EP0899022B1 - Verfahren zur Steuerung der Absauganlage einer elektrostatischen Pulverbeschichtungsanlage und elektrostatische Pulverbeschichtungsanlage - Google Patents

Verfahren zur Steuerung der Absauganlage einer elektrostatischen Pulverbeschichtungsanlage und elektrostatische Pulverbeschichtungsanlage Download PDF

Info

Publication number
EP0899022B1
EP0899022B1 EP98113601A EP98113601A EP0899022B1 EP 0899022 B1 EP0899022 B1 EP 0899022B1 EP 98113601 A EP98113601 A EP 98113601A EP 98113601 A EP98113601 A EP 98113601A EP 0899022 B1 EP0899022 B1 EP 0899022B1
Authority
EP
European Patent Office
Prior art keywords
coating
powder
mass flow
workpiece
suction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113601A
Other languages
English (en)
French (fr)
Other versions
EP0899022A1 (de
Inventor
Kurt Seitz
Markus Hasler
Horst Dr. Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wagner International AG
Original Assignee
Wagner International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wagner International AG filed Critical Wagner International AG
Publication of EP0899022A1 publication Critical patent/EP0899022A1/de
Application granted granted Critical
Publication of EP0899022B1 publication Critical patent/EP0899022B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • B05B14/48Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths specially adapted for particulate material

