EP0899020B1 - Verfahren zur Erkennung von Werkstücken in einer elektrostatischen Beschichtungsanlage und eine elektrostatische Beschichtungsanlage - Google Patents

Verfahren zur Erkennung von Werkstücken in einer elektrostatischen Beschichtungsanlage und eine elektrostatische Beschichtungsanlage Download PDF

Info

Publication number
EP0899020B1
EP0899020B1 EP98113602A EP98113602A EP0899020B1 EP 0899020 B1 EP0899020 B1 EP 0899020B1 EP 98113602 A EP98113602 A EP 98113602A EP 98113602 A EP98113602 A EP 98113602A EP 0899020 B1 EP0899020 B1 EP 0899020B1
Authority
EP
European Patent Office
Prior art keywords
coating
workpiece
spray
current
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113602A
Other languages
English (en)
French (fr)
Other versions
EP0899020A1 (de
Inventor
Kurt Seitz
Markus Hasler
Horst Dr. Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wagner International AG
Original Assignee
Wagner International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wagner International AG filed Critical Wagner International AG
Publication of EP0899020A1 publication Critical patent/EP0899020A1/de
Application granted granted Critical
Publication of EP0899020B1 publication Critical patent/EP0899020B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0531Power generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target

Definitions

  • the invention relates to a method for recognizing Workpieces in an electrostatic coating system and an electrostatic coating system in which this procedure can be used.
  • the current status of the sensors (e.g. funding cycle of the Workpiece, fill level of the storage container etc.) become cyclical captured by the central unit, the necessary reactions the associated actuators are calculated, and corresponding control commands are sent to the actuators forwarded.
  • the workpiece To ensure an even and sufficient coating thickness the workpiece and to ensure the efficiency of powder application to optimize the vertical stroke of the coating equipment as well as controlled powder delivery. additionally becomes the distance between the coating device and the workpiece set in the spray direction to avoid that if the distance is too short, blow off the powder again will or electrostatic craters form or that in the opposite case, the efficiency of the powder coating deteriorates and e.g. the penetration into cavities decreases.
  • Parts recognition is used, for example, in paint shops Realization of a gap control used. Thereby in Workpiece gaps the promotion and thus the application of Powder paint or wet paint interrupted. This reduces the consumption of coating materials, the amount of waste Wet coatings and the recirculated portion of powder coatings.
  • the basic structure of a gap control of the stand the technique is shown in Figure 9.
  • a workpiece conveyor 902 transports workpieces 904 through a coating booth 901 in the shown Direction.
  • a Device for recognizing a workpiece 904 is required. This consists of a light barrier 906 or 906 ', 908, where light is sent from light transmitter 906 or 906 'and from Receiver 908 is received and corresponding signals be forwarded to a controller 912.
  • the light barrier is primarily outside the coating booth 901.
  • the controller 912 needs an additional one Signal proportional to the speed of the conveyor Is 902.
  • This signal now comes directly from one Conveyor system control 915, or it comes with a special Device 913 for measuring the conveying speed determined.
  • This speed measuring device generates a signal proportional to the conveying speed and conducts it to the controller 912.
  • the controller 912 determines from the Speed information and the signal from the light barrier 806, 908 the time it takes the workpiece 904 to get to sprayer 905.
  • the light barrier 906, 908 "informs" the controller 912 also from the end of a workpiece. Now you have one Means the insertion of a workpiece 904 into the Detects cabin 901, determines its length and delays it, depending on the speed of the conveyor 902, the material feed 910, 911 can switch on and off.
  • the coating devices are in the state Technology further a position control device and Movement control device provided, which is also the information about the start, end and speed of the workpiece need.
  • the position control device controls the Distances of the coating devices to the workpieces.
  • the Motion control device controls the vertical stroke of the coating devices.
  • the coating system requires a great deal of computing effort, coordinated with the several coating devices so on and off, up and down as well as before and to move back that optimal coating result is obtained.
  • the U.S. Patent 4,324,812 describes a powder coating installation in which the spray stream is detected in order depending on the spray flow, the powder mass flow to a coating workpiece is given to control.
  • the patent is based on the knowledge that that smaller areas to be coated concentrate the electric field, so that a higher electricity is drawn while larger areas draw less electricity. It follows, that smaller areas are coated more than larger areas. To counteract this is in the U.S. Patent provided that with a decrease in the spray flow the powder mass flow is increased, while with an increase in the spray flow the Powder mass flow is reduced. A method or device for parts recognition and identification is not described in this document.
  • the invention has for its object a method for Detection of a workpiece in an electrostatic coating system and to specify a new coating system, where the hardware and software expenditure for the Part recognition and identification reduced and control can be simplified.
  • the invention takes advantage of the fact that in an electrostatic Coating device a high voltage electrode or spray electrode, electrostatic charges to the environment emits an electrical spray current from the Generate high voltage electrode through the air to earth, and regardless of whether at the same time by the coating device delivered a coating material to the workpiece will or not. If an electrically conductive, grounded Workpiece passed in front of the coating device the electrical spray current flows from the high voltage electrode through the workpiece to earth.
  • Spray flow As the workpiece approaches the spray gun, it increases Spray flow continuously (see Figure 2). Is located now the spray electrode at the same height as the workpiece, the spray flow changes only insignificantly. The Increasing the spray current is used for part recognition. Measurements have shown that the total current of the through the electrode flows mostly from the distance between Spray electrode and workpiece is determined, as well as by the set high voltage.
  • the measurement of the spray current can therefore be used as a means of detection of a workpiece used in front of the coating device become. According to the invention, depending on the size of the Spray current controlled the operation of the coating device.
  • optical workpiece recognition that is customary in the prior art can be completely omitted.
  • the new method for parts recognition according to the invention enables e.g. a gap control much easier too realize than in the state of the art by directly on site, a workpiece is recognized on the coating gun and depending on the presence of a workpiece and release of the coating material is activated. With the new system there is no external "gap control" needed.
  • this distance should be constant his. However, since there are many workpieces with it lengthways changing contours, and the spray gun one The vertical stroke passes, the distance changes. Dependent the distance can now be measured from the measured spray current between the workpiece and the coating device in the spray direction determined and kept constant.
  • the parts recognition can also be used to determine the speed of a workpiece can be used. Because in practice usually three and more guns in a row horizontally the same distance, the conveying speed be derived. Because once chosen Constant speed over a longer period of time remains, can be relatively imprecise from several successive Measurements by statistical methods the conveyor speed can be calculated more precisely.
  • the speed information can then be used for control and Synchronization of the vertical stroke of the coating devices be used.
  • the invention creates with the method for the detection of Workpieces using the spray currents of the electrostatic Coating equipment a reliable, fast and inexpensive Means for the registration and identification of the coating workpieces, which are those in the prior art usual part recognition and identification devices can completely replace. Furthermore, the invention has the Advantage that the presence of a workpiece in front of each Coating devices running during operation can be checked and not, as in the prior art, only on the basis of a single measurement when the Workpiece in the coating booth is predicted. at an unscheduled standstill of workpiece conveying thereby e.g. the powder supply can be blocked immediately.
  • the invention enables extensive decentralization the coating system because every coating device independently recognizes whether a workpiece is available, and depending on the spray flow its powder delivery and its Can control the distance to the workpiece.
  • FIG. 1 shows a powder coating system according to the invention.
  • This powder coating system is more detailed in the German patent application "control system of a coating system" the same applicant, with the same filing date described. To the disclosure of this patent application and in particular the explanation of the network structure there reference is expressly made.
  • Fig. 1 there are several (five) coating modules each a digital control device 60, an injector 64 and a spray gun 66 shown over a gun bus 62 are connected. Information necessary for the operation about the operating conditions of the coating system receive the control units 60 via an internal bus 80.
  • the multiple coating modules are via the internal bus 80 also with each other and with a central control unit 82 and connected to other components of the system. Additional modules that can be connected to the internal bus are z. B. a powder level control module 88, a position control module 90 and a motion control module 92.
  • modules that have a external bus 100 also with the central control unit 82 are connected; these also include a powder center 102 a powder storage container 104, a layer thickness measuring and Control device 107, 108 and an air quantity control device 109 for a powder recovery system 110, 114 and others
  • LON local area network.
  • the individual components that act as LON nodes configured, can register themselves in the system, other system components recognize themselves on this adjust and communicate with them. You can use the information about the respective operating conditions of the coating system, which you receive via bus 80 or 100 and use.
