EP0899020B1 - Procédé de détecter la présence d'une pièce dans une installation de revêtement électrostatique et installation de revêtement électrostatique - Google Patents

Procédé de détecter la présence d'une pièce dans une installation de revêtement électrostatique et installation de revêtement électrostatique Download PDF

Info

Publication number
EP0899020B1
EP0899020B1 EP98113602A EP98113602A EP0899020B1 EP 0899020 B1 EP0899020 B1 EP 0899020B1 EP 98113602 A EP98113602 A EP 98113602A EP 98113602 A EP98113602 A EP 98113602A EP 0899020 B1 EP0899020 B1 EP 0899020B1
Authority
EP
European Patent Office
Prior art keywords
coating
workpiece
spray
current
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113602A
Other languages
German (de)
English (en)
Other versions
EP0899020A1 (fr
Inventor
Kurt Seitz
Markus Hasler
Horst Dr. Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wagner International AG
Original Assignee
Wagner International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wagner International AG filed Critical Wagner International AG
Publication of EP0899020A1 publication Critical patent/EP0899020A1/fr
Application granted granted Critical
Publication of EP0899020B1 publication Critical patent/EP0899020B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0531Power generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target

Definitions

  • the invention relates to a method for recognizing Workpieces in an electrostatic coating system and an electrostatic coating system in which this procedure can be used.
  • the current status of the sensors (e.g. funding cycle of the Workpiece, fill level of the storage container etc.) become cyclical captured by the central unit, the necessary reactions the associated actuators are calculated, and corresponding control commands are sent to the actuators forwarded.
  • the workpiece To ensure an even and sufficient coating thickness the workpiece and to ensure the efficiency of powder application to optimize the vertical stroke of the coating equipment as well as controlled powder delivery. additionally becomes the distance between the coating device and the workpiece set in the spray direction to avoid that if the distance is too short, blow off the powder again will or electrostatic craters form or that in the opposite case, the efficiency of the powder coating deteriorates and e.g. the penetration into cavities decreases.
  • Parts recognition is used, for example, in paint shops Realization of a gap control used. Thereby in Workpiece gaps the promotion and thus the application of Powder paint or wet paint interrupted. This reduces the consumption of coating materials, the amount of waste Wet coatings and the recirculated portion of powder coatings.
  • the basic structure of a gap control of the stand the technique is shown in Figure 9.
  • a workpiece conveyor 902 transports workpieces 904 through a coating booth 901 in the shown Direction.
  • a Device for recognizing a workpiece 904 is required. This consists of a light barrier 906 or 906 ', 908, where light is sent from light transmitter 906 or 906 'and from Receiver 908 is received and corresponding signals be forwarded to a controller 912.
  • the light barrier is primarily outside the coating booth 901.
  • the controller 912 needs an additional one Signal proportional to the speed of the conveyor Is 902.
  • This signal now comes directly from one Conveyor system control 915, or it comes with a special Device 913 for measuring the conveying speed determined.
  • This speed measuring device generates a signal proportional to the conveying speed and conducts it to the controller 912.
  • the controller 912 determines from the Speed information and the signal from the light barrier 806, 908 the time it takes the workpiece 904 to get to sprayer 905.
  • the light barrier 906, 908 "informs" the controller 912 also from the end of a workpiece. Now you have one Means the insertion of a workpiece 904 into the Detects cabin 901, determines its length and delays it, depending on the speed of the conveyor 902, the material feed 910, 911 can switch on and off.
  • the coating devices are in the state Technology further a position control device and Movement control device provided, which is also the information about the start, end and speed of the workpiece need.
  • the position control device controls the Distances of the coating devices to the workpieces.
  • the Motion control device controls the vertical stroke of the coating devices.
  • the coating system requires a great deal of computing effort, coordinated with the several coating devices so on and off, up and down as well as before and to move back that optimal coating result is obtained.
  • the U.S. Patent 4,324,812 describes a powder coating installation in which the spray stream is detected in order depending on the spray flow, the powder mass flow to a coating workpiece is given to control.
  • the patent is based on the knowledge that that smaller areas to be coated concentrate the electric field, so that a higher electricity is drawn while larger areas draw less electricity. It follows, that smaller areas are coated more than larger areas. To counteract this is in the U.S. Patent provided that with a decrease in the spray flow the powder mass flow is increased, while with an increase in the spray flow the Powder mass flow is reduced. A method or device for parts recognition and identification is not described in this document.
  • the invention has for its object a method for Detection of a workpiece in an electrostatic coating system and to specify a new coating system, where the hardware and software expenditure for the Part recognition and identification reduced and control can be simplified.
  • the invention takes advantage of the fact that in an electrostatic Coating device a high voltage electrode or spray electrode, electrostatic charges to the environment emits an electrical spray current from the Generate high voltage electrode through the air to earth, and regardless of whether at the same time by the coating device delivered a coating material to the workpiece will or not. If an electrically conductive, grounded Workpiece passed in front of the coating device the electrical spray current flows from the high voltage electrode through the workpiece to earth.
  • Spray flow As the workpiece approaches the spray gun, it increases Spray flow continuously (see Figure 2). Is located now the spray electrode at the same height as the workpiece, the spray flow changes only insignificantly. The Increasing the spray current is used for part recognition. Measurements have shown that the total current of the through the electrode flows mostly from the distance between Spray electrode and workpiece is determined, as well as by the set high voltage.
  • the measurement of the spray current can therefore be used as a means of detection of a workpiece used in front of the coating device become. According to the invention, depending on the size of the Spray current controlled the operation of the coating device.