Definitions

  • the invention relates to a method for operating a electrostatic powder coating system according to the generic term of claim 1 and an electrostatic powder coating installation, who can work according to this procedure the preamble of claim 6.
  • a method and a corresponding device is known from US 3870375.
  • Coating booth with vertical slots in the side wall are provided. Coating guns spray through these slots the coating medium on the workpiece.
  • the workpieces to be coated can have different shapes and have sizes, e.g. B. narrow bridges, large closed areas, cavities, undercuts etc. Um the efficiency when applying the coating medium optimize, i.e. to as little coating powder as possible spraying past the workpiece, the cloud shape of a coating gun dispensed coating powder can be varied. Nevertheless, depending on the shape of the workpiece more or less coating powder not on the Impact the workpiece surface or do not stick there. The excess coating powder is a powder cloud in the coating booth, a part collects on Floor and walls of the cabin.
  • the Coating cabins usually have an extraction system.
  • the invention has for its object a method for Operate a powder coating system and a powder coating system specify where the extraction system with optimal efficiency works.
  • the invention is based on the knowledge that in modern Powder coating systems admit the powder cloud to the Shape and size of the workpiece can be adjusted, but that always a certain percentage of the coating powder will not get onto the workpiece surface or there does not stick. Starting from the whole, from everyone The amount of powder delivered to coating equipment can be the proportion of the excess powder based on experience can be estimated, and the performance of the suction system adapted to the amount of powder expected to be extracted. When it detects that powder dispensing has stopped or stopped the suction system can still be used during a continue to run for a certain delay and it then switches automatically.
  • the method according to the invention ensures that that the suction system always with the necessary suction power works to accumulate the excess Prevent coating powder in the coating booth; on the other hand, the energy requirements of the extraction system, which can be quite significant in large coating booths can, reduced to the minimum necessary because the Extraction system automatically switched off during the spray breaks will, and because they always only with the performance just necessary is working.
  • the powder coating system according to the invention has a measuring device for the powder mass flow in the or each coating device and an actuating device for the suction system.
  • the measuring device is preferably in the coating device integrated or arranged close to this.
  • facilities for measuring a powder mass flow which are suitable for the purposes of the present invention are in the DE-A-4 406 046 and DE-A-195 50 112 described on the Reference is made.
  • FIG. 1 shows an electrostatic powder coating system, in which the method according to the invention are implemented can.
  • This powder coating system is more detailed in the German patent application "control system of a coating system" the same applicant with the same filing date described. To the disclosure of this patent application and in particular the explanation of the network structure becomes a reference taken.
  • Fig. 1 there are several (five) coating modules each a digital control device 60, an injector actuator 64 and a spray gun 66 shown are connected via a gun bus 62. These coating modules form self-regulating functional units, which their respective control signals from the digital control device 60 received. Information necessary for the regulation about the control unit receives the operating state of the coating system 60 via an internal bus 80.
  • the multiple coating modules are via the internal bus 80 with each other, with a central control unit 82 and connected to other components of the system.
  • modules that can be connected to the internal bus are e.g. a hatch control module 86, a powder level control module 88, a position control module 90 and a motion control module 92.
  • the central control unit 82 supplies the powder coating system with electrical power and compressed air. Further can the entire system in this control unit Emergency shutdown.
  • the gap control module 86 is used to switch off the spray guns in the gaps between workpieces 200 or workpiece parts.
  • the powder level control module 88 monitors the Level in a powder storage container.
  • the position control module 90 controls the position of the spray guns in the z direction, i.e. the distance from spray gun 66 to workpiece 200.
  • the motion control module 92 controls vertical stroke and Speed of up and down movement of the spray guns 66 depending on the height and speed of the coating Workpiece 200.
  • a powder center is via an external bus 100 102 with a powder storage container 104, a layer thickness measuring and control device 107, 108 and a suction control 109 for an extraction system 114 for a powder recovery system 110, a parts recognition and identification device 111, a conveyor clock 112, a control device 106 for cabin cleaning and an associated one Cleaning device 116 connected.
  • the suction control 109 contains a fan control, at which the speed of a suction fan in the Extraction system 114 and thus the performance of the extraction system can be adjusted.
  • the suction control 109 receives over the buses 100, 80 from the digital control units 60 necessary information about the from the coating equipment 66 emitted powder mass flows to the suction line adjust accordingly or activate the suction system and disable.
  • the individual components configured as LON nodes are able to register themselves in the system, other system components recognize, adjust to them and with them communicate. You can see the information about each Operating conditions of the coating system they received via bus 80 or 100, evaluated automatically and use.