  • FIG Powder coating system As follows. A workpiece 200 approaches the coating booth 120. At the high voltage electrodes the spray guns 66-1, 66-2, ..., 66-n there is a high voltage of about 100 kV, so that an electrical Spray current from the respective electrodes through the Air flows to earth. This spray stream is as long as no grounded workpiece in front of the respective spray gun located, very small (so-called zero current).
  • Figure 2 shows the relationship between the electrical Spray current and the distance between the coating device 66 and the workpiece 200 or the time.
  • the y axis shows the current, on the x-axis are the distance in cm and the Time represented in seconds, with a constant conveying speed of 10 cm / s is assumed.
  • the freely selectable switch-on threshold is set to 25% of ⁇ I s in this example.
  • the switch-on condition is thus recognized at time t3 and the control unit 60 sends a switch-on command to the injector 64 via the gun bus 62.
  • the injector 64 contains two air quantity regulators for setting the conveying air and metering air for the coating device. This switches on the powder feed. If the workpiece 200 now comes to the coating gun 66, it is coated. In the time interval t 4 to t 5 , the workpiece runs past the gun. In the case described, the length of the workpiece is 20 cm. From time t 5 , the workpiece 200 now moves away from the spray gun 66 and the spray current drops. At time t 6 the workpiece is 10 cm away from the spray gun, again a preselected switching threshold (here 50% of ⁇ I s ) is crossed and the powder feed is switched off via the LON bus 92.
  • a preselected switching threshold here 50% of ⁇ I s
  • the measured spray current can also be used to set the distance used between workpiece 200 and spray gun 66 become.
  • FIG. 3 shows a possible configuration of the position control module shown.
  • Position control becomes common referred to as Z-axis control.
  • Such controls are known, but so far the coating devices are moving on a permanently programmed track. With the new method, the adaptation to the workpiece contour takes place automatically.
  • the high voltage generator integrated in the spray gun 66 generates a spray current from the electrode 17 to the workpiece 200.
  • This spray current is generated by a high-voltage module 300 measured and forwarded to a distance controller 302.
  • This controller tries to regulate a given spray current. Is e.g. the spray flow is less than specified, so controller 302 sends a correction signal to a displacement axis controller 304 transmitted. This in turn causes a servo motor 306 and a gun mount 308 to push the gun 66 closer to the workpiece 200.
  • the Controller 302 is in practice as a "software part" of the High voltage module 300 realized.
  • the regulator mentioned is preferably not a standard PI or PID controller, but a so-called intelligent controller.
  • the conveying speed of the workpiece can be from the times can be determined to which the spray streams of a first and a second spray gun 66-1 and 66-2 a predetermined one Threshold, and depending on the determined times and the known distance between the first and the second spray gun the speed of the workpiece is calculated.
  • Figure 4 shows in principle the arrangement of 3 guns.
  • a conveyor system brings different workpieces 200 in the shown direction in the coating booth 120.
  • a workpiece 200 now moves to the first coating gun 66-1.
  • a first high voltage module 400-1 registers one Increase in spray flow.
  • a real-time clock built into the module registers the exact time of detection and sends the start time of the measurement to a second high-voltage module 400-2.
  • the workpiece now moves to the second Coating gun 66-2 and releases one there again Start time with the help of a real-time clock.
  • This The start value of the second measurement is immediately via the bus system 402 sent to the third high voltage module.
  • the start time the second measurement is also the stop time the first measurement.
  • the speed is between the start and stop time of the workpiece is calculated and sent to any one via bus 402 sent to other bus subscriber 404 who is responsible for his Function must know the speed of the conveyor system.
  • the workpiece 200 now moves on to the third gun 66-3, the second stop time is triggered. From the second time difference (start time No. 2 and stop time No. 2) and the known distance B becomes the second measured speed value determined and transferred to bus 402.
  • This third measurement will be the most accurate because there are inaccuracies in the timing and in the Workpiece detection has less impact the longer the Measuring distance and the measuring time are. Because with every workpiece New speed can be determined from several measurements the average speed of the conveyor system can be calculated.
  • the information about the workpiece speed can Control and synchronization of the spray gun stroke be used.
  • the material deposit on the workpiece is similar in terms of the layer thickness of a Gaussian distribution, therefore can the width of the coating limit is not precisely specified become.
  • FIG. 5a it can be seen that the spray gun (2) that area of Workpiece coated, that of the spray gun (1) not could be coated. By blurring the spray zones in the case of FIG. 5a, the material distribution becomes optimal. Not so in the unsynchronized case of FIG. 5b. There the second gun (2) mainly coats the same Area that gun (1) previously coated. moreover there are intermediate zones that have not been coated.
  • Each coating module can thus both the fact that a workpiece 200 is approaching, as is the type, in particular Size and shape of the workpiece 200, the speed of the workpiece and the distance from the workpiece to the spray gun to capture. This information is put on the bus 100, 80 and are immediately at the other components of the powder coating system to disposal.
  • a high-voltage generation unit usually consists of a high-voltage control module with oscillator, output stage and control unit and a high-voltage generator in the gun, consisting of a high-voltage transformer, multiplier cascade and protective resistors. It has a U / I characteristic curve that determines the electrical behavior of the overall unit. If the total internal resistance were an ohmic resistance, the U / I characteristic curve would be a straight line with the key points: short-circuit current and open circuit voltage. See curve A in Figure 6. In practice, the internal resistance is divided into many, cumulative, complex internal resistances and ohmic components. The resulting characteristic curve is shown in FIG. 6 as curve B.
  • the actual load resistance of a coating unit is the air between the spray electrode and the workpiece and has a purely ohmic character.
  • this ohmic resistance depends on the shape of the workpiece, its size, surface quality, the shape of the spray electrode, the air quality, temperature, pressure, moisture content and the distance between the electrode and the workpiece and also on the high-voltage generator.
  • the shape of the real U / I characteristic curve B is the same for every combination of control unit and high-voltage generator.
  • FIG. 7 shows a family of curves formed from several different voltage settings or, more precisely, different output stage supply voltage settings.
  • the values U 0x in FIG. 7 correspond to the open circuit voltages, which are proportional to the respectively selected supply voltages.
  • the curved characteristic curve is represented by a kink.
  • AP 1 corresponds to a very large distance between the workpiece and the spray electrode, whereby the workpiece is always grounded. The distance is so large that the load carriers moving in the air do not reach the workpiece, but, for example, the gun holder. In practice, point AP 1 represents the maximum high voltage and the minimum current. (Point U 01 can only be reached in the laboratory under certain conditions.) If the distance between the workpiece and the electrode is reduced, the working point moves along curve B 1 to AP 2 . At this point a considerable part of the load is already flowing off the workpiece. If the distance from the workpiece to the electrode is reduced further to the point of contact, the working point moves further via AP 3 to AP 4 (short circuit).
  • the shape of the U / I characteristic is stored in the high-voltage module.
  • the high-voltage module also knows the relationship between supply voltage and U 0 .
  • the high-voltage module thus knows the entire actual family of curves from FIG. 7, including all the curves not shown in between.
  • the high-voltage module calculates the current open-circuit voltage U 0a from the linear relationship between the supply voltage of the high-voltage generator (which is measured) and U 0 .
  • the associated U / I characteristic data are retrieved from the memory.
  • the measured spray current I sm is used by the computer to determine the current working point AP a . This also determines the current electrode voltage U a .
  • a current measuring circuit is shown.
  • the circuit the figure comprises a control device 10, two coupling capacitors 11, 37, a transformer 13 with a primary coil 14 and a secondary coil 15 connected via a bridge 12 are connected, a high-voltage cascade 16, an electrode 17 with an electrode resistor and a resistor 18, which are connected to one another in the manner shown in FIG are. Furthermore, there is a low pass indicated at 22 as well as a current-voltage converter designated 25. Also shown in Figure 8 is one to be coated Workpiece 19.
  • the low pass comprises a first low pass coil 21 which is on the Side of the bridge 12 with the primary coil 14 and one Capacitor 23 is connected to earth 9, and a second Low-pass coil 26, which the current-voltage converter 25 with the connection point 35 of the first low-pass coil 21 and capacitor 23 connects.
  • a resistor 24 connected to the capacitor 23 in series.
  • the current-voltage converter 25 has an operational amplifier 27, whose output is via a feedback resistor 28 is connected to its inverting input.
  • the second low-pass coil 26 is also on the inverting Input 38 of operational amplifier 27 connected, and the non-inverting input 39 of the operational amplifier 27 is connected to earth 9.
  • a filter network 29 from two resistors 30 and 31 and two capacitors 32 and 33 and an output amplifier 34 are arranged, which in the manner shown in Figure 8 with each other are connected.
  • the circuit of Figure 8 operates as follows. If one Workpiece 19 is in front of the electrode 17 and electrical Charge is transferred to the workpiece 19 flows in Spray current over air particles (ions) and powder particles for Workpiece and back to earth to the control unit. This Spray current flows through the operational amplifier 27 Low pass 22 and via the transformer bridge 12 into the high-voltage cascade 16 back.
  • the current-voltage converter 25 is constructed and dimensioned so that at the exit of the Operational amplifier 27 sets a voltage that is proportional to the electrical spray current from the electrode 19 to earth 9.
  • the voltage at the output 36 of this measuring circuit can on the be evaluated as described above.

