. Fuel, a so-called S-shock experienced within the perforated disc 21, the one Improves atomization.
  • a perforated disc 21st medium flowing through e.g. Fuel
  • auxiliary openings 49 grips a centering device 57 (index pins, Index bolt), which ensures that the blanks 53 of the individual film strips 35 dimensionally accurate and secure be placed on top of one another before the film strips 35 be connected to each other.
  • the auxiliary openings 49 can also as feed grooves for automatic transport of the Foil strip 35 or the perforated disc band 39 used become.
  • the fixed connections of the film strips 35 through Welding, soldering or gluing can be done both in the field of Rounds 53 as well as outside of rounds 53 near the Foil edges 52 or in central areas 58 between two opposite auxiliary openings 49 each be made.
  • the deep-drawing tool 40 schematically shown that the perforated disc band 39th is going through.
  • the perforated disc band 39 lies with the Edge areas between the auxiliary openings 50 and Foil edges 52 e.g. on a workpiece support 59, against which it is pressed by means of a hold-down device 60.
  • the hold-down device 60 has at least partially one frusto-conical opening 61, which has a matrix function to form the holding edge 28 of the perforated disc 21 takes over.
  • stamp counterpart 64 On the stamp 63 opposite Side of the perforated disc band 39 is in the opening 61 of the Hold-down device 60 is provided with a stamp counterpart 64 the movement of the stamp 63 follows, but the contour of the bottom part 22 of the perforated disk 21.
  • the through the Stamp 63 force applied to the round blank 53 the greater is as the counterforce of the stamp counterpart 64, leads to a tearing of the blank 53 from the perforated disc band 39 in Area of the webs 55 and for the deformation of the round blank 53 in one pot-shaped perforated disk 21.
  • current procedure is a translational tensile pressure forming such as deep drawing or Cupping.
  • a sheet metal edge 65 remains torn off from the round blank 53 Waste in the deep-drawing tool 40 ', which, however, is recycled and can be used in the production of new sheet metal foils.
  • Waste in the deep-drawing tool 40 ' which, however, is recycled and can be used in the production of new sheet metal foils.
  • On a firm connection of the film strips 35 in station D can to be completely dispensed with if by deep drawing or cups in station E the holding edge 28 of the perforated disk 21 is generated almost perpendicular to the bottom part 22, whereby namely a sufficiently firm connection in the bending area is created.
  • a flatter angle is given, a fixed angle should be used Connect in station D in any case. at desired flat perforated disks 21, e.g. by Punch out from the perforated disc band 39 fixed connections required.
  • FIG. 6a shows a second embodiment of a Deep-drawing tool 40 "shown, the opposite to the Thermoforming tool 40 'shown in FIGS. 5 and 6 equivalent parts by the same reference numerals Marked are.
  • the deep drawing tool 40 "in one round first cut the round blank 53, which is subsequently deep-drawn.
  • the stamp 63 is surrounded by a sleeve-shaped cutting tool 67, that defines the opening 62 with its inner wall.
  • the cutting tool moves together with the punch 63 67 perpendicular to the plane of the perforated disc band 39, as it is the arrows indicate.
  • the blank 53 Due to the precisely centered and defined movement of punch 63 and cutting tool 67 against the also axially movable stamp counterpart 64 in the opening 61 of a die 66, the blank 53 is very precise from the perforated disc band 39 by a cutting edge of the Cutting tool 67 cut out.
  • the cutting tool 67 comes into the opening 61 in the die 66 to a standstill, at the same time for a fixation of the Round 53 ensures.
  • FIGS. 6 to 9 show the holding edge 28 after leaving the deep-drawing tool 40 ' e.g. run almost perpendicular to the plane of the bottom part 22.
  • the deep drawing creates the Sheet layers 135 a holding edge 28, which at its free, the Bottom part 22 facing away from the end is stepped ( Figure 7).
  • the holding edge 28 on the one hand a gradation of the Sheet layers 135 in the opposite direction to that Have example according to Figure 7 ( Figure 8) or on the other hand have a free end at which all sheet layers 135 in end at one level ( Figure 9).
  • the Weld 30 at the holding edge 28 is the same choice or different disc diameters interesting.
  • Opening geometries 27 in the film strips 35 or Perforated disks 21 are also countless others (e.g. round, elliptical, polygonal, T-shaped, crescent-shaped, cruciform, semicircular, tunnel portal-like, bone-shaped, e.g. asymmetrical) opening geometries 27 for sheet metal laminated perforated disks 21 conceivable.
  • Figures 10 and 11 show a preferred embodiment of FIG Opening geometries 27 in the individual sheet layers 135 one Perforated disk 21, wherein the figure 10 is a plan view of the Perforated disk 21 is removable.
  • the a sectional view taken along a line XI-XI in Figure 10 again illustrates the structure of the perforated disk 21 with its three sheet layers 135.
  • the upper sheet layer 135a (FIG. 10a) has one Inlet opening 27a with the largest possible circumference, the a contour similar to a stylized bat (or of a double H).
  • the inlet opening 27a has one Cross-section with a partially rounded rectangle two each opposite, rectangular Constrictions 68 and thus three in turn over the Constrictions 68 protruding inlet areas 69th is writable.
  • the three inlet areas 69 are related to the contour comparable to a bat Body / torso and the two wings of the bat (or the Crossbar to the longitudinal bar of the double H).
  • the lower sheet layer 135c (FIG. 10c) four circular ones Spray openings 27c are provided.
  • the spray openings 27c are in a projection of all Sheet layers 135 partially or in one plane (FIG. 10) largely in the constrictions 68 of the upper sheet metal layer 135a.
  • the spray orifices 27c are offset Inlet opening 27a, i.e. in the projection the Inlet opening 27a nowhere the spray openings 27c cover.
  • the offset can be different Directions can be different sizes.
  • Figure 10b To fluid flow from the inlet port 27a to To ensure the spray openings 27c is in the middle sheet layer 135b (Figure 10b) has a passage opening 27b formed as a channel (cavity).
  • One contour of one rounded rectangular opening 27b is of such a size that it can be projected Inlet opening 27a completely covered and especially in the Areas of the constrictions 68 via the inlet opening 27a protrudes, i.e. a greater distance from the central axis of the Perforated disc 21 has the constrictions 68.
  • FIGS. 12 to 15 show exemplary embodiments of two Sheet metal layers 135 having perforated disks 21 which on a Valve seat body 16 of an injection valve by means of a tight weld 25 are mounted.
  • the valve seat body 16 has a valve seat surface 29 following downstream Outlet opening compared to the three sheet layers 135 perforated disks 21 already have the inlet opening 27a.
  • the valve seat body 16 With its lower outlet opening 27a the valve seat body 16 is shaped such that its lower Front 17 partially an upper cover of the Passage opening 27b forms and thus the entry surface of the Specifies fuel in the perforated disc 21.