  • FIG. 2 shows schematically an embodiment of a coating device 66 with integrated quantity sensor 50, integrated Speed sensor 52 and integrated high-voltage cascade 58.
  • a delivery line 10 Via a delivery line 10 is the coating device 66 a set, metered powder-air flow supplied with a nozzle 46 with a baffle 48 is issued.
  • a high voltage generator which is shown schematically as a high-voltage cascade 58, a high voltage is generated and via a line 56 and an electrode (not shown) in the powder-air flow, to electrically charge the powder particles.
  • a ground line 54 for grounding the Coating device 66 shown.
  • the quantity sensor 50 and the speed sensor 52 serve to determine the powder density or powder speed in the conveyor line 10. They are below with reference to Figures 3 and 4 explained in more detail.
  • FIGS. 3a and 3b show an embodiment of a microwave resonator 36 of the powder quantity sensor for determination the amount of powder per unit volume in the delivery line 10.
  • the delivery line is not electrically conductive, it will from the powder-air flow in the direction of the arrows in FIG. 3a flows through.
  • the resonator 36 has shielding against interference fields a metal cylinder 38 to which an RF input 40 and a RF output 42 for coupling microwaves or for taking off the resonator voltage are provided.
  • the resonator 44 is in the form of a Helix or coil, which is wound around the delivery line 10 is. This resonator takes up very little space, so that it can be integrated directly into the spray gun 66 can. With the helical resonator, a very precisely defined resonance and thus achieve a high quality.
  • the helix resonator can e.g. as a thin film metal layer 44 are evaporated onto the delivery line 10, or a wire helix can be used.
  • the resonance frequency of the resonator is measured and his goodness. These sizes are from the dielectric constant and the absorption (the loss factor) in the Resonance range dependent. The changes in the dielectric constant and the absorption are proportional to the change the amount of powder in the resonance range or resonance volume. It follows that a change in the amount of powder in Resonance volume for a shift in the resonance frequency and leads to a change in goodness. By measuring the Resonance frequency or the quality, can thus directly on the Powder quantity in the resonance volume can be inferred. The Method for determining the powder mass in the resonance volume is with further details in DE-A-44 06 046 and DE-A-196 50 112.
  • Figure 4 shows schematically the structure of the speed measuring device.
  • On the delivery line 10 are at a distance D two measuring electrodes 12, 14 attached, which over Signal lines 16, 18 and an amplifier 20 connected are.
  • the outputs 22, 24 of the amplifier 20 are with a Measured value evaluation device 26 connected.
  • the measuring electrodes consist of 12, 14 of copper rings around the delivery line 10 are laid around.
  • the signal line 16, 18 and the amplifier 20 are grounded Shields 30, 32 and 34 respectively.
  • the powder particles of the transported through the plastic line 10 Powder-air flow is charged by friction electrostatically with the plastic tubing. These charges influence, or induce, in the measuring electrodes 12, 14 voltages applied to the measuring amplifier 20 be directed.
  • the speed measurement method is in more detail described in DE-A-44 06 046.
  • the amount sensor 50 and the Speed sensor 52 can thus the amount of powder and the powder speed can be determined to the total powder mass flow to determine who is at any time from is delivered to all coating equipment.
  • the method according to the invention proceeds as follows.
  • a Workpiece 200 passes through the coating booth 120 and the Coating guns 66 coating powder to the workpiece release, the powder mass flow of each coating device continuously captures and this information is via the respective control units 60 on the bus 80 other modules of the system.
  • the information over the whole of all coating equipment dispensed powder mass flow is therefore at the entrance at any time the suction control 109 is available so that this Set the suction power of the suction system 114 accordingly can.
  • the suction control also use this information to control the Extraction system to the expected amount of excess Adjust powder.
  • the suction control 109 switches the suction system 114 does not stop immediately, but leaves it still during an adjustable run-on time to continue working around the powder cloud, which is formed in the coating booth 21 has to aspirate as completely as possible.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer elektrostatischen Pulverbeschichtungsanlage gemäß dem Oberbegriff von Anspruch 1 und eine elektrostatische Pulverbeschichtungsanlage, die nach diesem Verfahren arbeiten kann gemäß dem Oberbegriff des Anspruchs 6. Ein derartiges Verfahren und eine entsprechende Vorrichtung ist aus US 3870375 bekannt.
Bei den üblichen elektrostatischen Pulverbeschichtungsanlagen läuft ein Werkstück in horizontaler Richtung durch eine Beschichtungskabine, in deren Seitenwand vertikale Schlitze vorgesehen sind. Durch diese Schlitze sprühen Beschichtungspistolen das Beschichtungsmedium auf das Werkstück.
Die zu beschichtenden Werkstücke können verschiedene Formen und Größen haben, sie haben z. B. schmale Stege, große geschlossene Flächen, Hohlräumen, Hinterschneidungen etc. Um den Wirkungsgrad beim Auftragen des Beschichtungsmediums zu optimieren, d.h. um möglichst wenig Beschichtungspulver an dem Werkstück vorbeizusprühen, kann die Wolkenform des von einer Beschichtungspistole abgegebenen Beschichtungspulvers variiert werden. Gleichwohl wird je nach Gestalt des Werkstückes mehr oder weniger Beschichtungspulver nicht auf die Werkstückoberfläche auftreffen bzw. nicht dort haften bleiben. Das überschüssige Beschichtungspulver steht als Pulverwolke in der Beschichtunskabine, ein Teil sammelt sich am Boden und den Wänden der Kabine an.
Um das überschüssige Beschichtungspulver zu entfernen und die Pulveransammlung weitgehend zu vermeiden, weisen die Beschichtungskabinen üblicherweise eine Absauganlage auf.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Pulverbeschichtungsanlage und eine Pulverbeschichtungsanlage anzugeben, bei denen die Absauganlage mit optimalem Wirkungsgrad arbeitet.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch 1 sowie eine Pulverbeschichtungsanlage mit den Merkmalen von Anspruch 6 gelöst.