Description

Die Erfindung betrifft ein Verfahren zum Erkennen von Werkstücken in einer elektrostatischen Beschichtungsanlage sowie eine elektrostatische Beschichtungsanlage, bei der dieses Verfahren angewendet werden kann.
Herkömmliche automatische Beschichtungsanlagen werden über speicherprogrammierbare Steuerungen (SPS) gesteuert. Hierfür ist eine zentrale Recheneinheit vorgesehen, von der aus eine Vielzahl von elektrischen und pneumatischen Leitungen zu Sensoren und Stellgliedern (oder Aktoren) der Anlage gehen.
Die aktuellen Zustände der Sensoren (z.B. Fördertakt des Werkstücks, Füllstand der Vorratsbehälter etc.) werden zyklisch von der Zentraleinheit erfaßt, die notwendigen Reaktionen der zugehörigen Stellglieder werden jeweils errechnet, und entsprechende Steuerbefehle werden an die Stellglieder weitergeleitet.
Bei den üblichen elektrostatischen Pulverbeschichtungsanlagen läuft ein Werkstück in horizontaler Richtung durch eine Beschichtungskabine, in deren Seitenwand vertikale Schlitze vorgesehen sind. Durch diese Schlitze geben elektrostatische Beschichtungspistolen Beschichtungspulver in die Beschichtungskabine ab. Während das Werkstück durch die Beschichtungskabine geführt wird, bewegen sich die hintereinander angeordneten, mehreren Beschichtungspistolen in vertikaler Richtung auf und ab, wobei das Werkstück durch die Werkstückbewegung in der Horizontalen und der Vertikalen mit mehreren aneinander angrenzenden oder sich teilweise überdeckenden sinusförmigen Pulverschwaden beschichtet wird.
Um eine gleichmäßige und ausreichende Beschichtungsdicke auf dem Werkstück zu erhalten und um den Wirkungsgrad beim Pulverauftrag zu optimieren, werden der Vertikalhub der Beschichtungsgeräte sowie die Pulverabgabe gesteuert. Zusätzlich wird der Abstand zwischen Beschichtungsgerät und Werkstück in der Sprührichtung eingestellt, um zu vermeiden, daß bei einem zu geringen Abstand das Pulver wieder abgeblasen wird oder sich elektrostatische Krater bilden bzw. daß sich im umgekehrten Fall der Wirkungsgrad der Pulverbeschichtung verschlechtert und z.B das Eindringvermögen in Hohlräume abnimmt.
Zu diesem Zweck haben bekannte Pulverbeschichtungsanlagen eine Teileerkennungs- und Identifikationseinrichtung sowie eine Zeitgebereinrichtung.
Die Teileerkennung wird zum Beispiel in Lackieranlagen zur Realisierung einer Lückensteuerung verwendet. Dabei wird in Werkstücklücken die Förderung und somit das Auftragen von Pulverlack oder Naßlack unterbrochen. Dadurch reduziert sich der Verbrauch an Beschichtungsstoffen, die Abfallmenge bei Naßlacken und der rezirkulierte Anteil bei Pulverlacken. Der prinzipielle Aufbau einer Lückensteuerung des Standes der Technik ist in Figur 9 gezeigt.
Eine Werkstückfördervorrichtung 902 transportiert Werkstücke 904 durch eine Beschichtungskabine 901 in der gezeigten Richtung. Zur Realisierung der Lückensteuerung wird eine Vorrichtung zur Erkennung eines Werkstücks 904 benötigt. Diese besteht aus einer Lichtschranke 906 oder 906', 908, wobei Licht vom Lichtsender 906 oder 906' gesendet und vom Empfänger 908 empfangen wird, und wobei entsprechende Signale an eine Steuerung 912 weitergeleitet werden.
Die Lichtschranke liegt vornehmlich außerhalb der Beschichtungskabine 901. Für die zeitverzögerte Steuerung der Materialförderung benötigt die Steuerung 912 ein zusätzliches Signal, das proportional zur Geschwindigkeit der Fördervorrichtung 902 ist. Dieses Signal kommt nun direkt von einer Fördersystem-Steuerung 915, oder es wird mit einer speziellen Einrichtung 913 zur Messung der Fördergeschwindigkeit ermittelt. Diese Geschwindigkeitsmessvorrichtung erzeugt ein zur Fördergeschwindigkeit proportionales Signal und leitet es zur Steuerung 912. Die Steuerung 912 bestimmt aus der Geschwindigkeitsinformation und dem Signal von der Lichtschranke 806, 908 die Zeit, die das Werkstück 904 benötigt, um bis zur Sprühvorrichtung 905 zu gelangen.
Die Lichtschranke 906, 908 "informiert" die Steuerung 912 auch von dem Ende eines Werkstücks. Damit hat man nun eine Einrichtung die das Einfahren eines Werkstücks 904 in die Kabine 901 erkennt, dessen Länge ermittelt und zeitverzögert, abhängig von der Geschwindigkeit des Förderers 902, die Materialförderung 910, 911 ein- und ausschalten kann.
Zur Steuerung der Beschichtungsgeräte sind im Stand der Technik weiterhin eine Positionssteuereinrichtung und eine Bewegungssteuereinrichtung vorgesehen, die ebenfalls die Information über Anfang, Ende und Geschwindigkeit des Werkstücks benötigen. Die Positionssteuereinrichtung steuert die Abstände der Beschichtungsgeräte zu den Werkstücken. Die Bewegungssteuereinrichtung steuert den Vertikalhub der Beschichtungsgeräte.
Die Beschichtungsanlage erfordert einen großen Rechenaufwand, um die mehreren Beschichtungsgeräte aufeinander abgestimmt so ein- und auszuschalten, auf und ab sowie vor und zurück zu bewegen, daß ein optimales Beschichtungsergebnis erhalten wird.
Ferner ist für die Teileerkennung und -identifikation eine relativ komplexe und teure optische Erfassungsvorrichtung notwendig.
Das U.S. Patent 4,324,812 beschreibt eine Pulverbeschichtungsanlage, bei welcher der Sprühstrom erfaßt wird, um abhängig von dem Sprühstrom den Pulvermassestrom, der an ein zu beschichtendes Werkstück abgegeben wird, zu steuern. Dem Patent liegt die Erkenntnis zugrunde, daß kleinere zu beschichtende Flächen das elektrische Feld konzentrieren, so daß ein höherer Strom gezogen wird, während größere Flächen weniger Strom ziehen. Daraus folgt, daß kleinere Flächen stärker beschichtet werden als größere Flächen. Um dem entgegenzuwirken, ist in dem genannten U.S. Patent vorgesehen, daß bei einer Abnahme des Sprühstroms der Pulvermassestrom erhöht wird, während bei einer Zunahme des Sprühstroms der Pulvermassestrom gesenkt wird. Ein Verfahren oder eine Vorrichtung zur Teileerkennung und -identifikation ist in dieser Druckschrift nicht beschrieben.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Erkennen eines Werkstücks in einer elektrostatischen Beschichtungsanlage und eine neue Beschichtungsanlage anzugeben, bei denen der Hardware- und Softwareaufwand für die Teileerkennung und -identifikation verringert und die Steuerung vereinfacht werden kann.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie eine Beschichtungsanlage mit den Merkmalen von Anspruch 7 gelöst.
Die Erfindung nutzt die Tatsache aus, daß in einem elektrostatischen Beschichtungsgerät eine Hochspannungselektrode oder Sprühelektrode, elektrostatische Ladungen an die Umgebung abgibt, welche einen elektrischen Sprühstrom von der Hochspannungselektrode durch die Luft zur Erde erzeugen, und zwar unabhängig davon, ob gleichzeitig von dem Beschichtungsgerät ein Beschichtungsmaterial an das Werkstück abgegeben wird oder nicht. Wenn ein elektrisch leitendes, geerdetes Werkstück vor dem Beschichtungsgerät vorbeigeführt wird, fließt der elektrische Sprühstrom von der Hochspannungselektrode durch das Werkstück zur Erde.
Beim Annähern des Werkstücks an die Sprühpistole steigt der Sprühstrom kontinuierlich an (siehe Figur 2). Befindet sich nun die Sprühelektrode auf gleicher Höhe wie das Werkstück, so ändert sich der Sprühstrom nur noch unwesentlich. Die Erhöhung des Sprühstroms wird für die Teileerkennung ausgenutzt. Messungen haben belegt, daß der Gesamtstrom der durch die Elektrode fließt zum größten Teil vom Abstand zwischen Sprühelektrode und Werkstück bestimmt wird, sowie von der eingestellten Hochspannung.