  • the outlet opening 27a has a smaller diameter than the diameter of an imaginary circle on which the Spray openings 27c of the perforated disk 21 are located.
  • the transverse impulses due to the turbulence transverse to Current lead among other things that the A large droplet distribution density in the spray Has uniformity. This results in one reduced probability of droplet coagulation, from small droplets to larger ones Drops.
  • the consequence of the advantageous reduction of average droplet diameter in the spray is a relative one homogeneous spray distribution.
  • Through the S-blow is in the Fluid creates a fine-scale (high-frequency) turbulence, which the beam immediately after exiting the Perforated disk 21 disintegrate into fine droplets leaves.
  • FIG. 13 to 15 Three examples of designs of the opening geometry 27 in the central areas of the perforated disc 21 are as Top views shown in Figures 13 to 15. With a The dash-dot line is the one in these figures Outlet opening 27a of the valve seat body 16 in the region of the lower end face 17 symbolically indicated the offset to clarify the spray openings 27c.
  • All Embodiments of the perforated disks 21 have in common that they have at least one passage opening 27b in the upper one Sheet layer 135 and at least one spray opening 27c, here four spray orifices 27c in the lower sheet layer 135 have, the passage openings 27b each as large with regard to their width or width that all Spray openings 27c are completely flowed over. In order to is meant that none of the passage openings 27b delimiting walls covers the spray openings 27c.
  • the passage opening 27b circular (FIG. 14) or rectangular (FIG. 15) executed, from the spray openings 27c circular cross sections ( Figures 14 and 15).
  • These perforated disks 21 are also particularly suitable for Arrangement of two spray orifices 27c in a larger one Distance to two further spray openings 27c for one Zweistrahlabspritzung.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Herstellung einer Lochscheibe für ein Einspritzventil nach der Gattung des Anspruchs 1 bzw. des Anspruchs 2 bzw. des Anspruchs 3.
Aus der US-PS 4,854,024 ist bereits ein Verfahren zum Herstellen einer Mehrstrom-Lochplatte für ein Kraftstoffeinspritzventil bekannt, bei dem ein dünnes metallenes Ausgangsmaterial verwendet wird. In das Ausgangsmaterial werden durch Stanzen Löcher eingebracht, die durch Nachpressen oder Prägen weiterbearbeitet werden können. Anschließend werden kreisförmige Lochplatten um die Löcher herum aus dem Ausgangsmaterial herausgestanzt, womit die Lochplatten vereinzelt vorliegen. Außerdem ist aus den US-PS 4,854,024 und US-PS 4,923,169 bekannt, maximal zwei dieser derart hergestellten Lochplatten sandwichartig an einem Kraftstoffeinspritzventil zu verwenden. Die beiden unabhängig voneinander vorliegenden Blechlagen einer solchen Lochplatte werden dazu übereinanderliegend zwischen einem Ventilsitzkörper und einem zwangsläufig anzubringenden Stützring eingeklemmt. Jede einzelne Blechlage einer solchen zweilagigen Lochplatte wird also völlig separat hergestellt, so daß eine mehrlagige Lochplatte erst im unmittelbar eingebauten Zustand am Einspritzventil entsteht. Der Stützring muß letztlich wieder durch Einbördeln oder ein anderes Fügeverfahren im Ventilsitzträger befestigt werden, da durch ihn allein noch keine Fixierung der Lochplatte vorliegt.
Bekannt sind aus der US-PS 5,570,841 des weiteren mehrere Lagen umfassende Lochscheiben, die in Brennstoffeinspritzventilen Verwendung finden. Die zwei oder vier Lagen der Lochscheiben werden aus rostfreiem Stahl oder Silizium ebenfalls separat hergestellt und weisen Öffnungen und Kanäle als Öffnungsgeometrien auf, die durch Erodieren, galvanische Abscheidung, Ätzen, Feinstanzen oder durch Mikrobearbeitung ausgeformt werden. Die vom Ventilsitz am entferntesten vorgesehene Lage besitzt dabei stets eine Öffnungsgeometrie, mit der dem durchströmenden Medium eine Drallkomponente beaufschlagt wird. Die voneinander unabhängig hergestellten Lagen bilden erst unmittelbar am Einspritzventil die mehrlagige sandwichartige Lochscheibe, da die einzelnen Lagen übereinandergestapelt zwischen dem Ventilsitzkörper und einer Stützscheibe eingeklemmt werden.
Ebenso sind bereits aus der US-PS 5,484,108 Lochscheibenelemente für Brennstoffeinspritzventile bekannt, die zwei oder drei dünne Lagen eines geeigneten Metalls, z.B. eines rostfreien Stahls, umfassen. Die Lagen des Lochscheibenelements sind auch hier wieder separat voneinander hergestellt, wobei sie derart ausgeformt sind, daß sie sandwichartig aufeinanderliegend im Bereich ihrer Öffnungsgeometrien wenigstens eine hohlraumbildende Kammer entstehen lassen. In gleicher Weise wie in den oben bereits erwähnten Schriften werden die einzelnen Lagen des Lochscheibenelements zwischen dem Ventilsitzkörper und einem Stützkörper eingeklemmt.
Aus der US-PS 5,350,119 ist bereits ein Brennstoffeinspritzventil bekannt, das ein plattiertes Lochscheibenelement aufweist. Hergestellt wird das Lochscheibenelement aus einem Metallstreifen eines widerstandsfähigen Metalls wie Molybdän und einem darauf aufliegenden Überzug eines Weichmetalls wie Kupfer. Durch Umbördeln des Ventilsitzträgers werden die ebenen Schichten des Lochscheibenelements am Ventilsitzkörper gehalten.
Aus der nicht vorveröffentlichten JP 10-018943 A ist bereits ein Einspritzventil bekannt, das stromabwärts seines Ventilsitzes zwei aufeinanderfolgende Spritzlochscheiben mit mehreren Abspritzöffnungen aufweist. Die beiden separat voneinander hergestellten Spritzlochscheiben liegen im eingebauten Zustand unmittelbar dicht aneinander und sind zusammen mittels einer Schweißnaht an einem Ventilsitzkörper befestigt. Die Abspritzöffnungen sind derart geringfügig versetzt zueinander in den beiden unabhängigen Spritzlochscheiben eingebracht, dass im Berührungsbereich beider Spritzlochscheiben Stufenabschnitte zur Zerstäubungsverbesserung gebildet sind.
Vorteile der Erfindung
Die erfindungsgemäßen Verfahren zur Herstellung einer Lochscheibe mit den kennzeichnenden Merkmalen der Ansprüche 1 bzw. 2 bzw. 3 haben den Vorteil, daß durch ihre Anwendung auf einfache Art und Weise sehr effektiv mehrlagige Lochscheiben aus Metall in sehr großer Stückzahl kostengünstig herstellbar sind (Linienfertigung). In besonders vorteilhafter Weise wird eine einfache und kostengünstige Lagezuordnung einzelner Blechfolien bzw. der Blechlagen der späteren Lochscheiben durch Hilfsöffnungen realisiert, so daß eine sehr hohe Fertigungssicherheit vorliegt. In bevorzugter Weise kann die Lagezuordnung der Blechfolien automatisch über optische Abtastung und Bildauswertung erfolgen. Auf für die Herstellung mehrlagiger Lochscheiben vorgesehenen Maschinen und Automaten können sehr einfach der Werkstoff, die Blechdicke, die gewünschten Öffnungsgeometrien und weitere Parameter für den jeweiligen Anwendungsfall ideal angepaßt werden.
Besonders vorteilhaft ist es, die Blechfolien in Form von Folienstreifen oder Folienteppichen für die weitere Bearbeitung bereitzustellen.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des in den Ansprüchen 1 bzw. 2 bzw. 3 angegebenen Verfahrens möglich.
In vorteilhafter Weise werden die Blechfolien in aufgerollter Form bereitgestellt, da so eine optimale Raumnutzung an einer Fertigungsstraße möglich ist.