Der Erfindung liegt die Erkenntnis zugrunde, daß bei modernen Pulverbeschichtungsanlagen die Pulverwolke zwar an die Form und Größe des Werkstücks angepaßt werden kann, daß aber immer ein gewissen Prozentsatz des Beschichtungspulvers nicht auf die Werkstückoberfläche gelangen wird bzw. dort nicht haften bleibt. Ausgehend von der gesamten, von allen Beschichtungsgeräten abgegebenen Pulvermenge kann der Anteil des überschüssigen Pulvers aufgrund von Erfahrungswerten abgeschätzt werden, und die Leistung der Absauganlage wird an die voraussichtlich abzusaugende Pulvermenge angepaßt. Wenn erkannt wird, daß die Pulverabgabe beendet oder unterbrochen wurde, kann die Absauganlage noch während einer gewissen Nachlaufzeit weiter laufen und sie schaltet danach automatisch ab.
Durch das erfindungsgemäße Verfahren wird einerseits sichergestellt, daß die Absauganlage immer mit der nötigen Saugleistung arbeitet, um eine Ansammlung des überschüssigen Beschichtungspulvers in der Beschichtungskabine zu verhindern; andererseits wird der Energiebedarf der Absauganlage, der bei großen Beschichtungskabinen ganz erheblich sein kann, auf das minimal notwendige Maß reduziert, weil die Absauganlage in den Sprühpausen automatisch abgeschaltet wird, und weil sie immer nur mit der gerade notwendigen Leistung arbeitet.
Die Pulverbeschichtungsanlage gemäß der Erfindung weist eine Meßeinrichtung für dem Pulvermassenstrom in dem oder jedem Beschichtungsgerät und eine Stelleinrichtung für die Absauganlage auf.
Die Meßeinrichtung ist vorzugsweise in das Beschichtungsgerät integriert oder nahe bei diesem angeordnet. Einrichtungen zum Messen eines Pulvermassenstroms, die sich für die Zwecke der vorliegenden Erfindung eignen, sind in der DE-A-4 406 046 und der DE-A-195 50 112 beschrieben, auf die Bezug genommen wird.
Die Erfindung ist im folgenden anhand eines bevorzugten Ausführungsbeispiels mit Bezug auf die Zeichnungen näher erläutert. In den Figuren zeigt:
Figur 1
eine elektrostatische Pulverbeschichtungsanlagemäß der Erfindung;
Figur 2
zeigt ein Beschichtungsgerät mit integriertem Mengensensor und Geschwindigkeitssensor für die Pulverbeschichtungsanlage der Figur 1;
Figuren 3a und 3b
zeigen eine Außenansicht bzw. eine schematische Teilschnittdarstellung eines Mikrowellenresonators des Mengensensors der Figur 2;
Figur 4
zeigt eine detailiertere Darstellung des Geschwindigkeitssensors der Figur 2;
Figur 1 zeigt eine elektrostatische Pulverbeschichtungsanlage, bei der das erfindungsgemäße Verfahren umgesetzt werden kann. Diese Pulverbeschichtungsanlage ist ausführlicher in der deutschen Patentanmeldung "Steuersystem einer Beschichtungsanlage" derselben Anmelderin mit demselben Anmeldetag beschrieben. Auf die Offenbarung dieser Patentanmeldung und insbesondere die Erläuterung der Netzwerkstruktur wird Bezug genommen.
In Fig. 1 sind mehrere (fünf) Beschichtungsmodule aus jeweils einem digitalen Steuergerät 60, einer Injektor-Stelleinrichtung 64 und einer Sprühpistole 66 dargestellt, die über eine Pistolenbus 62 verbunden sind. Diese Beschichtungsmodule bilden selbstregelnde Funktionseinheiten, welche ihre jeweiligen Steuersignale von dem digitalen Steuergerät 60 erhalten. Für die Regelung notwendige Informationen über den Betriebszustand der Beschichtungsanlage erhält das Steuergerät 60 über einen internen Bus 80.
Über den internen Bus 80 sind die mehreren Beschichtungsmodule miteinander, mit einer zentralen Steuereinheit 82 sowie mit weiteren Komponenten des Systems verbunden. Zusätzliche, an den internen Bus anschließbaren Module sind z.B. ein Lükkensteuermodul 86, ein Pulverpegelsteuermodul 88, ein Positionssteuermodul 90 und ein Bewegungssteuermodul 92.
Der interne Bus 80 ist ebenso wie der Pistolenbus 62 vorzugsweise ein LON-Bus, die digitale Steuereinheiten 62 und die Module sind als LON-Netzwerkknoten konfiguriert und besitzen eine LON-Schnittstelle für die Verbindung mit dem LON-Bus (LON = local area network).
Die zentrale Steuereinheit 82 versorgt die Pulverbeschichtungsanlage mit elektrischer Leistung und Druckluft. Ferner läßt sich über diese Steuereinheit die gesamte Anlage im Störfalle notabschalten.
Das Lückensteuermodul 86 dient zum Ausschalten der Sprühpistolen in den Lücken zwischen Werkstücken 200 oder Werkstückteilen. Das Pulverpegelsteuermodul 88 überwacht den Pegelstand in einem Pulvervorratsbehälter. Das Positionssteuermodul 90 steuert die Position der Sprühpistolen in z-Richtung, d.h. den Abstand von Sprühpistole 66 zu Werkstück 200. Das Bewegungssteuermodul 92 steuert Vertikalhub und Geschwindigkeit der Auf- und Abwärtsbewegung der Sprühpistolen 66 abhängig von der Höhe und Geschwindigkeit des zu beschichtenden Werkstücks 200.
Weiterhin sind über einen externen Bus 100 ein Pulverzentrum 102 mit einem Pulvervorratsbehälter 104, eine Schichtdickenmeß- und Regeleinrichtung 107, 108 und eine Absaugsteuerung 109 für eine Absauganlage 114 für ein Pulverrückgewinnungssystem 110, eine Teileerkennungs- und Identifikationseinrichtung 111, ein Fördertaktgeber 112, eine Steuereinrichtung 106 für die Kabinenreinigung und eine zugehörige Reinigungseinrichtung 116 angeschlossen.
Die Absaugsteuerung 109 enthält eine Ventilatoransteuerung, mit der die Geschwindigkeit eines Absaugventilators in der Absauganlage 114 und somit die Leistung der Absauganlage eingestellt werden kann. Die Absaugsteuerung 109 erhält über die Busse 100, 80 von den digitalen Steuergeräten 60 die notwendige Information über die von den Beschichtungsgeräten 66 abgegebenen Pulvermassenströme, um die Absaugleitung entsprechend einzustellen bzw. die Absauganlage zu aktivieren und zu deaktivieren.
Die einzelnen Komponenten, die als LON-Knoten konfiguriert sind, können sich im System selbst anmelden, andere Systemkomponenten erkennen, sich auf diese einstellen und mit diesen kommunizieren. Sie können die Information über die jeweiligen Betriebszustände der Beschichtungsanlage, die sie über den Bus 80 oder 100 erhalten, selbsttätig auswerten und nutzen.