Die Messung des Sprühstroms kann daher als Mittel zur Erkennung eines Werkstücks vor dem Beschichtungsgerät verwendet werden. Gemäß der Erfindung wird abhängig von der Größe des Sprühstroms der Betrieb des Beschichtungsgerätes gesteuert.
Die im Stand der Technik übliche optische Werkstückerkennung kann dadurch ganz entfallen.
Durch Definieren geeigneter Schwellwerte kann erkannt werden, ob sich das Werkstück an das Beschichtungsgerät annähert, sich vor diesem befindet oder ob es sich entfernt und ob es den richtigen Abstand zur Sprühelektrode hat.
Das neue Verfahren zur Teileerkennung gemäß der Erfindung, ermöglicht es, z.B. eine Lückensteuerung viel einfacher zu realisieren als im Stand der Technik, indem direkt vor Ort, an der Beschichtungspistole ein Werkstück erkannt wird und abhängig von dem Vorhandensein eines Werkstücks die Förderung und Abgabe des Beschichtungsmaterials aktiviert wird. Bei dem neuen System wird somit keine externe "Lückensteuerung" benötigt.
Wie bereits erwähnt, ist für die Größe des Sprühstroms neben der Hochspannungsvorwahl vor allem der Abstand von Werkstück und Elektrode maßgebend.
Für eine optimale Beschichtung sollte dieser Abstand konstant sein. Da es jedoch viele Werkstücke mit sich in Längsrichtung ändernden Konturen gibt, und die Sprühpistole einen Vertikalhub durchläuft, ändert sich dabei der Abstand. Abhängig von dem gemessenen Sprühstrom kann nun der Abstand zwischen dem Werkstück und dem Beschichtungsgerät in Sprührichtung ermittelt und konstant gehalten werden.
Die Teileerkennung kann auch zur Ermittlung der Geschwindigkeit eines Werkstücks herangezogen werden. Da in der Praxis meistens drei und mehr Pistolen horizontal hintereinander in gleichem Abstand angeordnet sind, kann daraus die Fördergeschwindigkeit hergeleitet werden. Da eine einmal gewählte Geschwindigkeit über einen längeren Zeitraum konstant bleibt, kann aus mehreren aufeinander folgenden relativ ungenauen Messungen durch statistische Methoden die Fördergeschwindigkeit genauer berechnet werden.
Die Geschwindigkeitsinformation kann dann zur Steuerung und Synchronisierung des Vertikalhubs der Beschichtungsgeräte verwendet werden.
Die Erfindung schafft mit dem Verfahren zur Erkennung von Werkstücken mit Hilfe der Sprühströme der elektrostatischen Beschichtungsgeräte ein zuverlässiges, schnelles und kostengünstiges Mittel für die Erfassung und Identifikation der zu beschichtenden Werkstücke, das die im Stand der Technik üblichen Teileerkennungs- und Identifikationseinrichtungen vollständig ersetzten kann. Ferner hat die Erfindung den Vorteil, daß die Anwesenheit eines Werkstücks vor den jeweiligen Beschichtungsgeräten während des Betriebs laufend überprüft werden kann und nicht, wie im Stand der Technik, nur aufgrund einer einmaligen Messung beim Eintritt des Werkstücks in die Beschichtungskabine vorausgesagt wird. Bei einem außerplanmäßige Stillstand der Werkstückförderung kann dadurch z.B. sofort die Pulverabgabe gesperrt werden. Weiterhin ermöglicht die Erfindung eine weitgehende Dezentralisierung der Beschichtungsanlage, weil jedes Beschichtungsgerät selbständig erkennt, ob ein Werkstück vorhanden ist, und abhängig vom Sprühstrom seine Pulverabgabe und seinen Abstand zum Werkstück steuern kann.
Die Erfindung ist im folgenden anhand des Beispiels einer elektrostatischen Pulverbeschichtungsanlage mit Bezug auf die Zeichnungen näher erläutert. In den Figuren zeigen:
Fig. 1
eine elektrostatische Pulverbeschichtungsanlage gemäß der vorliegenden Erfindung;
Fig. 2
ein Diagramm des Sprühstrom abhängig von dem Abstand zwischen einer Sprühelektrode und einem Werkstück;
Fig.3
eine schematische Darstellung zur Erläuterung der Abstandseinstellung zwischen Werkstück und Sprühpistole gemäß der Erfindung;
Fig. 4
eine schematische Darstellung zur Erläuterung des Verfahrens zur Ermittlung der Geschwindigkeit eines Werkstücks gemäß der Erfindung;
Fig. 5a, 5b
zwei Diagramme unterschiedlicher Wellenlinien aus Beschichtungsmaterial, die mit zwei synchronisierten bzw. zwei nicht synchronisierten Beschichtungsgeräten erhalten werden;
Fig. 6
eine ideale und eine real U/I-Kennlinie einer Hochspannungselektrode eines Beschichtungsgerätes;
Fig. 7
eine Kurvenschar aus U/I-Kennlinien für unterschiedliche Versorgungsspannungen des Hochspannungserzeugers eines Beschichtungsgerätes;
Fig. 8
eine Einrichtung zur Erfassung des elektrischen Sprühstroms; und
Fig. 9
eine Beschichtungsanlage nach dem Stand der Technik mit einer Lückensteuerung;
Figur 1 zeigt eine Pulverbeschichtungsanlage gemäß der Erfindung. Diese Pulverbeschichtungsanlage ist ausführlicher in der deutschen Patentanmeldung "Steuersystem einer Beschichtungsanlage" derselben Anmelderin, mit demselben Anmeldetag beschrieben. Auf die Offenbarung dieser Patentanmeldung und insbesondere die dortige Erläuterung der Netzwerkstruktur wird ausdrücklich Bezug genommen.
In Fig. 1 sind mehrere (fünf) Beschichtungsmodule aus jeweils einem digitalen Steuergerät 60, einem Injektor 64 und einer Sprühpistole 66 dargestellt, die über einen Pistolenbus 62 verbunden sind. Für den Betrieb notwendige Informationen über die Betriebszustände der Beschichtungsanlage erhalten die Steuergeräte 60 über einen internen Bus 80.
Über den internen Bus 80 sind die mehreren Beschichtungsmodule ferner miteinander und mit einer zentralen Steuereinheit 82 sowie mit weiteren Komponenten des Systems verbunden. Zusätzliche, an den internen Bus anschließbaren Module sind z. B. ein Pulverpegelsteuermodul 88, ein Positionssteuermodul 90 und ein Bewegungssteuermodul 92.
Es sind noch weitere Baugruppen vorgesehen, die über einen externen Bus 100 ebenfalls mit der zentralen Steuereinheit 82 verbunden sind; diese umfassen ein Pulverzentrum 102 mit einem Pulvervorratsbehälter 104, eine Schichtdickenmeß- und Regeleinrichtung 107, 108 und eine Luftmengenregeleinrichtung 109 für ein Pulverrückgewinnungssystem 110, 114 u.a.
Die Busse 62, 80, 100 sind vorzugsweise Lon-Busse (LON = local area network). Die einzelnen Komponenten, die als LON-Knoten konfiguriert sind, können sich im System selbst anmelden, andere Systemkomponenten erkennen, sich auf diese einstellen und mit diesen kommunizieren. Sie können die Information über die jeweiligen Betriebszustände der Beschichtungsanlage, die sie über den Bus 80 oder 100 erhalten, auswerten und nutzen.
In groben Zügen läuft der Betrieb in der in Figur 1 gezeigten Pulverbeschichtungsanlage wie folgt ab. Ein Werkstück 200 nähert sich der Beschichtungskabine 120. An den Hochspannungselektroden der Sprühpistolen 66-1, 66-2, ..., 66-n liegt eine Hochspannung von etwa 100 kV an, so daß ein elektrischer Sprühstrom von den jeweiligen Elektroden durch die Luft zu Erde fließt. Dieser Sprühstrom ist, solange sich kein geerdetes Werkstück vor der jeweiligen Sprühpistole befindet, sehr klein (sog. Nullstrom).
Figur 2 zeigt den Zusammenhang zwischen dem elektrischen Sprühstrom und dem Abstand zwischen dem Beschichtungsgerät 66 und dem Werkstück 200 bzw. der Zeit. Die y-Achse zeigt den Strom, auf der x-Achse sind der Abstand in cm und die Zeit in Sekunden dargestellt, wobei eine konstanten Fördergeschwindigkeit von 10 cm/s angenommen wird.