Besonders vorteilhaft ist es, an den Folienrändern der Blechfolien in regelmäßigen Abständen Hilfsöffnungen vorzusehen, in die Zentriervorrichtungen eingreifen können, um ein lagegenaues Aufeinanderbringen der einzelnen Blechfolien zu gewährleisten. Außerdem ist es sehr vorteilhaft, wenn in die Blechfolien sichelförmige Hilfsöffnungen eingebracht werden, die mit ihren inneren Begrenzungen den Durchmesser von aus den Blechfolien herauszulösenden Ronden, die die Lochscheibenrohlinge darstellen, festlegen. Diese Hilfsöffnungen laufen an ihren Enden spitz zu und sind von der jeweils nächsten Hilfsöffnung nur über einen sehr schmalen Steg getrennt. Bei einem nachfolgenden Ausstanzen, Tiefziehen oder Napfen reißen diese Stege, wodurch die Ronden bzw. Lochscheiben aus dem Lochscheibenband vereinzelt werden.
Als optional einzusetzende Fügeverfahren zum Verbinden mehrerer Blechfolien innerhalb oder außerhalb der Ronden dienen in idealer Weise Schweißen, Löten oder Kleben in all ihren unterschiedlichen Anwendungsformen.
In besonders vorteilhafter Weise erfolgt das Vereinzeln der Ronden und das Umbiegen der Ronden in topfförmige Lochscheiben in einem Tiefziehwerkzeug in ein und demselben Bearbeitungsschritt.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein teilweise dargestelltes Einspritzventil mit einer ersten erfindungsgemäß hergestellten Lochscheibe, Figur 2 ein Prinzipbild des Verfahrensablaufs bei der Herstellung einer Lochscheibe mit den Stationen A bis E und bei der Befestigung einer Lochscheibe in einem Einspritzventil mit den Stationen F und G, Figur 3 Ausführungsbeispiele von Folienstreifen zur Herstellung einer dreilagigen Lochscheibe, Figur 4 ein Lochscheibenband mit mehreren übereinanderliegenden Folienstreifen, Figuren 5 und 6 ein Tiefziehwerkzeug mit einem zu bearbeitenden Lochscheibenband, Figur 6a eine zweite Ausführungsform eines Tiefziehwerkzeugs, Figur 7 ein erstes Beispiel einer tiefgezogenen, an einem Ventilsitzkörper befestigten Lochscheibe, Figur 8 ein zweites Beispiel einer tiefgezogenen, an einem Ventilsitzkörper befestigten Lochscheibe, Figur 9 ein drittes Beispiel einer tiefgezogenen, an einem Ventilsitzkörper befestigten Lochscheibe, Figur 10 eine weitere Lochscheibe in einer Draufsicht, Figuren 10a bis 10c die einzelnen Blechlagen der Lochscheibe gemäß Figur 10, Figur 11 eine Lochscheibe im Schnitt entlang der Linie XI-XI, Figur 12 ein viertes Beispiel einer tiefgezogenen, an einem Ventilsitzkörper befestigten (zweilagigen) Lochscheibe, Figur 13 ein erster zentraler Bereich einer Lochscheibe, Figur 14 ein zweiter zentraler Bereich einer Lochscheibe und Figur 15 ein dritter zentraler Bereich einer Lochscheibe zur Verdeutlichung verschiedener Öffnungsgeometrien.
Beschreibung der Ausführungsbeispiele
In der Figur 1 ist als ein Ausführungsbeispiel zur Verwendung einer erfindungsgemäß hergestellten Lochscheibe ein Ventil in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen teilweise dargestellt. Das Einspritzventil hat einen rohrförmigen Ventilsitzträger 1, in dem konzentrisch zu einer Ventillängsachse 2 eine Längsöffnung 3 ausgebildet ist. In der Längsöffnung 3 ist eine z. B. rohrförmige Ventilnadel 5 angeordnet, die an ihrem stromabwärtigen Ende 6 mit einem z. B. kugelförmigen Ventilschließkörper 7, an dessen Umfang beispielsweise fünf Abflachungen 8 zum Vorbeiströmen von Brennstoff vorgesehen sind, verbunden ist.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise, beispielsweise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 5 und damit zum Öffnen entgegen der Federkraft einer nicht dargestellten Rückstellfeder bzw. Schließen des Einspritzventils dient ein angedeuteter elektromagnetischer Kreis mit einer Magnetspule 10, einem Anker 11 und einem Kern 12. Der Anker 11 ist mit dem dem Ventilschließkörper 7 abgewandten Ende der Ventilnadel 5 durch z. B. eine mittels eines Lasers hergestellte Schweißnaht verbunden und auf den Kern 12 ausgerichtet.
Zur Führung des Ventilschließkörpers 7 während der Axialbewegung dient eine Führungsöffnung 15 eines Ventilsitzkörpers 16. In das stromabwärts liegende, dem Kern 12 abgewandte Ende des Ventilsitzträgers 1 ist in der konzentrisch zur Ventillängsachse 2 verlaufenden Längsöffnung 3 der z. B. zylinderförmige Ventilsitzkörper 16 durch Schweißen dicht montiert. An seiner dem Ventilschließkörper 7 abgewandten, unteren Stirnseite 17 ist der Ventilsitzkörper 16 mit einer erfindungsgemäßen bzw. erfindungsgemäß hergestellten, z.B. topfförmig ausgebildeten Lochscheibe 21 konzentrisch und fest verbunden, die also unmittelbar an dem Ventilsitzkörper 16 mit einem Bodenteil 22 anliegt. Die Lochscheibe 21 wird von wenigstens zwei, im Ausführungsbeispiel nach Figur 1 drei eine geringe Dicke aufweisenden, metallenen Blechlagen 135 gebildet, so daß eine sogenannte Blechlaminat-Lochscheibe vorliegt.
Die Verbindung von Ventilsitzkörper 16 und Lochscheibe 21 erfolgt beispielsweise durch eine ringförmig umlaufende und dichte, mittels eines Lasers ausgebildete erste Schweißnaht 25. Durch diese Art der Montage ist die Gefahr einer unerwünschten Verformung der Lochscheibe 21 in ihrem mittleren Bereich mit der dort vorgesehenen Öffnungsgeometrie 27 vermieden. An das Bodenteil 22 der topfförmigen Lochscheibe 21 schließt sich nach außen ein umlaufender Halterand 28 an, der sich in axialer Richtung dem Ventilsitzkörper 16 abgewandt erstreckt und bis zu seinem Ende hin leicht konisch nach außen gebogen ist. Der Halterand 28 übt eine radiale Federwirkung auf die Wandung der Längsöffnung 3 aus. Dadurch wird beim Einschieben des Ventilsitzkörpers 16 in die Längsöffnung 3 des Ventilsitzträgers 1 eine Spanbildung an der Längsöffnung 3 vermieden. Der Halterand 28 der Lochscheibe 21 ist an seinem freien Ende mit der Wandung der Längsöffnung 3 beispielsweise durch eine umlaufende und dichte zweite Schweißnaht 30 verbunden. Die dichten Verschweißungen verhindern ein Durchströmen von Brennstoff an unerwünschten Stellen in der Längsöffnung 3 unmittelbar in eine Ansaugleitung der Brennkraftmaschine.
Die Einschubtiefe des aus Ventilsitzkörper 16 und topfförmiger Lochscheibe 21 bestehenden Ventilsitzteils in die Längsöffnung 3 bestimmt die Größe des Hubs der Ventilnadel 5, da die eine Endstellung der Ventilnadel 5 bei nicht erregter Magnetspule 10 durch die Anlage des Ventilschließkörpers 7 an einer Ventilsitzfläche 29 des Ventilsitzkörpers 16 festgelegt ist. Die andere Endstellung der Ventilnadel 5 wird bei erregter Magnetspule 10 beispielsweise durch die Anlage des Ankers 11 an dem Kern 12 festgelegt. Der Weg zwischen diesen beiden Endstellungen der Ventilnadel 5 stellt somit den Hub dar.
Der kugelförmige Ventilschließkörper 7 wirkt mit der sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 29 des Ventilsitzkörpers 16 zusammen, die in axialer Richtung zwischen der Führungsöffnung 15 und der unteren Stirnseite 17 des Ventilsitzkörpers 16 ausgebildet ist.