Figur 2 zeigt schematisch eine Ausführungsform eines Beschichtungsgerätes 66 mit integriertem Mengensensor 50, integriertem Geschwindigkeitssensor 52 und integrierter Hochspannungskaskade 58. Über eine Förderleitung 10 wird dem Beschichtungsgerät 66 ein eingestellter, dosierter Pulver-Luft-Strom zugeführt, der bei einer Düse 46 mit einem Prallkörper 48 ausgegeben wird. In einem Hochspannungserzeuger, der schematisch als Hochspannungskaskade 58 dargestellt ist, wird eine Hochspannung erzeugt und über eine Leitung 56 und eine Elektrode (nicht gezeigt) in den Pulver-Luft-Strom geführt, um die Pulverteilchen elektrisch aufzuladen. Ebenfalls in Figur 2 ist eine Masseleitung 54 für die Erdung des Beschichtungsgerätes 66 gezeigt.
Der Mengensensor 50 und der Geschwindigkeitssensor 52 dienen zur Bestimmung der Pulverdichte bzw. der Pulvergeschwindigkeit in der Förderleitung 10. Sie sind unten mit Bezug auf die Figuren 3 und 4 näher erläutert.
Die Figuren 3a und 3b zeigen eine Ausführungsform eines Mikrowellenresonators 36 des Pulvermengensensors zur Bestimmung der Pulvermenge pro Volumeneinheit in der Förderleitung 10. Die Förderleitung ist elektrisch nicht leitend, sie wird von dem Pulver-Luft-Strom in Richtung der Pfeile in Figur 3a durchströmt.
Der Resonator 36 hat für die Abschirmung gegen Störfelder einen Metallzylinder 38, an dem ein HF-Eingang 40 und ein HF-Ausgang 42 zur Einkopplung von Mikrowellen bzw. zum Abnehmen der Resonatorspannung vorgesehen sind. Im Inneren des Abschirmzylinders 38 liegt der Resonator 44 in Form einer Helix oder Spule, welche um die Förderleitung 10 gewickelt ist. Dieser Resonator hat einen sehr geringen Platzbedarf, so daß er direkt in die Sprühpistole 66 integriert werden kann. Mit dem helixförmigen Resonator läßt sich eine sehr genau abgegrenzte Resonanz und somit eine hohe Güte erzielen. Der Helix-Resonator kann z.B. als Dünnfilm-Metallschicht 44 auf die Förderleitung 10 aufgedampft werden, oder es kann eine Drahthelix verwendet werden.
Ein Teil des vom Resonator erzeugten Mikrowellenfeldes dringt durch die Wand der Förderleitung 10 in das Pulver-Luft-Gemisch. Gemessen werden die Resonanzfrequenz des Resonators und seine Güte. Diese Größen sind von der Dielektrizitätskonstante und der Absorption (dem Verlustfaktor) im Resonanzbereich abhängig. Die Änderungen der Dielekrizitätskonstante und der Absorption sind proportional zur Änderung der Pulvermenge im Resonanzbereich oder Resonanzvolumen. Daraus ergibt sich, daß eine Änderung der Pulvermenge im Resonanzvolumen zur einer Verschiebung der Resonanzfrequenz und zu einer Veränderung der Güte führt. Durch Messen der Resonanzfrequenz bzw. der Güte, kann somit direkt auf die Pulvermenge im Resonanzvolumen zurückgeschlossen werden. Das Verfahren zum Bestimmen der Pulvermasse im Resonanzvolumen ist mit weiteren Einzelheiten in der DE-A-44 06 046 und der DE-A-196 50 112 beschrieben.
Figur 4 zeigt schematisch den Aufbau der Geschwindigkeitsmeßvorrichtung. An der Förderleitung 10 sind mit einem Abstand D zwei Meßelektroden 12, 14 angebracht, welche über Signalleitungen 16, 18 und einen Verstärker 20 verbunden sind. Die Ausgänge 22, 24 des Verstärkers 20 sind mit einer Meßwert-Auswertungsvorrichtung 26 verbunden. Die Meßelektroden bestehen 12, 14 aus Kupferringen, die um die Förderleitung 10 herumgelegt sind. Ferner ist im Meßbereich eine geerdete Abschirmung 48 um die Förderleitung 10 gelegt. Auch die Signalleitung 16, 18 und der Verstärker 20 weisen geerdete Abschirmungen 30, 32 bzw. 34 auf.
Die Pulverpartikel des durch die Kunststoffleitung 10 transportierten Pulver-Luft-Stromes laden sich durch die Reibung mit dem Kunststoff-Schlauchmaterial elektrostatisch auf. Diese Ladungen influenzieren, oder induzieren, in den Meßelektroden 12, 14 Spannungen, die an den Meßverstärker 20 geleitet werden. Der Verstärker mißt und verstärkt die bei den beiden Elektroden 12, 14 erzeugten Influenzspannungen. Der Verlauf dieser zwei Signale stimmt weitgehend überein (Korrelation). Da die Signalverläufe weitgehend übereinstimmen, ist eine eindeutige Bestimmung der Zeitspannen zwischen zwei entsprechenden Signalspitzen möglich, so daß aus der zeitlichen Verzögerung Δt zwischen zwei Signalspitzen und dem Abstand D zwischen den Meßelektroden die Geschwindigkeit v der Pulverpartikel in der Förderleitung 10 berechenbar ist: v = D/Δt.
Das Geschwindigkeitsmeßverfahren ist mit weiteren Einzelheiten in der DE-A-44 06 046 beschrieben.
Mit Hilfe des oben beschriebenen Mengensensors 50 und des Geschwindigkeitssensors 52 können somit die Pulvermenge und die Pulvergeschwindigkeit bestimmt werden, um den Gesamt-Pulvermassenstrom zu ermittlen, der zu jedem Zeitpunkt von allen Beschichtungsgeräten abgegeben wird.
Das erfindungsgemäße Verfahren läuft wie folgt ab. Wenn ein Werkstück 200 die Beschichtungskabine 120 durchläuft und die Beschichtungspistolen 66 Beschichtungspulver an das Werkstück abgeben, wird der Pulvermassenstrom jedes Beschichtungsgerätes kontinuierliche erfaßt, und diese Information wird über die jeweiligen Steuergeräte 60 auf dem Bus 80 den übrigen Modulen des Systems zur Verfügung gestellt. Die Information über den gesamten von allen Beschichtungsgeräten abgegebenen Pulvermassenstrom steht somit jederzeit am Eingang der Absaugsteuerung 109 zur Verfügung, so daß diese die Absaugleistung der Absauganlage 114 entsprechend einstellen kann. Da bei einem vollautomatisierten System, bei dem die vorliegende Erfindung vorzugsweise eingesetzt wird, auch zu jeder Zeit die Größe und Gestalt des zu beschichtenden Werkstücks 200 sowie die Fördergeschwindigkeit bekannt ist, kann die Absaugsteuerung auch diese Informationen nutzen, um die Absauganlage auf die zu erwartende Menge des überschüssigen Pulvers einzustellen. Wenn nun in Werkstücklücken oder am Ende eines Beschichtungsvorgangs kein Pulvermassenstrom mehr erfaßt wird, schaltet die Absaugsteuerung 109 die Absauganlage 114 nicht sofort ab, sondern läßt diese noch während einer einstellbaren Nachlaufzeit weiterarbeiten, um die Pulverwolke, welche sich in der Beschichtungskabine 21 gebildet hat, möglichst vollständig abzusaugen.
Die in der vorstehenden Beschreibung, den Ansprüchen und der Zeichnung offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.