Zum Zeitpunkt t1 ist das Werkstück noch sehr weit von der Sprühpistole 66 entfernt. Es fließt ein Sprühstrom I1 zur nächstgelegenen Erde, dieser Sprühstrom wird laufend gemessen und mit vorhergegangenen Meßwerten verglichen. Bis zum Zeitpunkt t2 ändert sich der Strom unwesentlich. Ab dem
Zeitpunkt t2 beginnt nun der Strom zu steigen. Vom zuvor beschichteten Werkstück kann bereits der ungefähre Endwert I2 bekannt sein. Zum Zeitpunkt t3 ist das Werkstück noch ca. 20 cm von der Sprühpistole entfernt. Die frei wählbare Einschaltschwelle wird in diesem Beispiel auf 25% von ΔIs gesetzt.
Zum Zeitpunkt t3 wird somit die Einschaltbedingung erkannt und das Steuergerät 60 schickt über den Pistolenbus 62 einen Einschaltbefehl an den Injektor 64. Der Injektor 64 enthält zwei Luftmengenregler zur Einstellung von Förderluft und Dosierluft für das Beschichtungsgerät. Damit wird die Pulverförderung eingeschaltet. Kommt nun das Werkstück 200 zur Beschichtungspistole 66, so wird es beschichtet. Im Zeitintervall t4 bis t5 läuft das Werkstück an der Pistole vorbei. Im beschriebenen Fall ist die Länge des Werkstücks 20 cm. Ab dem Zeitpunkt t5 entfernt sich nun das Werkstück 200 von der Sprühpistole 66 und der Sprühstrom sinkt. Zum Zeitpunkt t6 ist das Werkstück 10 cm von der Sprühpistole entfernt, wiederum wird eine vorgewählte Schaltschwelle (hier 50% von ΔIs) überquert und über den LON-Bus 92 wird die Pulverförderung abgeschaltet.
Der gemessene Sprühstrom kann auch zur Einstellung des Abstandes zwischen Werkstück 200 und Sprühpistole 66 verwendet werden.
In Figur 3 ist eine mögliche Konfiguration des Positionssteuermoduls dargestellt. Die Positionssteuerung wird häufig als Z-Achsensteuerung bezeichnet. Solche Steuerungen sind bekannt, doch bewegen sich die Beschichtungsgeräte bisher auf einer fest einprogrammierten Bahn. Bei der neuen Methode, erfolgt die Anpassung an die Werkstückkontur automatisch.
Der in der Sprühpistole 66 integrierte Hochspannungserzeuger erzeugt einen Sprühstrom von der Elektrode 17 zum Werkstück 200. Dieser Sprühstrom wird von einem Hochspannungsmodul 300 gemessen und an einen Abstandsregler 302 weitergeleitet. Dieser Regler versucht einen vorgegebenen Sprühstrom einzuregeln. Ist z.B. der Sprühstrom kleiner als vorgegeben, so wird vom Regler 302 ein Korrektursignal an eine Verschiebeachsensteuerung 304 übertragen. Diese wiederum veranlaßt einen Servomotor 306 eine Pistolenhalterung 308 und mit ihr die Pistole 66 näher an das Werkstück 200 zu schieben.
Dieser Regelvorgang muß relativ schnell vor sich gehen. Durch die Auf- und Abbewegung der ganzen Einheit mit Hilfe eines Hubgeräts 310, wird die Elektrode 17 entlang der gestrichelten Linie 312 bewegt. Dadurch wird die Pistole immer in einem korrekten Abstand zum Werkstück 200 gehalten. Der Regler 302 ist in der Praxis als ein "Softwareteil" des Hochspannungsmoduls 300 realisiert. Der erwähnte Regler ist vorzugsweise kein Standard PI oder PID Regler, sondern ein sogenannter intelligenter Regler.
Die Fördergeschwindigkeit des Werstücks kann aus den Zeitpunkten ermittelt werden, zu denen die Sprühströme einer ersten und einer zweiten Sprühpistole 66-1 und 66-2 einen vorgegebenen Schwellwert überschreiten, und abhängig von den ermittelten Zeitpunkten und dem bekannten Abstand zwischen der ersten und der zweiten Sprühpistole wird die Geschwindigkeit des Werkstückes berechnet.
Figur 4 zeigt prinzipiell die Anordnung von 3 Pistolen.
Ein Fördersystem bringt verschiedene Werkstücke 200 in der gezeigten Richtung in die Beschichtungskabine 120. Ein Werkstück 200 bewegt sich nun zur ersten Beschichtungspistole 66-1. Ein erstes Hochspannungsmodul 400-1 registriert einen Anstieg des Sprühstroms. Eine im Modul eingebaute Echtzeituhr registriert den genauen Zeitpunkt der Erkennung und sendet den Startzeitpunkt der Messung an ein zweites Hochspannungsmodul 400-2. Das Werkstück bewegt sich nun zur zweiten Beschichtungspistole 66-2 und löst dort wiederum einen Startzeitpunkt mit Hilfe einer Echtzeituhr aus. Dieser Startwert der zweiten Messung wird sogleich über das Bus-System 402 zum dritten Hochspannungsmodul gesendet. Der Startzeitpunkt der zweiten Messung ist zugleich der Stoppzeitpunkt der ersten Messung. Mit Hilfe des bekannten Abstandes A zwischen erster und zweiter Pistole und der Zeitdifferenz zwischen Start- und Stoppzeitpunkt wird die Geschwindigkeit des Werkstücks berechnet und über den Bus 402 an einen beliebigen anderen Busteilnehmer 404 gesendet, der für seine Funktion die Geschwindigkeit des Fördersystems kennen muß.
Bewegt sich nun das Werkstück 200 weiter zur dritten Pistole 66-3, so wird der zweite Stoppzeitpunkt ausgelöst. Aus der zweiten Zeitdifferenz (Startzeitpunkt Nr.2 und Stoppzeitpunkt Nr.2) und dem bekannten Abstand B wird der zweite Geschwindigkeits-Meßwert ermittelt und an den Bus 402 übergeben.
Auch läßt sich zur Kontrolle und/oder zum Runden aus dem ersten Startzeitpunkt und dem zweiten Stoppzeitpunkt, sowie der Strecke A + B ein dritter Geschwindigkeitsmeßwert errechnen. Dieser dritte Meßwerte wird der genaueste sein, weil sich Ungenauigkeiten in der Zeitmessung und in der Werkstückerkennung um so weniger auswirken, je länger die Meßstrecke und die Meßzeit sind. Da bei jedem Werkstück die Geschwindigkeit neu ermittelt wird, kann aus mehreren Messungen die durchschnittliche Geschwindigkeit des Förder systems errechnet werden.
Die Information über die Werkstückgeschwindigkeit kann zur Steuerung und Synchronisation der Hubbewegung der Sprühpistolen verwendet werden.
Für den einfachsten Fall wird angenommen, daß zwei Beschichtungspistolen horizontal nebeneinander angeordnet sind. Diese beiden Beschichtungspistolen sind im Abstand A angeordnet (Figuren 5a und 5b).
Diese beiden Beschichtungspistolen sind auf einem sogenannten Hubgerät 306 (Figur 3) befestigt. Das Hubgerät bewegt die Pistolen senkrecht auf und ab, und zwar mit einer konstanten Geschwindigkeit von unten nach oben, und mit der gleichen Geschwindigkeit von oben nach unten. In den Umkehrpunkten wird jeweils so schnell wie möglich die Geschwindigkeitsrichtung umgeschaltet. Bei einem rechteckigen Werkstück das kontinuierlich in die Beschichtungskabine hineinfährt wird dadurch die ganze Fläche gleichmäßig beschichtet, sofern die Geschwindigkeit der Fördereinrichtung und des Hubgeräts "synchronisiert" sind. Zum besseren Verständnis sind in Figur 5a und 5b verschiedene Fälle dargestellt.
Der Materialniederschlag auf dem Werkstück ähnelt bezüglich der Schichtdicke einer Gausschen Verteilung, deshalb kann die Beschichtungsgrenze in der Breite nicht genau angegeben werden. Jedoch ist im synchronisierten Fall (Figur 5a) ersichtlich, daß die Sprühpistole (2) denjenigen Bereich des Werkstücks beschichtet, der von der Sprühpistole (1) nicht beschichtet werden konnte. Durch die Verwischung der Sprühzonen wird im Fall der Figur 5a die Materialverteilung optimal. Nicht so im nicht synchronisierten Fall der Figur 5b. Dort beschichtet die zweite Pistole (2) vorwiegend den gleichen Bereich, den zuvor Pistole (1) beschichtet hat. Zudem gibt es Zwischenzonen die nicht beschichtet wurden.
Werden mehr als zwei Pistolen nebeneinander angeordnet, so git es mehrere Konstellationen, bei denen eine optimale Abdeckung erreicht wird.