Figur 2 zeigt ein Prinzipbild des Verfahrensablaufs bei der Herstellung einer erfindungsgemäßen Lochscheibe 21, wobei die einzelnen Fertigungs- und Bearbeitungsstationen nur symbolisch dargestellt sind. Anhand der nachfolgenden Figuren 3 bis 6 werden einzelne Bearbeitungsschritte noch ausführlicher erläutert. In der ersten, mit A bezeichneten Station liegen entsprechend der gewünschten Anzahl von Blechlagen 135 der späteren Lochscheibe 21 Blechfolien als beispielsweise aufgerollte Folienstreifen 35 vor. Bei Verwendung von drei Folienstreifen 35a, 35b und 35c zur Herstellung einer drei Blechlagen 135 umfassenden Blechlaminat-Lochscheibe 21 ist es für die spätere Bearbeitung, speziell beim Fügen, zweckmäßig, den mittleren Folienstreifen 35b zu beschichten. In die Folienstreifen 35 werden nachfolgend pro Folie 35 jeweils in großer Anzahl gleiche Öffnungsgeometrien 27 der Lochscheibe 21 sowie Hilfsöffnungen zum Zentrieren und Justieren der Folienstreifen 35 bzw. zum späteren Freilegen der Lochscheiben 21 aus den Folienstreifen 35 eingebracht.
Diese Bearbeitung der einzelnen Folienstreifen 35 erfolgt in der Station B. In der Station B sind Werkzeuge 36 vorgesehen, mit denen in den einzelnen Folienstreifen 35 die gewünschten Öffnungsgeometrien 27 sowie die Hilfsöffnungen eingeformt werden. Alle wesentlichen Konturen werden dabei durch Mikrostanzen, Laserschneiden, Erodieren, Ätzen oder vergleichbare Verfahren hergestellt. Beispiele solcher derart bearbeiteter Folienstreifen 35 veranschaulicht Figur 3. Die Folienstreifen 35 durchlaufen derart bearbeitet die Station C, die eine Erwärmungseinrichtung 37 darstellt, in der die Folienstreifen 35 beispielsweise in Vorbereitung eines Lötvorgangs induktiv erwärmt werden. Die Station C ist nur optional vorgesehen, da jederzeit auch andere, eine Erwärmung nicht erfordernde Fügeverfahren zur Verbindung der Folienstreifen 35 angewendet werden können.
In der Station D erfolgt das Fügen der einzelnen Folienstreifen 35 aufeinander, wobei die Folienstreifen 35 mit Hilfe von Zentriervorrichtungen zueinander genau positioniert werden und beispielsweise durch rotierende Druckwalzen 38 aneinandergedrückt und weitertransportiert werden. Als Fügeverfahren können Laserschweißen, Lichtstrahlschweißen, Elektronenstrahlschweißen, Ultraschallschweißen, Preßschweißen, Induktionslöten, Laserstrahllöten, Elektronenstrahllöten, Kleben oder andere bekannte Verfahren eingesetzt werden. Daran anschließend wird das mehrere Lagen von Folienstreifen 35 umfassende Lochscheibenband 39 in der Station E derart bearbeitet, daß Lochscheiben 21 in der zum Einbau im Einspritzventil gewünschten Größe und Kontur vorliegen. In der Station E erfolgt die Vereinzelung der Lochscheiben 21 beispielsweise durch Ausstanzen aus dem Lochscheibenband 39 mit einem Werkzeug 40, insbesondere einem Stanzwerkzeug. Die ebenen ausgestanzten Lochscheiben 21 können bereits so in einem Einspritzventil verwendet werden. Andererseits ist es aber auch möglich, mit einem Werkzeug 40', insbesondere einem Tiefziehwerkzeug, die Lochscheiben 21 aus dem Lochscheibenband 39 durch Abreißen oder Ausschneiden herauszutrennen und somit zu vereinzeln, wobei die Lochscheiben 21 zugleich unmittelbar mit einer topfförmigen Gestalt versehen werden. Wird ein Ausstanzen vorgenommen und eine topfförmige Gestalt der Lochscheiben 21 gewünscht, so ist nach dem Ausstanzen noch ein Tiefziehvorgang oder ein Bördeln erforderlich.
Die Verfahrensschritte zur Herstellung der Lochscheiben 21 sind damit insofern abgeschlossen, daß nachfolgend nur noch der Einbau der Lochscheiben 21 erfolgt. Die vereinzelten und in gewünschter Weise ausgeformten Lochscheiben 21 werden in einem nächsten Verfahrensschritt jeweils an der unteren Stirnseite 17 des Ventilsitzkörpers 16 mit Hilfe einer Fügevorrichtung 45 befestigt, wobei in vorteilhafter Weise zur Erzielung einer festen und dichten Verbindung eine Laserschweißeinrichtung verwendet wird (Station F). Mittels symbolhaft angedeuteter Laserstrahlung 46 wird die ringförmig umlaufende Schweißnaht 25 erzielt. Das nun vorliegende Ventilsitzteil aus Ventilsitzkörper 16 und Lochscheibe 21 wird darauffolgend optional noch feinbearbeitet, wobei das Ventilsitzteil dabei in einer Haltevorrichtung 47 eingespannt ist (Station G). Mit verschiedenen Bearbeitungswerkzeugen 48, mit denen Verfahren wie Honen (Ziehschleifen) oder Hartdrehen durchführbar sind, werden besonders die inneren Konturen des Ventilsitzkörpers 16 (z.B. Führungsöffnung 15, Ventilsitzfläche 29) nachbearbeitet.
Konkrete Ausführungsbeispiele von Folienstreifen 35 für eine Lochscheibe 21 zeigt Figur 3. Dabei stellt der Folienstreifen 35a die später dem Ventilschließkörper 7 zugewandte obere Blechlage 135a und der Folienstreifen 35c die später dem Ventilschließkörper 7 abgewandte untere Blechlage 135c der Lochscheibe 21 dar, während der Folienstreifen 35b die zwischen diesen beiden liegende Blechlage 135b in der Lochscheibe 21 bildet. Üblicherweise werden für erfindungsgemäß hergestellte Blechlaminat-Lochscheiben 21 zwei bis fünf Folienstreifen 35 übereinander angeordnet, die jeweils eine Dicke von 0,05 mm bis 0,3 mm, insbesondere ca. 0,1 mm, aufweisen. Jeder Folienstreifen 35 wird in der Station B mit einer Öffnungsgeometrie 27 versehen, die sich über die Länge der Folienstreifen 35 in großer Zahl wiederholt. Im in Figur 3 dargestellten Ausführungsbeispiel weist der obere Folienstreifen 35a eine Öffnungsgeometrie 27 in Form einer kreuzartigen Einlaßöffnung 27a, der mittlere Folienstreifen 35b eine Öffnungsgeometrie 27 einer Durchlaßöffnung 27b in Kreisform mit größerem Durchmesser als das Ausmaß der kreuzartigen Einlaßöffnung 27a und der untere Folienstreifen 35c eine Öffnungsgeometrie 27 in Form von vier kreisförmigen, im Überdeckungsbereich der Durchlaßöffnung 27b liegenden Abspritzöffnungen 27c auf. In der Station B werden neben diesen Öffnungsgeometrien 27 weitere Hilfsöffnungen 49, 50 eingebracht.
Zwischen jeweils zwei eingebrachten Öffnungsgeometrien 27 werden dabei in gleichen Abständen entlang der jeweils beiden Folienränder 52 Hilfsöffnungen 49 als Zentrierausnehmungen eingeformt, die entsprechend der Form der dort später eingreifenden Werkzeuge oder Hilfsmittel eckig, abgerundet, spitz zulaufend oder angeschrägt sein können. Andere Hilfsöffnungen 50 werden sichelförmig, die jeweiligen Öffnungsgeometrien 27 umgebend in den Folienstreifen 35 als Durchbrüche vorgesehen. Die z.B. vier sichelförmigen Hilfsöffnungen 50 schließen mit ihrer inneren Kontur einen Kreis mit einem Durchmesser der späteren Lochscheibe 21 ein. Die von den Hilfsöffnungen 50 eingeschlossenen kreisförmigen Bereiche in den Folienstreifen 35 werden als Ronden 53 bezeichnet. An ihren Enden laufen die Hilfsöffnungen 50 spitz zu, wobei zwischen den einzelnen Hilfsöffnungen 50 schmale Stege 55 gebildet sind, die im Bereich des Rondendurchmessers eine Breite von nur 0,2 bis 0,3 mm besitzen. Beim Ausstanzen oder Tiefziehen in Station E reißen die Stege 55, wodurch die Lochscheiben 21 freigelegt werden. In besonders effektiver Weise können auch mehrere Folienstreifen 35 zu einem größeren Folienteppich zusammengefaßt sein, auf dem Ronden 53 in zwei Dimensionen angeordnet sind.