Claims (11)

  1. Verfahren zum Betreiben einer elektrostatischen Pulverbeschichtungsanlage mit mindestens einem Beschichtungsgerät (66), einer Be-schichtungskabine (120) und einer Absauganlage (109, 114) in der Beschichtungskabine, bei dem
    ein Werkstück (200) durch die Beschichtungskabine geführt wird, Beschichtungspulver von dem Beschichtungsgerät (66) an das Werkstück abgegeben wird und überschüssiges Beschichtungspulver aus der Beschichtungskabine (120) abgesaugt wird, dadurch gekennzeichnet, daß der Pulvermassenstrom des von dem oder jedem Beschichtungsgerät (66) abgegebenen Beschichtungspulvers ermittelt wird und abhängig von dem Pulvermassenstrom die Absauganlage (109, 114) gesteuert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Geschwindigkeit und die Dichte des abgegebenen Beschichtungspulvers in dem oder jedem Beschichtungsgerät (66) gemessen und daraus der Gesamt-Pulvermassenstrom berechnet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Leistung der Absauganlage (109, 114) an die Größe des Gesamt-Pulvermassenstrom des oder der Beschichtungsgeräte(s) (66) angepaßt wird.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Absauganlage (109, 114) aktiviert wird, wenn erkannt wird, daß das oder die Beschichtungsgerät(e) (66) Beschichtungspulver abgeben, und deaktiviert wird, wenn kein Beschichtungspulver abgegeben wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Absauganlage (109, 114) nach eine Verzögerungszeit deaktiviert wird.
  6. Elektrostatische Pulverbeschichtungsanlage mit mindestens einem Beschichtungsgerät (66) zum Abgeben eines elektrostatisch geladenen Beschichtungspulvers an ein Werkstück (200), einer Beschichtungskabine (120), durch die das Werkstück geführt wird, und einer Absauganlage (109, 114) zum Absaugen von überschüssigem Beschichtungspulver aus der Beschichtungskabine, gekennzeichnet durch eine Meßeinrichtung (50, 52) zum Ermitteln des Pulvermassenstrom des von dem oder jedem Beschichtungsgerät abgegebenen Beschichtungspulvers und eine Stelleinrichtung (109) zum Einstellen der Absauganlage abhängig von dem Pulvermassenstrom.
  7. Pulverbeschichtungsanlage nach Anspruch 6, dadurch gekennzeichnet, daß die Meßeinrichtung eine Geschwindigkeitsmeßvorrichtung (52) und eine Massenmeßvorrichtung (50) in dem oder jedem Beschichtungsgerät aufweist.
  8. Pulverbeschichtungsanlage nach einem der Ansprüche 6 oder 7 dadurch gekennzeichnet, daß die Stelleinrichtung die Leistung der Absauganlage (109, 114) als Funktion des Gesamt-Pulvermassenstroms des oder der Beschichtungsgeräte(s) (66) einstellt.
  9. Pulverbeschichtungsanlage nach Anspruch 6, dadurch gekennzeichnet, daß mehrere Beschichtungsgeräte (66) vorhanden sind, die jeweils über einen Pistolenbus (62) mit ihrem zugeordneten digitalen Steuergerät (60) verbunden sind und einen Netzwerk-Knoten bilden, und daß die digitalen Steuergeräte (60) über einen Beschichtungsbus (80) mit weiteren Komponenten der Beschichtungsanlage verbunden sind.
  10. Pulverbeschichtungsanlage nach Anspruch 6, dadurch gekennzeichnet, daß die Stelleinrichtung als ein Netzwerk-Knoten ausgebildet ist.
  11. Pulverbeschichtungsanlage nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Netzwerk-Knoten LON-Knoten sind.
EP98113601A 1997-09-01 1998-07-21 Verfahren zur Steuerung der Absauganlage einer elektrostatischen Pulverbeschichtungsanlage und elektrostatische Pulverbeschichtungsanlage Expired - Lifetime EP0899022B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19738097 1997-09-01
DE19738097A DE19738097C2 (de) 1997-09-01 1997-09-01 Verfahren zum Betreiben einer elektrostatischen Pulverbeschichtungsanlage und elektrostatische Pulverbeschichtungsanlage