Jedes Beschichtungsmodul kann somit sowohl die Tatsache, daß ein Werkstück 200 sich annähert, als auch die Art, insbesondere Größe und Form des Werkstücks 200, die Geschwindigkeit des Werkstücks und den Abstand von Werkstück zu Sprühpistole erfassen. Diese Informationen werden auf den Bus 100, 80 gegeben und stehen sofort bei den anderen Komponenten der Pulverbeschichtungsanlage zur Verfügung.
Zum Verständnis der Sprühstrommessung sei folgendes vorausgeschickt.
Im allgemeinen ist die Erzeugung einer Hochspannung in einem elektrostatischen Beschichtungsgerät bekannt. In der DE-A-42 32 026 wird beschrieben, wie eine Schaltung aufgebaut ist, die exakt reproduzierbare Strom/Spannungskennlinien produziert. Diese exakt reproduzierbaren Kennlinien sind eine Grundlagen des erfindungsgemäßen Verfahrens.
Eine Hochspannungserzeugungseinheit besteht in der Regel aus einem Hochspannungssteuermodul mit Oszillator, Endstufe und Steuereinheit und einem Hochspannungserzeuger in der Pistole, bestehend aus Hochspannungstransformator, Vervielfacherkaskade und Schutzwiderständen. Sie besitzt eine U/I-Kennlinie, die das elektrische Verhalten der Gesamteinheit bestimmt. Wäre der Gesamtinnenwiderstand ein ohmscher Widerstand, so wäre die U/I-Kennlinie eine Gerade, mit den Eckpunkten: Kurzschlußstrom und Leerlaufspannung. Siehe dazu Kurve A in Figur 6. In der Praxis ist der Innenwiderstand aufgeteilt in viele, sich summierende komplexe Innenwiderstände und ohmsche Anteile. Die daraus resultierende Kennlinie ist in Figur 6 als Kurve B dargestellt. Der eigentliche Lastwiderstand einer Beschichtungseinheit ist die Luft zwischen Sprühelektrode und Werkstück und besitzt rein ohmschen Charakter. Jedoch ist dieser ohmsche Widerstand abhängig von der Form des Werkstücks, dessen Größe, Oberflächenbeschaffenheit, der Form der Sprühelektrode, der Luftbeschaffenheit, Temperatur, Druck, Feuchtgehalt sowie dem Abstand zwischen Elektrode und Werkstück und zudem vom Hochspannungserzeuger.
Die Form der realen U/I-Kennlinie B ist mit einer geeigneten Ansteuerung bei jeder Kombination aus Steuereinheit und Hochspannungserzeuger die Gleiche.
Figur 7 zeigt eine Kurvenschar, gebildet aus mehreren unterschiedlichen Spannungseinstellungen oder, genauer gesagt, unterschiedlichen Endstufen-Versorgungsspannungseinstellungen. Dabei entsprechen in Figur 7 die Werte U0x den Leerlaufspannungen, die zu den jeweils gewählten Versorgungsspannungen proportional sind. (Der Einfachheit halber wird die gekrümmte Kennlinie durch einen Knick dargestellt.)
Nehmen wir z.B. die Kurve B1 mit ihren Eckpunkten U01 und Ik1. Darauf sind nun vier mögliche Arbeitspunkte dargestellt. AP1 entspricht einem sehr großen Abstand zwischen Werkstück und Sprühelektrode, wobei das Werkstück immer geerdet ist. Der Abstand ist so groß, daß die in der Luft bewegten Ladungsträger gar nicht zum Werkstück, sondern z.B. zum Pistolenhalter gelangen. Der Punkt AP1 stellt somit in der Praxis die maximale Hochspannung und den minimalen Strom dar. (Der Punkt U01 kann nur im Labor unter gewissen Bedingungen erreicht werden.) Wird nun der Abstand zwischen Werkstück und Elektrode verringert, so bewegt sich der Arbeitspunkt entlang der Kurve B1 auf AP2 zu. Bei diesem Punkt fließt bereits ein beachtlicher Teil der Ladung über das Werkstück ab. Verringert man nun den Abstand von Werkstück zu Elektrode weiter bis zur Berührung, so wandert der Arbeitspunkt weiter über AP3 bis zu AP4 (Kurzschluß).
Wollte man nun eine Spannungsmessung durchführen, so müßte in dem Hochspannungserzeuger ein Spannungsteiler eingebaut werden, der eine kleine, der Hochspannung proportionale Spannung liefert. Dieser Spannungsteiler muß für hohe Spannung bis 100 KV dimensioniert werden und ist somit groß und voluminös.
Günstiger ist dagegen die Messung des Sprühstroms, die unten noch erläutert ist.
Die Form der U/I-Kennlinie ist im Hochspannungsmodul abgespeichert. Zudem kennt das Hochspannungsmodul den Zusammenhang zwischen Versorgungsspannung und U0. Damit ist dem Hochspannungsmodul die gesamte tatsächliche Kurvenschar von Figur 7, auch mit allen nicht gezeichneten, dazwischenliegenden Kurven, bekannt.
Aus dem linearen Zusammenhang der Versorgungsspannung des Hochspannungserzeugers (die gemessen wird) und U0 errechnet das Hochspannungsmodul die aktuelle Leerlaufspannung U0a. Die dazugehörenden U/I Kennliniendaten werden aus dem Speicher abgerufen. Der gemessene Sprühstrom Ism wird vom Rechner zur Bestimmung des aktuellen Arbeitspunktes APa benutzt. Dadurch ist auch die aktuelle Elektrodenspannung Ua bestimmt .
Für die vorstehend erläuterte Werkstückerkennung genügt die Kenntnis der jeweils zu verwendenden Kennlinie und des gemessenen Sprühstroms. Häufig ist es jedoch wünschenswert, neben dem Sprühstrom auch die aktuelle Elektrodenspannung Ua anzuzeigen.
In Figur 8 ist eine Strommeßschaltung gezeigt. Die Schaltung der Figur umfaßt eine Steuereinrichtung 10, zwei Koppelkondensatoren 11, 37, einen Transformator 13 mit einer Primärspule 14 und einer Sekundärspule 15, die über eine Brücke 12 verbunden sind, eine Hochspannungskaskade 16, eine Elektrode 17 mit einem Elektrodenwiderstand und einen Widerstand 18, welche auf die in Figur 8 gezeigte Weise miteinander verbunden sind. Weiterhin ist ein mit 22 bezeichneter Tiefpaß sowie ein mit 25 bezeichneter Strom-Spannungs-Wandler vorgesehen. Ebenfalls in Figur 8 gezeigt ist ein zu beschichtendes Werkstück 19.
Der Tiefpaß umfaßt eine erste Tiefpaß-Spule 21, die auf der Seite der Brücke 12 mit der Primärspule 14 und über einen Kondensator 23 mit Erde 9 verbunden ist, und eine zweite Tiefpaß-Spule 26, welche den Strom-Spannungs-Wandler 25 mit dem Verbindungspunkt 35 von erster Tiefpaß-Spule 21 und Kondensator 23 verbindet. Zusätzlich ist noch ein Widerstand 24 zu dem Kondensator 23 in Reihe geschaltet.
Der Strom-Spannungs-Wandler 25 weist einen Operationsverstärker 27 auf, dessen Ausgang über einen Rückkopplungswiderstand 28 mit seinem invertierenden Eingang verbunden ist. Die zweite Tiefpaß-Spule 26 ist ebenfalls an den invertierenden Eingang 38 des Operationsverstärkers 27 angeschlossen, und der nicht-invertierende Eingang 39 des Operationsverstärkers 27 ist mit Erde 9 verbunden.
Am Ausgang des Strom-Spannungs-Wandlers 25 ist ein Filternetzwerk 29 aus zwei Widerständen 30 und 31 und zwei Kondensatoren 32 und 33 sowie ein Ausgangsverstärker 34 angeordnet, welche auf die in Figur 8 gezeigte Weise miteinander verbunden sind.
Die Schaltung der Figur 8 arbeitet wie folgt. Wenn sich ein Werkstück 19 vor der Elektrode 17 befindet und elektrische Ladung auf das Werkstück 19 übertragen wird, fließt ein Sprühstrom über Luftpartikel (Ionen) und Pulverteilchen zum Werkstück und über Erde zurück zum Steuergerät. Dieser Sprühstrom fließt durch den Operationsverstärker 27, den Tiefpaß 22 und über die Transformatorbrücke 12 in die Hochspannungskaskade 16 zurück. Der Strom-Spannungs-Wandler 25 ist so aufgebaut und dimensioniert, daß sich am Ausgang des Operationsverstärkers 27 eine Spannung einstellt, die proportional zu dem elektrischen Sprühstrom von der Elektrode 19 zu Erde 9 ist.
Die Spannung am Ausgang 36 dieser Meßschaltung kann auf die oben beschriebene Weise ausgewertet werden.
Die in der vorstehenden Beschreibung, den Ansprüchen und der Zeichnung offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung der Erfindung in den verschiedenen Ausgestaltungen von Bedeutung sein.