Figur 4 zeigt schematisch ein Lochscheibenband 39 in der Station D, wobei das Aufeinanderbringen der Folienstreifen 35 gestaffelt dargestellt ist. Von links beginnend liegt erst nur der untere Folienstreifen 35c vor, auf den dann der mittlere Folienstreifen 35b aufläuft. Der obere Folienstreifen 35a komplettiert das Lochscheibenband 39, das in den beiden rechten Ronden 53 also dreilagig vorliegt. In der Draufsicht auf die Ronden 53 ist zu erkennen, daß die Abspritzöffnungen 27c versetzt zur Einlaßöffnung 27a angeordnet sind, so daß ein die Lochscheibe 21 durchströmendes Medium, z.B. Brennstoff, einen sogenannten S-Schlag innerhalb der Lochscheibe 21 erfährt, der zu einer Zerstäubungsverbesserung beiträgt. In die Hilfsöffnungen 49 greift eine Zentriervorrichtung 57 (Indexstifte, Indexbolzen) ein, die dafür sorgt, daß die Ronden 53 der einzelnen Folienstreifen 35 maßgenau und lagesicher übereinander gebracht werden, bevor die Folienstreifen 35 miteinander verbunden werden. Die Hilfsöffnungen 49 können auch als Vorschubnuten zum automatischen Transport der Folienstreifen 35 bzw. des Lochscheibenbandes 39 verwendet werden. Die festen Verbindungen der Folienstreifen 35 durch Schweißen, Löten oder Kleben können sowohl im Bereich der Ronden 53 als auch außerhalb der Ronden 53 nahe der Folienränder 52 oder in zentralen Bereichen 58 zwischen jeweils zwei gegenüberliegenden Hilfsöffnungen 49 vorgenommen werden.
In den Figuren 5 und 6 ist das Tiefziehwerkzeug 40' schematisch dargestellt, das vom Lochscheibenband 39 durchlaufen wird. Das Lochscheibenband 39 liegt mit den Randbereichen zwischen den Hilfsöffnungen 50 und den Folienrändern 52 z.B. auf einer Werkstückauflage 59 auf, gegen die es mittels eines Niederhalters 60 gedrückt wird. Der Niederhalter 60 weist eine zumindest teilweise kegelstumpfförmige Öffnung 61 auf, die eine Matrizenfunktion zum Bilden des Halterandes 28 der Lochscheibe 21 übernimmt. In der Werkstückauflage 59 ist ebenfalls eine Öffnung 62 vorgesehen, die zylindrisch ausgebildet ist und in der ein Stempel 63 senkrecht zur Ebene des Lochscheibenbandes 39 bewegbar ist. Auf der dem Stempel 63 gegenüberliegenden Seite des Lochscheibenbandes 39 ist in der Öffnung 61 des Niederhalters 60 ein Stempelgegenstück 64 vorgesehen, das der Bewegung des Stempels 63 folgt, dabei jedoch die Kontur des Bodenteils 22 der Lochscheibe 21 vorgibt. Die durch den Stempel 63 auf die Ronde 53 aufgebrachte Kraft, die größer ist als die Gegenkraft des Stempelgegenstücks 64, führt zu einem Abreißen der Ronde 53 vom Lochscheibenband 39 im Bereich der Stege 55 und zur Verformung der Ronde 53 in eine topfförmige Lochscheibe 21.,Bei diesem in Station E ablaufenden Verfahren handelt es sich um ein translatorisches Zugdruckumformen wie Tiefziehen oder Napfen.
Von der Ronde 53 abgerissen verbleibt ein Blechrand 65 als Abfall im Tiefziehwerkzeug 40', der jedoch recycelt und bei der Herstellung neuer Blechfolien verwendet werden kann. Auf ein festes Verbinden der Folienstreifen 35 in Station D kann vollständig verzichtet werden, wenn durch das Tiefziehen oder Napfen in Station E der Halterand 28 der Lochscheibe 21 fast senkrecht zum Bodenteil 22 erzeugt wird, wodurch nämlich im Biegebereich eine ausreichend feste Verbindung geschaffen wird. Wird durch die Öffnung 61 im Niederhalter 60 ein flacherer Winkel vorgegeben, so sollte ein festes Verbinden in Station D auf jeden Fall erfolgen. Bei gewünschten flachen Lochscheiben 21, die z.B. durch Ausstanzen aus dem Lochscheibenband 39 herausgetrennt werden, ist ebenfalls das Anbringen von festen Verbindungen erforderlich.
In Figur 6a ist eine zweite Ausführungsform eines Tiefziehwerkzeugs 40 " dargestellt, wobei die gegenüber dem in den Figuren 5 und 6 gezeigten Tiefziehwerkzeug 40' gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet sind. In dem Tiefziehwerkzeug 40" wird in einem Arbeitsgang zuerst die Ronde 53 ausgeschnitten, die unmittelbar nachfolgend tiefgezogen wird. Der Stempel 63 ist dazu von einem hülsenförmigen Schneidwerkzeug 67 umgeben, das mit seiner inneren Wandung die Öffnung 62 vorgibt. Zusammen mit dem Stempel 63 bewegt sich das Schneidwerkzeug 67 senkrecht zur Ebene des Lochscheibenbandes 39, so wie es die Pfeile andeuten. Durch die genau zentrierte und definierte Bewegung von Stempel 63 und Schneidwerkzeug 67 gegen das ebenfalls axial bewegbare Stempelgegenstück 64 in der Öffnung 61 einer Matrize 66 wird die Ronde 53 sehr exakt aus dem Lochscheibenband 39 durch eine Schneide des Schneidwerkzeugs 67 ausgeschnitten. An einem Absatz 75 der Öffnung 61 in der Matrize 66 kommt das Schneidwerkzeug 67 zum Stillstand, wobei es zugleich für eine Fixierung der Ronde 53 sorgt. Im weiteren Verlauf wird nur noch der Stempel 63 in die Öffnung 61 hinein bewegt, so daß die Ronde 53 aufgrund der teilweise kegelstumpfförmigen Ausbildung der Öffnung 61 in eine Topfform gebracht wird.
Verschiedene Ausführungsbeispiele von aus der Station F kommenden, vom Ventilsitzkörper 16 und der Lochscheibe 21 gebildeten Ventilsitzteilen verdeutlichen die Figuren 7 bis 9. Durch das Tiefziehen oder Napfen der Ronden 53 in der Station E wird der äußere Rondenrand als späterer Halterand 28 der Lochscheibe 21 aus der Ebene des Lochscheibenbandes 39 heraus umgebogen. Wie die Figuren 6 bis 9 zeigen, kann der Halterand 28 nach Verlassen des Tiefziehwerkzeugs 40' z.B. fast senkrecht zur Ebene des Bodenteils 22 verlaufen. Bei der Bearbeitung der Folienstreifen 35 in Station B werden durch das Einbringen der Hilfsöffnungen 50 bereits die Durchmesser der Ronden 53 festgelegt.
Werden die Rondendurchmesser in den einzelnen Folienstreifen 35 gleich groß gewählt, so entsteht durch das Tiefziehen der Blechlagen 135 ein Halterand 28, der an seinem freien, dem Bodenteil 22 abgewandt liegenden Ende abgestuft ist (Figur 7). Die innere Blechlage 135c des Halterandes 28, die aus dem unteren Folienstreifen 35c hervorgeht, endet in stromabwärtiger Richtung gesehen am weitesten entfernt vom Bodenteil 22, während alle weiteren Blechlagen 135 von innen nach außen hin durch den Tiefziehprozeß jeweils kürzer enden. Wird jedoch der Durchmesser der Ronden 53 in dem oberen Folienstreifen 35a größer festgelegt als der Durchmesser der Ronden 53 im mittleren Folienstreifen 35b und der wiederum größer als der Durchmesser der Ronden 53 im unteren Folienstreifen 35c, so kann der Halterand 28 einerseits an seinem freien Ende eine Abstufung der Blechlagen 135 in umgekehrter Richtung gegenüber dem Beispiel gemäß Figur 7 aufweisen (Figur 8) oder andererseits ein freies Ende besitzen, an dem alle Blechlagen 135 in einer Ebene enden (Figur 9). Besonders für das Anbringen der Schweißnaht 30 am Halterand 28 ist die Auswahl der gleichen oder unterschiedlichen Rondendurchmesser interessant.
Neben den in den Figuren 3 und 4 beispielhaft dargestellten Öffnungsgeometrien 27 in den Folienstreifen 35 bzw. Lochscheiben 21 sind ebenso unzählige andere (z.B. runde, elliptische, mehreckige, T-förmige, sichelförmige, kreuzförmige, halbkreisförmige, tunnelportalähnliche, knochenförmige, u.a. asymmetrische) Öffnungsgeometrien 27 für Blechlaminat-Lochscheiben 21 denkbar. Die Figuren 10 und 11 zeigen ein bevorzugtes Ausführungsbeispiel von Öffnungsgeometrien 27 in den einzelnen Blechlagen 135 einer Lochscheibe 21, wobei der Figur 10 eine Draufsicht auf die Lochscheibe 21 entnehmbar ist. Besonders die Figur 11, die eine Schnittdarstellung entlang einer Linie XI-XI in Figur 10 ist, verdeutlicht nochmals den Aufbau der Lochscheibe 21 mit ihren drei Blechlagen 135.
Die obere Blechlage 135a (Figur 10a) weist eine Einlaßöffnung 27a mit einem möglichst großen Umfang auf, die eine Kontur ähnlich einer stilisierten Fledermaus (oder eines Doppel-H) besitzt. Die Einlaßöffnung 27a besitzt einen Querschnitt, der als teilweise abgerundetes Rechteck mit zwei jeweils gegenüberliegenden, rechteckförmigen Einschnürungen 68 und somit drei wiederum über die Einschnürungen 68 hinwegstehenden Einlaßbereichen 69 beschreibbar ist. Die drei Einlaßbereiche 69 stellen bezogen auf die mit einer Fledermaus vergleichbaren Kontur den Körper/Rumpf und die zwei Flügel der Fledermaus (bzw. die Querbalken zu dem Längsbalken des Doppel-H) dar. Mit z.B. jeweils gleichem Abstand zur Mittelachse der Lochscheibe 21 und um diese beispielsweise auch symmetrisch angeordnet sind in der unteren Blechlage 135c (Figur 10c) vier kreisförmige Abspritzöffnungen 27c vorgesehen.