Publications (2)

Publication Number Publication Date
EP0899022A1 EP0899022A1 (de) 1999-03-03
EP0899022B1 true EP0899022B1 (de) 2003-09-24

Family

ID=7840815

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113601A Expired - Lifetime EP0899022B1 (de) 1997-09-01 1998-07-21 Verfahren zur Steuerung der Absauganlage einer elektrostatischen Pulverbeschichtungsanlage und elektrostatische Pulverbeschichtungsanlage

Country Status (4)

Country Link
US (1) US6071348A (de)
EP (1) EP0899022B1 (de)
JP (1) JPH11128783A (de)
DE (2) DE19738097C2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005159B2 (en) * 2001-04-02 2006-02-28 Abb Inc. Method of operating powder paint applicator
US6589342B2 (en) 2001-04-02 2003-07-08 Abb Automation Inc. Powder paint color changer
DE10213275C1 (de) * 2002-03-25 2003-12-24 Wagner Ag Altstaetten J Injektor für eine Pulverbeschichtungsanlage
JP4106948B2 (ja) * 2002-03-29 2008-06-25 東京エレクトロン株式会社 被処理体の跳上り検出装置、被処理体の跳上り検出方法、プラズマ処理装置及びプラズマ処理方法
US6755339B2 (en) 2002-06-21 2004-06-29 Delphi Technologies, Inc. Fluxing apparatus for applying powdered flux
DE10309143B4 (de) 2003-02-28 2007-10-11 Eisenmann Lacktechnik Gmbh & Co. Kg Sensoreinrichtung an einer unter hoher Spannung stehenden Förderleitung
WO2006133551A1 (en) * 2005-06-15 2006-12-21 Noveo Technologies Inc. Variable exhaust control for spray booths
DE202010001169U1 (de) * 2010-01-19 2010-04-08 Pilz, Thomas Belüftungsvorrichtung für Spritzlackieranlagen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870375A (en) * 1971-11-02 1975-03-11 Nordson Corp Powder spray system
US4002143A (en) * 1975-09-08 1977-01-11 Indian Head Inc. Hot end glass container coating system
DE3014114C2 (de) * 1980-04-12 1982-04-29 Gema AG Apparatebau, 9015 St. Gallen Einrichtung zum automatischen Beschichten von Gegenständen mit einer Spritzvorrichtung
US4324812A (en) * 1980-05-29 1982-04-13 Ransburg Corporation Method for controlling the flow of coating material
JPS59109268A (ja) * 1982-12-15 1984-06-23 Asahi Okuma Ind Co Ltd 静電塗装機
DE3722537A1 (de) * 1987-07-08 1989-01-19 Brennenstuhl Kg Hugo Absaugvorrichtung fuer farbspritzraeume
DE3822835A1 (de) * 1988-07-06 1990-03-08 Josef Schucker Verfahren und anordnung zum lackieren von werkstueckoberflaechen
US4987001A (en) * 1989-02-09 1991-01-22 Nordson Corporation Method and apparatus for coating the interior surface of hollow, tubular articles
US5244499A (en) * 1992-06-19 1993-09-14 Russell Mazakas Powdered paint recovery tent for vertical extrusions
DE4232026C2 (de) * 1992-09-24 1996-10-24 Wagner Int Elektrostatische Beschichtungspistole und Verfahren zum Erzeugen einer Hochspannung
DE4406046C2 (de) * 1994-02-24 1997-11-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
US5505763A (en) * 1994-10-07 1996-04-09 Nordson Corporation System and method for controlling air flow through a powder coating booth
DE19502390C2 (de) * 1995-01-26 1997-09-25 S & S Metallsuchgeraete & Recy Verfahren und Vorrichtung zum Auftragen von Schmierstoffen auf Bandmaterial
US5739429A (en) * 1995-07-13 1998-04-14 Nordson Corporation Powder coating system incorporating improved method and apparatus for monitoring flow rate of entrained particulate flow
DE19650112C1 (de) * 1996-12-03 1998-05-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes

Also Published As

Publication number Publication date
DE19738097C2 (de) 2000-01-27
EP0899022A1 (de) 1999-03-03
JPH11128783A (ja) 1999-05-18
DE19738097A1 (de) 1999-03-04
US6071348A (en) 2000-06-06
DE59809700D1 (de) 2003-10-30

Similar Documents

Publication Publication Date Title
DE2425941A1 (de) Fliessband-lackieranlage zum lackieren einer serie von werkstuecken mit einem pulver
EP0899019B1 (de) Verfahren zum werkstückabhängigen Steuern eines elektrostatischen Beschichtungsgerätes und elektrostatische Beschichtungsanlage
EP0899022B1 (de) Verfahren zur Steuerung der Absauganlage einer elektrostatischen Pulverbeschichtungsanlage und elektrostatische Pulverbeschichtungsanlage
EP0899020B1 (de) Verfahren zur Erkennung von Werkstücken in einer elektrostatischen Beschichtungsanlage und eine elektrostatische Beschichtungsanlage
EP0297520A2 (de) Verfahren und Vorrichtung zum Lackieren von Werkstücken mit elektrisch isolierender Oberfläche durch elektrostatischen Auftrag bzw. Spritzauftrag
DE2234026B2 (de) Verfahren zum verhindern des verstopfens von duesen in elektrostatischen beschichtungsanlagen
EP0283936B1 (de) Verfahren zur Betriebssteuerung einer elektrostatischen Beschichtungsanlage
DE19717353A1 (de) Pulverbeschichtungsanlage
EP2637799B1 (de) Verfahren zum elektrostatischen beschichten von gegenständen sowie applikationsvorrichtung
DE19502404C2 (de) Harzbeschichteter Befestiger sowie Vorrichtung und Verfahren zu dessen Herstellung
DE19748376A1 (de) Verfahren und Vorrichtung zum Pulver-Sprühbeschichten
DE102004010177B4 (de) Elektrostatische Fluidisierungsvorrichtung und elektrostatisches Fluidisierungsverfahren zur Beschichtung von Substraten mit Beschichtungspulver
WO1998007568A1 (de) Vorrichtung zum bestäuben bewegter gegenstände, insbesondere bedruckter papierbögen
DE102008047713B4 (de) Verfahren und Vorrichtung zum Aufbringen von Puder auf einen bedruckten Bogen oder eine bedruckte Bahn
DE19520498A1 (de) Reinigungsverfahren und Reinigungsvorrichtung für Beschichtungspulver
WO2004101164A1 (de) Beschichtungsverfahren sowie pulverdüse und beschichtungskabine
DE2839897A1 (de) Anlage zum elektrostatischen aufbringen von festen teilchen aus dielektrischem beschichtungsmaterial
EP2664388A2 (de) Vorrichtung zum Abscheiden von Overspray sowie Anlage mit einer solchen
CH617871A5 (en) Electrostatic powder-coating system
EP0791400B1 (de) Verfahren und Vorrichtung zum Aufbringen einer Beschichtung auf einen Gegenstand
EP0634225B1 (de) Vorrichtung zum Entladen der Wände einer Kunststoffkabine
DE10317919B4 (de) Vorrichtung und Verfahren zur Beschichtung eines Substrates mit einem flüssigen oder partikulären Beschichtungsmaterial
DE102004033168A1 (de) Elektrostatisches Lackiergerät und Lackierverfahren zur Spritzlackierung mittels elektrostatisch aufgeladenem Flüssiglack unter Nutzung einer Betriebsluftionisierung
DE1752730A1 (de) Elektrostatische UEberzugsvorrichtung
DE2531634C2 (de) Verfahren und Vorrichtung zum Aufsprühen eines Überzugs auf einen Gegenstand unter Zuhilfenahme elektrostatischer Anziehungskräfte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990804

AKX Designation fees paid

Free format text: CH DE FR GB IT LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030924

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030924

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59809700

Country of ref document: DE

Date of ref document: 20031030

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTERPAT LAW AG

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030924

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

26N No opposition filed

Effective date: 20040625

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050721