Claims (12)

  1. Verfahren zum Erkennen von Werkstücken in einer elektrostatischen Beschichtungsanlage mit mindestens einem elektrostatischen Beschichtungsgerät (66), das eine Hochspannung an eine Hochspannungselektrode (17) anlegt, bei dem von der Hochspannungselektrode ein Sprühstrom, enthaltend elektrostatische Ladung zum Aufladen von Partikeln eines zu versprühenden Beschichtungsmaterials erzeugt wird, ein zu beschichtendes, elektrisch leitendes Werkstück (19; 200) an dem Beschichtungsgerät vorbeigeführt wird, und der Sprühstrom der Hochspannungselektrode (17) ermittelt wird dadurch gekennzeichnet, dass der ermittelte Sprühstrom mit einem ersten Schwellwert verglichen wird und dann, wenn der Sprühstrom den ersten Schwellwert überschreitet, erkannt wird, daß sich das Werkstück (19; 200) an das Beschichtungsgerät (66) annähert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß abhängig von der Größe des ermittelten Sprühstroms wenigstens eine Funktion der Beschichtungsanlage gesteuert wird, insbesondere die Abgabe des Beschichtungsmaterials und/oder die Bewegung des oder jedes Beschichtungsgerätes (66) in vertikaler und/oder in horizontaler Richtung.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Beschichtungsgerät (66), mit der Abgabe des Beschichtungsmaterials beginnt, wenn der Sprühstrom den ersten Schwellwert überschreitet, und die Abgabe beendet, wenn der Sprühstrom unter einen zweiten Schwellwert fällt.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß abhängig von dem ermittelten Sprühstrom der Abstand zwischen dem Werkstück (19; 200) und der Hochspannungselektrode (66) in der Sprührichtung ermittelt und eingestellt wird.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens zwei Beschichtungsgeräte (66) vorgesehen werden, daß die Zeitpunkte (t1, t2) ermittelt werden, zu denen die Sprühströme eines ersten und eines zweiten Beschichtungsgeräts einen vorgegebenen Schwellwert überschreiten, daß daraus eine Zeitdifferenz (t2-t1) berechnet wird, und daß abhängig von der Zeitdifferenz und dem Abstand zwischen dem erste und dem zweiten Beschichtungsgerät (66) die Geschwindigkeit des Werkstücks (19; 200) ermittelt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere U/I-Kennlinien für das oder jedes Beschichtungsgerät (66) gespeichert werden, abhängig von der Versorgungsspannung eines Hochspannungserzeugers (12-16) für die Hochspannungselektrode (17) eine zugehörige U/I-Kennlinie ausgewählt wird, der Sprühstrom (I 17-9) gemessen wird, abhängig von dem Sprühstrom ein Arbeitspunkt auf der U/I-Kennlinie bestimmt wird, und damit die Ist-Hochspannung an der Elektrode ermittelt wird.
  7. Elektrostatische Beschichtungsanlage mit mindestens einem Beschichtungsgerät (66), enthaltend eine Hochspannungselektrode (17), welche einen Sprühstrom enthaltend elektrostatische Ladungen zum Aufladen von Partikeln eines zu versprühenden Beschichtungsmaterials abgibt, wobei dem oder jedem Beschichtungsgerät (66) eine Meßvorrichtung (22, 25) zur Ermittlung des Sprühstroms und eine Auswertungsvorrichtung (60) zugeordnet sind, dadurch gekennzeichnet, dass die Auswertungsvorrichtung derart ausgebildet ist, dass sie den ermittelten Sprühstrom mit einem ersten Schwellwert vergleicht und dann, wenn der Sprühstromden ersten Schwellwert überschreitet, erkennt, daß sich das Werkstück (19; 200) an das Beschichtungsgerät (66) annähert.
  8. Beschichtungsanlage nach Anspruch 7, dadurch gekennzeichnet, daß dem oder jedem Beschichtungsgeräte (66) ein digitales Steuergerät (60) zur Steuerung des Betriebs des Beschichtungsgerätes abhängig von dem ermittelten Sprühstrom zugeordnet ist, und daß das Beschichtungsgerät und das Steuergerät über eine Busstruktur (62) verbunden ist.
  9. Beschichtungsanlage nach Anspruch 8, dadurch gekennzeichnet, daß mehrere Beschichtungsgeräte (66) vorhanden sind, die jeweils über einen Pistolenbus (62) mit ihren digitalen Steuergeräten (60) verbunden sind, und Netzwerk-Knoten bilden, und daß die digitalen Steuergeräte (60) über einen Beschichtungsbus (80) mit weiteren Komponenten der Beschichtungsanlage verbunden sind, wobei die Netzwerk-Knoten LON-Knoten sind.
  10. Beschichtungsanlage nach einem der Ansprüche 7 bis 9, gekennzeichnet durch einen Hochspannungserzeuger (13, 16) in dem oder jedem Beschichtungsgerät (66), der einen Transformator (13) mit einer Primärspule (14) und einer Sekundärspule (15) aufweist, die über eine Brücke (12) verbunden sind, wobei die Primärspule mit einer Wechsel-Steuerspannung beaufschlagbar ist, und wobei die Meßvorrichtung einen Tiefpaß (22), der zwischen der Primärspule und Erde angeschlossen ist, und einen Strom-Spannungs-Wandler (25), der mit dem Tiefpaß verbunden ist, enthält.
  11. Beschichtungsanlage nach Anspruch 10, dadurch gekennzeichnet, daß der Tiefpaß (22) zwei Spulen (21, 26) aufweist, wobei die erste Spule mit der Primärspule (14) und über einen Kondensator (23) mit Erde (9) verbunden ist, und wobei der Strom-Spannungs-Wandler (25) eine stromgesteuerte Spannungsquelle (27, 28) ist, die über die zweite Spule (26) an den Verbindungspunkt (35) von erster Spule (21) und Kondensator (23) angeschlossen ist.
  12. Beschichtungsanlage nach einem der Ansprüche 8 bis 11, dadurch, gekennzeichnet, daß dem oder jedem Beschichtungsgerät (66) eine Speichervorrichtung zum Speichern mehrerer U/I-Kennlinien für verschiedene Versorgungsspannungen der Hochspannungselektrode (17), eine Vorrichtung (60) zur Ermittlung der aktuellen Versorgungsspannung und eine Auswertevorrichtung (60) zugeordnet sind, um abhängig von der Versorgungsspannung eine U/I-Kennlinie auszuwählen und abhängig von dem Sprühstrom einen Arbeitspunkt auf der U/I-Kennlinie zu bestimmen, der für die Ermittlung der Ist-Hochspannung an der Elektrode verwendet wird.
EP98113602A 1997-09-01 1998-07-21 Verfahren zur Erkennung von Werkstücken in einer elektrostatischen Beschichtungsanlage und eine elektrostatische Beschichtungsanlage Expired - Lifetime EP0899020B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19738142A DE19738142C1 (de) 1997-09-01 1997-09-01 Elektrostatische Beschichtungsanlage und Verfahren zur Erkennung und Beschichtung von Werkstücken in einer elektrostatischen Beschichtungsanlage
DE19738142 1997-09-01