Die Abspritzöffnungen 27c liegen bei einer Projektion aller Blechlagen 135 in eine Ebene (Figur 10) teilweise oder weitgehend in den Einschnürungen 68 der oberen Blechlage 135a. Die Abspritzöffnungen 27c liegen mit einem Versatz zur Einlaßöffnung 27a vor, d.h. in der Projektion wird die Einlaßöffnung 27a an keiner Stelle die Abspritzöffnungen 27c überdecken. Der Versatz kann dabei jedoch in verschiedene Richtungen unterschiedlich groß sein.
Um eine Fluidströmung von der Einlaßöffnung 27a bis hin zu den Abspritzöffnungen 27c zu gewährleisten, ist in der mittleren Blechlage 135b (Figur 10b) eine Durchlaßöffnung 27b als Kanal (cavity) ausgebildet. Die eine Kontur eines abgerundeten Rechtecks aufweisende Durchlaßöffnung 27b besitzt eine solche Größe, daß sie in der Projektion die Einlaßöffnung 27a vollständig überdeckt und besonders in den Bereichen der Einschnürungen 68 über die Einlaßöffnung 27a hinausragt, also einen größeren Abstand zur Mittelachse der Lochscheibe 21 als die Einschnürungen 68 hat.
In den Figuren 10a, 10b und 10c sind die Blechlagen 135a, 135b und 135c, wie sie aus den Folienstreifen 35 herausgetrennt vor dem Tiefziehen im Lochscheibenverbund vorliegen, nochmals vereinzelt dargestellt, um die Öffnungsgeometrie 27 jeder einzelnen Blechlage 135 genau zu veranschaulichen. Jede einzelne Figur ist letztlich eine vereinfachte Schnittdarstellung durch das Lochscheibenband 39 horizontal entlang jeder Blechlage 135a, 135b und 135c. Um die Öffnungsgeometrien 27 besser zu verdeutlichen, wird auf eine Schraffur und die Körperkanten der anderen Blechlagen 135 verzichtet.
Die Figuren 12 bis 15 zeigen Ausführungsbeispiele von zwei Blechlagen 135 aufweisenden Lochscheiben 21, die an einem Ventilsitzkörper 16 eines Einspritzventils mittels einer dichten Schweißnaht 25 montiert sind. Der Ventilsitzkörper 16 weist der Ventilsitzfläche 29 stromabwärts folgend eine Austrittsöffnung auf, die verglichen mit den drei Blechlagen 135 aufweisenden Lochscheiben 21 bereits die Einlaßöffnung 27a darstellt. Mit seiner unteren Austrittsöffnung 27a ist der Ventilsitzkörper 16 derart ausgeformt, daß seine untere Stirnseite 17 teilweise eine obere Abdeckung der Durchlaßöffnung 27b bildet und somit die Eintrittsfläche des Brennstoffs in die Lochscheibe 21 festlegt. Bei allen in den Figuren 12 bis 15 dargestellten Ausführungsbeispielen besitzt die Austrittsöffnung 27a einen kleineren Durchmesser als den Durchmesser eines gedachten Kreises, auf dem die Abspritzöffnungen 27c der Lochscheibe 21 liegen. Mit anderen Worten ausgedrückt liegt ein vollständiger Versatz von der den Einlaß der Lochscheibe 21 festlegenden Austrittsöffnung 27a und den Abspritzöffnungen 27c vor. Bei einer Projektion des Ventilsitzkörpers 16 auf die Lochscheibe 21 überdeckt der Ventilsitzkörper 16 sämtliche Abspritzöffnungen 27c. Aufgrund des radialen Versatzes der Abspritzöffnungen 27c gegenüber der Austrittsöffnung 27a ergibt sich ein S-förmiger Strömungsverlauf des Mediums, z.B. des Brennstoffs. Ein S-förmiger Strömungsverlauf wird auch bereits dann erzielt, wenn der Ventilsitzkörper 16 alle Abspritzöffnungen 27c in der Lochscheibe 21 nur teilweise überdeckt.
Durch den sogenannten S-Schlag innerhalb der Lochscheibe 21 mit mehreren starken Strömungsumlenkungen wird der Strömung eine starke, zerstäubungsfördernde Turbulenz aufgeprägt. Der Geschwindigkeitsgradient quer zur Strömung ist dadurch besonders stark ausgeprägt. Er ist ein Ausdruck für die Änderung der Geschwindigkeit quer zur Strömung, wobei die Geschwindigkeit in der Mitte der Strömung deutlich größer ist als in der Nähe der Wandungen. Die aus den Geschwindigkeitsunterschieden resultierenden erhöhten Scherspannungen im Fluid begünstigen den Zerfall in feine Tröpfchen nahe der Abspritzöffnungen 27c. Da die Strömung im Auslaß aufgrund der aufgeprägten Radialkomponente einseitig abgelöst ist, erfährt sie wegen fehlender Konturführung keine Strömungsberuhigung. Eine besonders hohe Geschwindigkeit weist das Fluid an der abgelösten Seite auf. Die zerstäubungsfördernden Scherturbulenzen werden somit im Austritt nicht vernichtet.
Die durch die Turbulenz vorhandenen Querimpulse quer zur Strömung führen unter anderem dazu, daß die Tröpfchenverteilungsdichte im abgespritzten Spray eine große Gleichmäßigkeit aufweist. Daraus resultiert eine herabgesetzte Wahrscheinlichkeit von Tröpfchenkoagulationen, also von Vereinigungen kleiner Tröpfchen zu größeren Tropfen. Die Folge der vorteilhaften Reduzierung des mittleren Tröpfchendurchmessers im Spray ist eine relativ homogene Sprayverteilung. Durch den S-Schlag wird in dem Fluid eine feinskalige (hochfrequente) Turbulenz erzeugt, welche den Strahl unmittelbar nach Austritt aus der Lochscheibe 21 in entsprechend feine Tröpfchen zerfallen läßt.
Drei Beispiele von Ausführungen der Öffnungsgeometrie 27 in den zentralen Bereichen der Lochscheibe 21 sind als Draufsichten in den Figuren 13 bis 15 dargestellt. Mit einer Strich-Punkt-Linie ist in diesen Figuren die Austrittsöffnung 27a des Ventilsitzkörpers 16 im Bereich der unteren Stirnseite 17 symbolisch angedeutet, um den Versatz zu den Abspritzöffnungen 27c zu verdeutlichen. Allen Ausführungsbeispielen der Lochscheiben 21 ist gemeinsam, daß sie wenigstens eine Durchlaßöffnung 27b in der oberen Blechlage 135 sowie wenigstens eine Abspritzöffnung 27c, hier vier Abspritzöffnungen 27c in der unteren Blechlage 135 besitzen, wobei die Durchlaßöffnungen 27b jeweils so groß bezüglich ihrer Weite bzw. Breite ausgeführt sind, daß alle Abspritzöffnungen 27c vollständig überströmt werden. Damit ist gemeint, daß keine der die Durchlaßöffnungen 27b begrenzenden Wandungen die Abspritzöffnungen 27c abdeckt.
Bei der in Figur 13 teilweise gezeigten Lochscheibe 21 ist die Durchlaßöffnung 27b in einer doppelrautenähnlichen Form ausgeführt, wobei die beiden Rauten durch einen mittleren Bereich verbunden sind, so daß nur eine einzige Durchlaßöffnung 27b vorhanden ist. Es sind jedoch genausogut zwei oder mehr Durchlaßöffnungen 27b denkbar. Von der doppelrautenförmigen Durchlaßöffnung 27b ausgehend verlaufen vier z.B. quadratische Querschnitte besitzende Abspritzöffnungen 27c durch die untere Blechlage 135, die vom Mittelpunkt der Lochscheibe 21 aus gesehen z.B. an den entferntesten Punkten der Durchlaßöffnung 27b ausgebildet sind. Jeweils zwei Abspritzöffnungen 27c bilden aufgrund der langgestreckten Rauten der Durchlaßöffnung 27b ein Öffnungspaar. Eine solche Anordnung der Abspritzöffnungen 27c ermöglicht eine Zweistrahl- oder auch Flachstrahlabspritzung.
In den anderen Ausführungsbeispielen ist die Durchlaßöffnung 27b kreisförmig (Figur 14) oder rechteckförmig (Figur 15) ausgeführt, von der aus Abspritzöffnungen 27c mit kreisförmigen Querschnitten (Figuren 14 und 15) abgehen. Auch diese Lochscheiben 21 eignen sich besonders durch die Anordnung zweier Abspritzöffnungen 27c in größerer Entfernung zu zwei weiteren Abspritzöffnungen 27c für eine Zweistrahlabspritzung.

Claims (13)

  1. Verfahren zur Herstellung einer Lochscheibe (21) für ein Einspritzventil mit den Verfahrensschritten
    a) Bereitstellen von wenigstens zwei dünnen metallenen Blechfolien (35) in Form von Folienstreifen oder Folienteppichen,
    b) Einbringen von gleichen Öffnungsgeometrien (27) der späteren Lochscheiben (21) und Hilfsöffnungen (49, 50) pro Blechfolie (35) in großer Anzahl,
    c) Aufeinanderbringen der einzelnen Blechfolien (35) mit Hilfe von Zentriervorrichtungen (57)
    d) Verbinden der Blechfolien (35) durch Anwendung eines Fügeverfahrens, wodurch ein Lochscheibenband (39) mit einer Vielzahl von Ronden (53) vorliegt,
    e) Vereinzeln der Ronden (53) zur Bildung der Lochscheiben (21) aus dem Lochscheibenband (39).
  2. Verfahren zur Herstellung einer Lochscheibe (21) für ein Einspritzventil mit den Verfahrensschritten
    a) Bereitstellen von wenigstens zwei dünnen metallenen Blechfolien (35) in Form von Folienstreifen oder Folienteppichen,
    b) Einbringen von gleichen Öffnungsgeometrien (27) der späteren Lochscheiben (21) und Hilfsöffnungen (49, 50) pro Blechfolie (35) in großer Anzahl,
    c) Aufeinanderbringen der einzelnen Blechfolien (35) mit Hilfe von Zentriervorrichtungen (57)
    d) Verbinden der Blechfolien (35) durch Anwendung eines Fügeverfahrens, wodurch ein Lochscheibenband (39) mit einer Vielzahl von Ronden (53) vorliegt,
    e) Tiefziehen oder Napfen der Ronden (53) zur Bildung von topfförmigen Lochscheiben (21) und dabei Vereinzeln der Lochscheiben (21) aus dem Lochscheibenband (39).
  3. Verfahren zur Herstellung einer Lochscheibe (21) für ein Einspritzventil mit den Verfahrensschritten
    a) Bereitstellen von wenigstens zwei dünnen metallenen Blechfolien (35) in Form von Folienstreifen oder Folienteppichen,
    b) Einbringen von gleichen Öffnungsgeometrien (27) der späteren Lochscheiben (21) und Hilfsöffnungen (49, 50) pro Blechfolie (35) in großer Anzahl,
    c) Aufeinanderbringen der einzelnen Blechfolien (35) mit Hilfe von Zentriervorrichtungen (57) zum Herstellen eines Lochscheibenbandes (39) mit einer Vielzahl von Ronden (53),
    d) Tiefziehen oder Napfen der Ronden (53) zur Bildung von topfförmigen Lochscheiben (21) und dabei Vereinzeln der Lochscheiben (21) aus dem Lochscheibenband (39).
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Bereitstellen der dünnen Blechfolien (35) aufgerollt erfolgt.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Einbringen der Öffnungsgeometrien (27) sowie der Hilfsöffnungen (49, 50) mittels Stanzen, Laserschneiden, Erodieren oder Ätzen erfolgt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß an den Folienrändern (52) in regelmäßigen Abständen erste Hilfsöffnungen (49) vorgesehen werden, in die zur Zentrierung und Justierung der Blechfolien (35) Zentriervorrichtungen (57) eingreifen können.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß in die Blechfolien (35) zweite sichelförmige Hilfsöffnungen (50) eingebracht werden, die mit ihren inneren Begrenzungen den Durchmesser der Ronden (53) festlegen.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die zweiten Hilfsöffnungen (50) mit spitzen Enden derart angeordnet werden, daß zwischen ihnen schmale Stege (55) von ca. 0,2 bis 0,3 mm stehen bleiben.
  9. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Blechfolien (35) vor dem Verbinden eine Erwärmungseinrichtung (37) durchlaufen.
  10. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Verbinden der Blechfolien (35) mittels Schweißen, Löten oder Kleben vorgenommen wird.
  11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Vereinzeln der Ronden (53) zur Bildung der Lochscheiben (21) aus dem Lochscheibenband (39) durch Ausstanzen (40) oder Ausschneiden erfolgt.
  12. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß das Tiefziehen oder Napfen der Ronden (53) mit Hilfe eines Tiefziehwerkzeugs (40', 40") erfolgt, wobei ein bewegbarer Stempel (63) im Zusammenwirken mit einer Matrize (61, 66) die Ronden (53) in Lochscheiben (21) mit einem Bodenteil (22) und einem dazu abgewinkelten Halterand (28) verformt.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß beim Tiefziehen oder Napfen die Ronden (53) dadurch vom Lochscheibenband (39) vereinzelt werden, daß schmale Stege (55) zwischen den die Rondendurchmesser festlegenden Hilfsöffnungen (50) reißen.
EP98924016A 1997-06-07 1998-03-17 Verfahren zur herstellung einer lochscheibe für ein einspritzventil Expired - Lifetime EP0917624B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03016782A EP1355061B1 (de) 1997-06-07 1998-03-17 Einspritzventil, insbesondere Brennstoffeinspritzventil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19724075 1997-06-07
DE19724075A DE19724075A1 (de) 1997-06-07 1997-06-07 Verfahren zur Herstellung einer Lochscheibe für ein Einspritzventil und Lochscheibe für ein Einspritzventil und Einspritzventil
PCT/DE1998/000784 WO1998057060A1 (de) 1997-06-07 1998-03-17 Verfahren zur herstellung einer lochscheibe für ein einspritzventil und lochscheibe für ein einspritzventil und einspritzventil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP03016782A Division EP1355061B1 (de) 1997-06-07 1998-03-17 Einspritzventil, insbesondere Brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP0917624A1 EP0917624A1 (de) 1999-05-26
EP0917624B1 true EP0917624B1 (de) 2004-01-28