Publications (2)

Publication Number Publication Date
EP0899020A1 EP0899020A1 (de) 1999-03-03
EP0899020B1 true EP0899020B1 (de) 2004-09-29

Family

ID=7840843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113602A Expired - Lifetime EP0899020B1 (de) 1997-09-01 1998-07-21 Verfahren zur Erkennung von Werkstücken in einer elektrostatischen Beschichtungsanlage und eine elektrostatische Beschichtungsanlage

Country Status (4)

Country Link
US (1) US6068877A (de)
EP (1) EP0899020B1 (de)
JP (1) JPH11156247A (de)
DE (2) DE19738142C1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347437A (ja) * 1991-05-23 1992-12-02 Matsushita Seiko Co Ltd 空気調和機の制御装置
DE19926926A1 (de) * 1999-06-14 2000-12-21 Itw Gema Ag Sprühbeschichtungseinrichtung
CA2461377A1 (en) * 2001-10-18 2003-05-15 Nordson Corporation Spray gun with variable load line control
US6755339B2 (en) 2002-06-21 2004-06-29 Delphi Technologies, Inc. Fluxing apparatus for applying powdered flux
DE102006032645B4 (de) * 2006-07-13 2008-06-12 J. Wagner Ag Vorrichtung zur Erfassung des Profils eines mit Pulver oder Nasslack zu beschichtenden Werkstücks
JP5352799B2 (ja) * 2008-04-01 2013-11-27 旭サナック株式会社 コロナ帯電式塗装装置
JP5731219B2 (ja) * 2011-02-08 2015-06-10 旭サナック株式会社 静電塗装装置
JP5731218B2 (ja) * 2011-02-08 2015-06-10 旭サナック株式会社 静電塗装装置
JP5623931B2 (ja) * 2011-02-08 2014-11-12 旭サナック株式会社 静電塗装装置
JP6100807B2 (ja) * 2015-01-09 2017-03-22 トヨタ自動車株式会社 静電塗装装置及びその導電性検査方法
JP2016221518A (ja) * 2016-08-26 2016-12-28 アピックヤマダ株式会社 導電膜形成装置とその方法
DE102019006501A1 (de) * 2019-09-16 2021-03-18 Zasso Group Ag Dielektrischer Driftanalysator
CN114789102B (zh) * 2022-05-23 2024-03-26 佛山市德珼尔科技有限公司 智能曲面喷涂生产方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966880A (en) * 1956-11-23 1961-01-03 Daimler Benz Ag Control arrangement for electrostatic spray installation
US3851618A (en) * 1974-01-14 1974-12-03 Ransburg Corp Electrostatic coating apparatus
DE2849295C2 (de) * 1978-11-14 1985-04-04 Ransburg-Gema AG, St.Gallen Sprühbeschichtungsvorrichtung zum Beschichten von Gegenständen
DE3014114C2 (de) * 1980-04-12 1982-04-29 Gema AG Apparatebau, 9015 St. Gallen Einrichtung zum automatischen Beschichten von Gegenständen mit einer Spritzvorrichtung
US4324812A (en) * 1980-05-29 1982-04-13 Ransburg Corporation Method for controlling the flow of coating material
SE8100726L (sv) * 1980-05-29 1981-11-30 Ransburg Corp Hogspenningsanordning
DE3822835A1 (de) * 1988-07-06 1990-03-08 Josef Schucker Verfahren und anordnung zum lackieren von werkstueckoberflaechen
DE4232026C2 (de) * 1992-09-24 1996-10-24 Wagner Int Elektrostatische Beschichtungspistole und Verfahren zum Erzeugen einer Hochspannung
DE4406046C2 (de) * 1994-02-24 1997-11-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
DE19502390C2 (de) * 1995-01-26 1997-09-25 S & S Metallsuchgeraete & Recy Verfahren und Vorrichtung zum Auftragen von Schmierstoffen auf Bandmaterial
DE19650112C1 (de) * 1996-12-03 1998-05-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
DE19738141C2 (de) * 1997-09-01 2003-06-05 Wagner Int Steuersystem einer Beschichtungsanlage mit einer LON-Busstruktur

Also Published As

Publication number Publication date
US6068877A (en) 2000-05-30
JPH11156247A (ja) 1999-06-15
DE59812017D1 (de) 2004-11-04
DE19738142C1 (de) 1999-05-20
EP0899020A1 (de) 1999-03-03

Similar Documents

Publication Publication Date Title
EP0899020B1 (de) Verfahren zur Erkennung von Werkstücken in einer elektrostatischen Beschichtungsanlage und eine elektrostatische Beschichtungsanlage
EP0037911B1 (de) Einrichtung zum automatischen Beschichten von Gegenständen
DE1287532B (de) Vorrichtung zum Bestimmen des Hochspannungswiderstandes von Materialstuecken
DE2713249C2 (de) Verfahren und Vorrichtung zum Beschichten einer Unterlage mittels pulverförmigen Werkstoffes auf elektrostatischem Wege
EP0452375A1 (de) Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen.
EP2496364A1 (de) Beschichtungsverfahren und beschichtungsanlage mit dynamischer anpassung der zerstäuberdrehzahl und der hochspannung
EP0899019B1 (de) Verfahren zum werkstückabhängigen Steuern eines elektrostatischen Beschichtungsgerätes und elektrostatische Beschichtungsanlage
EP0780160A1 (de) Pulver-Sprühbeschichtungsvorrichtung
EP0283936B1 (de) Verfahren zur Betriebssteuerung einer elektrostatischen Beschichtungsanlage
EP0185311B1 (de) Verfahren und Vorrichtung zur Betriebsüberwachung einer elektrostatischen Beschichtungsanlage
EP0132659B1 (de) Regeleinrichtung für ein Elektrofilter
EP1060795B1 (de) Steuerung für eine elektrostatische Sprühbeschichtungseinrichtung
EP0899022B1 (de) Verfahren zur Steuerung der Absauganlage einer elektrostatischen Pulverbeschichtungsanlage und elektrostatische Pulverbeschichtungsanlage
EP0734778A2 (de) Elektrostatische Sprühbeschichtungseinrichtung
EP0891818B1 (de) Pulverbeschichtungsanlage mit vertikal übereinander angeordneten Sprühpistolen
DE3737774C2 (de)
EP2051345B1 (de) Elektrodenvorrichtung
WO2017025227A1 (de) Steuerschaltung zum schutz gegen funkenentladung
WO2012062419A1 (de) Verfahren zum elektrostatischen beschichten von gegenständen sowie applikationsvorrichtung
DE102011122056A1 (de) Anlage zum Beschichten von Gegenständen
DE3445851C2 (de)
WO2004101164A1 (de) Beschichtungsverfahren sowie pulverdüse und beschichtungskabine
DE19511254A1 (de) Elektrostatische Sprühbeschichtungseinrichtung
DE102007060211A1 (de) Verfahren und Vorrichtung zum elektrostatischen Sprühbeschichten von Objekten
DE102011004037A1 (de) Oszillator für eine Pulversprühbeschichtungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990804

AKX Designation fees paid

Free format text: CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20030210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 59812017

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080718

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100714

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100726

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100714

Year of fee payment: 13

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812017

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110721