Family

ID=7831797

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03016782A Expired - Lifetime EP1355061B1 (de) 1997-06-07 1998-03-17 Einspritzventil, insbesondere Brennstoffeinspritzventil
EP98924016A Expired - Lifetime EP0917624B1 (de) 1997-06-07 1998-03-17 Verfahren zur herstellung einer lochscheibe für ein einspritzventil

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03016782A Expired - Lifetime EP1355061B1 (de) 1997-06-07 1998-03-17 Einspritzventil, insbesondere Brennstoffeinspritzventil

Country Status (9)

Country Link
US (1) US6168099B1 (de)
EP (2) EP1355061B1 (de)
JP (1) JP2000517025A (de)
KR (2) KR100643558B1 (de)
CN (1) CN1151336C (de)
AU (1) AU735559B2 (de)
BR (1) BR9806040A (de)
DE (3) DE19724075A1 (de)
WO (1) WO1998057060A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856920A1 (de) * 1998-12-10 2000-06-15 Bosch Gmbh Robert Brennstoffeinspritzventil
US6330981B1 (en) 1999-03-01 2001-12-18 Siemens Automotive Corporation Fuel injector with turbulence generator for fuel orifice
JP2000314360A (ja) * 1999-04-30 2000-11-14 Aisan Ind Co Ltd 燃料噴射弁
DE19947780A1 (de) 1999-10-02 2001-04-12 Bosch Gmbh Robert Verfahren zum Einstellen der Strömungsmenge an einem Brennstoffeinspritzventil
US6357677B1 (en) * 1999-10-13 2002-03-19 Siemens Automotive Corporation Fuel injection valve with multiple nozzle plates
US6663026B2 (en) 2000-02-02 2003-12-16 Siemens Automotive Inc Combined filter and adjuster for a fuel injector
US6676044B2 (en) 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
JP2002039036A (ja) 2000-07-24 2002-02-06 Mitsubishi Electric Corp 燃料噴射弁
JP3556899B2 (ja) * 2000-12-04 2004-08-25 三菱電機株式会社 燃料噴射弁
US6648247B2 (en) 2001-02-02 2003-11-18 Siemens Automotive Corporation Combined filter and adjuster for a fuel injector
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
US7093362B2 (en) * 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector
DE10118273A1 (de) * 2001-04-12 2002-10-17 Bosch Gmbh Robert Brennstoffeinspritzventil
US6513724B1 (en) 2001-06-13 2003-02-04 Siemens Automotive Corporation Method and apparatus for defining a spray pattern from a fuel injector
JP2003254190A (ja) * 2002-03-04 2003-09-10 Aisan Ind Co Ltd オリフィスプレート
US20050248060A1 (en) * 2002-06-28 2005-11-10 3M Innovative Properties Company Manufacture of valve stems
DE10314670A1 (de) * 2003-04-01 2004-10-14 Robert Bosch Gmbh Verfahren zur Herstellung und Befestigung einer Lochscheibe
DE10314672B4 (de) * 2003-04-01 2016-12-22 Robert Bosch Gmbh Verfahren zur Herstellung einer Lochscheibe
DE102004049281A1 (de) * 2004-10-09 2006-04-20 Robert Bosch Gmbh Brennstoffeinspritzventil
US20060200988A1 (en) * 2005-03-11 2006-09-14 Siemens Vdo Automotive Corporation Sandwich orifice disc
US7866574B2 (en) * 2007-01-22 2011-01-11 Caterpillar Inc. Remanufactured fuel injector tip and fuel injector tip remanufacturing process
JP4808801B2 (ja) 2009-05-18 2011-11-02 三菱電機株式会社 燃料噴射弁
DE102010029298A1 (de) * 2010-05-26 2011-12-01 Robert Bosch Gmbh Ventilanordnung zur Dosierung eines fluiden Mediums in einen Abgasstrang einer Brennkraftmaschine
JP5295337B2 (ja) 2011-10-19 2013-09-18 三菱電機株式会社 流体噴射弁による噴霧生成方法、流体噴射弁、及び噴霧生成装置
US8978364B2 (en) * 2012-05-07 2015-03-17 Tenneco Automotive Operating Company Inc. Reagent injector
JP2014009653A (ja) * 2012-07-02 2014-01-20 Mitsubishi Electric Corp 燃料噴射弁
DE102013020662A1 (de) * 2013-12-06 2015-06-11 Kienle + Spiess Gmbh Verfahren zur Herstellung von Lamellen für ein Lamellenpaket, insbesondere für elektrische Maschinen und Generatoren,Vorrichtung mit wenigstens einer Stanzpresse sowie nach dem Verfahren hergestellte Lamelle und Lamellenpaket.
JP6508477B2 (ja) * 2015-11-06 2019-05-08 株式会社デンソー 噴射弁
DE102016211446A1 (de) * 2016-06-27 2017-12-28 Robert Bosch Gmbh Verfahren zur Herstellung eines Injektors zum Einspritzen von Kraftstoff
WO2018198216A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 燃料噴射弁
JP7136630B2 (ja) * 2018-08-23 2022-09-13 シチズンファインデバイス株式会社 流体噴霧プレートの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854024A (en) * 1986-12-04 1989-08-08 Siemens-Bendix Automotive Electronics L.P. Method of making multi-stream thin edge orifice disks for valves
US4923169A (en) 1987-12-23 1990-05-08 Siemens-Bendix Automotive Electronics L.P. Multi-stream thin edge orifice disks for valves
DE4123692C2 (de) * 1991-07-17 1995-01-26 Bosch Gmbh Robert Brennstoffeinspritzventil
DE4312756A1 (de) * 1993-04-20 1994-10-27 Bosch Gmbh Robert Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
US5350119A (en) 1993-06-01 1994-09-27 Siemens Automotive L.P. Clad metal orifice disk for fuel injectors
US5435884A (en) * 1993-09-30 1995-07-25 Parker-Hannifin Corporation Spray nozzle and method of manufacturing same
US5484108A (en) 1994-03-31 1996-01-16 Siemens Automotive L.P. Fuel injector having novel multiple orifice disk members
US5570841A (en) 1994-10-07 1996-11-05 Siemens Automotive Corporation Multiple disk swirl atomizer for fuel injector
DE19503269A1 (de) * 1995-02-02 1996-08-08 Bosch Gmbh Robert Brennstoffeinspritzventil für Brennkraftmaschinen
DE19607266A1 (de) 1995-03-29 1996-10-02 Bosch Gmbh Robert Lochscheibe, insbesondere für Einspritzventile und Verfahren zur Herstellung einer Lochscheibe
JP3579426B2 (ja) * 1995-03-29 2004-10-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 孔付き円板を製造するための方法
DE19522284B4 (de) * 1995-06-20 2007-05-10 Robert Bosch Gmbh Brennstoffeinspritzventil
DE19527626A1 (de) * 1995-07-28 1997-01-30 Bosch Gmbh Robert Brennstoffeinspritzventil
JPH1018943A (ja) * 1996-07-05 1998-01-20 Aisan Ind Co Ltd 燃料噴射弁

Also Published As

Publication number Publication date
KR20050090470A (ko) 2005-09-13
JP2000517025A (ja) 2000-12-19
KR20000068027A (ko) 2000-11-25
CN1151336C (zh) 2004-05-26
DE19724075A1 (de) 1998-12-10
EP0917624A1 (de) 1999-05-26
BR9806040A (pt) 1999-08-24
EP1355061B1 (de) 2005-06-22
CN1228139A (zh) 1999-09-08
US6168099B1 (en) 2001-01-02
KR100570911B1 (ko) 2006-04-14
DE59812885D1 (de) 2005-07-28
KR100643558B1 (ko) 2006-11-13
AU7637198A (en) 1998-12-30
EP1355061A1 (de) 2003-10-22
WO1998057060A1 (de) 1998-12-17
DE59810659D1 (de) 2004-03-04
AU735559B2 (en) 2001-07-12

Similar Documents

Publication Publication Date Title
EP0917624B1 (de) Verfahren zur herstellung einer lochscheibe für ein einspritzventil
EP0720691B1 (de) Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung
DE19726991A1 (de) Ventil und Verfahren zur Herstellung eines Ventilsitzes für ein Ventil
EP1073838B1 (de) Brennstoffeinspritzventil
EP0783628B1 (de) Brennstoffeinspritzventil
WO2001011229A1 (de) Brennstoffeinspritzventil und verfahren zur herstellung von austrittsöffnungen an ventilen
EP0718490A2 (de) Brennstoffeinspritzventil
DE19739850A1 (de) Elektromagnetisch betätigbares Ventil
DE19757117A1 (de) Verfahren zur Herstellung eines Ventilsitzkörpers für ein Brennstoffeinspritzventil und Brennstoffeinspritzventil
DE4312756A1 (de) Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
DE19815780A1 (de) Brennstoffeinspritzventil und Verfahren zur Montage eines Brennstoffeinspritzventils
EP1068441A1 (de) Elektromagnetisch betätigbares ventil und verfahren zur herstellung eines magnetmantels für ein ventil
DE19913317B4 (de) Verfahren zur Herstellung einer Düsenplatte mit einem Düsenloch, sowie Brennstoffeinspritzvorrichtung
DE602004008292T2 (de) Kraftstoffeinspritzventil mit einer lochscheibe und verfahren zur herstellung der lochscheibe durch ausschaben und stanzen
DE10108940B4 (de) Kraftstoffeinspritzer
EP0925441B1 (de) Elektromagnetisch betätigbares ventil
DE19503820C2 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung einer Führung an einem Ventil
EP1613857B1 (de) Verfahren zur herstellung und befestigung einer lochscheibe
WO1999061787A1 (de) Brennstoffeinspritzventil
DE102011056115A1 (de) Sprühdüse
DE10314672A1 (de) Verfahren zur Herstellung einer Lochscheibe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19990617

17Q First examination report despatched

Effective date: 20020411

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING A PERFORATED DISC FOR AN INJECTOR VALVE

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING A PERFORATED DISC FOR AN INJECTOR VALVE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59810659

Country of ref document: DE

Date of ref document: 20040304

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040517

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070321

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080317

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120502

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59810659

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001