  • optical workpiece recognition that is customary in the prior art can be completely omitted.
  • the new method for parts recognition according to the invention enables e.g. a gap control much easier too realize than in the state of the art by directly on site, a workpiece is recognized on the coating gun and depending on the presence of a workpiece and release of the coating material is activated. With the new system there is no external "gap control" needed.
  • this distance should be constant his. However, since there are many workpieces with it lengthways changing contours, and the spray gun one The vertical stroke passes, the distance changes. Dependent the distance can now be measured from the measured spray current between the workpiece and the coating device in the spray direction determined and kept constant.
  • the parts recognition can also be used to determine the speed of a workpiece can be used. Because in practice usually three and more guns in a row horizontally the same distance, the conveying speed be derived. Because once chosen Constant speed over a longer period of time remains, can be relatively imprecise from several successive Measurements by statistical methods the conveyor speed can be calculated more precisely.
  • the speed information can then be used for control and Synchronization of the vertical stroke of the coating devices be used.
  • the invention creates with the method for the detection of Workpieces using the spray currents of the electrostatic Coating equipment a reliable, fast and inexpensive Means for the registration and identification of the coating workpieces, which are those in the prior art usual part recognition and identification devices can completely replace. Furthermore, the invention has the Advantage that the presence of a workpiece in front of each Coating devices running during operation can be checked and not, as in the prior art, only on the basis of a single measurement when the Workpiece in the coating booth is predicted. at an unscheduled standstill of workpiece conveying thereby e.g. the powder supply can be blocked immediately.
  • the invention enables extensive decentralization the coating system because every coating device independently recognizes whether a workpiece is available, and depending on the spray flow its powder delivery and its Can control the distance to the workpiece.
  • FIG. 1 shows a powder coating system according to the invention.
  • This powder coating system is more detailed in the German patent application "control system of a coating system" the same applicant, with the same filing date described. To the disclosure of this patent application and in particular the explanation of the network structure there reference is expressly made.
  • Fig. 1 there are several (five) coating modules each a digital control device 60, an injector 64 and a spray gun 66 shown over a gun bus 62 are connected. Information necessary for the operation about the operating conditions of the coating system receive the control units 60 via an internal bus 80.
  • the multiple coating modules are via the internal bus 80 also with each other and with a central control unit 82 and connected to other components of the system. Additional modules that can be connected to the internal bus are z. B. a powder level control module 88, a position control module 90 and a motion control module 92.
  • modules that have a external bus 100 also with the central control unit 82 are connected; these also include a powder center 102 a powder storage container 104, a layer thickness measuring and Control device 107, 108 and an air quantity control device 109 for a powder recovery system 110, 114 and others
  • LON local area network.
  • the individual components that act as LON nodes configured, can register themselves in the system, other system components recognize themselves on this adjust and communicate with them. You can use the information about the respective operating conditions of the coating system, which you receive via bus 80 or 100 and use.
  • FIG Powder coating system As follows. A workpiece 200 approaches the coating booth 120. At the high voltage electrodes the spray guns 66-1, 66-2, ..., 66-n there is a high voltage of about 100 kV, so that an electrical Spray current from the respective electrodes through the Air flows to earth. This spray stream is as long as no grounded workpiece in front of the respective spray gun located, very small (so-called zero current).
  • Figure 2 shows the relationship between the electrical Spray current and the distance between the coating device 66 and the workpiece 200 or the time.
  • the y axis shows the current, on the x-axis are the distance in cm and the Time represented in seconds, with a constant conveying speed of 10 cm / s is assumed.
  • the freely selectable switch-on threshold is set to 25% of ⁇ I s in this example.
  • the switch-on condition is thus recognized at time t3 and the control unit 60 sends a switch-on command to the injector 64 via the gun bus 62.
  • the injector 64 contains two air quantity regulators for setting the conveying air and metering air for the coating device. This switches on the powder feed. If the workpiece 200 now comes to the coating gun 66, it is coated. In the time interval t 4 to t 5 , the workpiece runs past the gun. In the case described, the length of the workpiece is 20 cm. From time t 5 , the workpiece 200 now moves away from the spray gun 66 and the spray current drops. At time t 6 the workpiece is 10 cm away from the spray gun, again a preselected switching threshold (here 50% of ⁇ I s ) is crossed and the powder feed is switched off via the LON bus 92.
  • a preselected switching threshold here 50% of ⁇ I s
  • the measured spray current can also be used to set the distance used between workpiece 200 and spray gun 66 become.
  • FIG. 3 shows a possible configuration of the position control module shown.
  • Position control becomes common referred to as Z-axis control.
  • Such controls are known, but so far the coating devices are moving on a permanently programmed track. With the new method, the adaptation to the workpiece contour takes place automatically.
  • the high voltage generator integrated in the spray gun 66 generates a spray current from the electrode 17 to the workpiece 200.
  • This spray current is generated by a high-voltage module 300 measured and forwarded to a distance controller 302.
  • This controller tries to regulate a given spray current. Is e.g. the spray flow is less than specified, so controller 302 sends a correction signal to a displacement axis controller 304 transmitted. This in turn causes a servo motor 306 and a gun mount 308 to push the gun 66 closer to the workpiece 200.
  • the Controller 302 is in practice as a "software part" of the High voltage module 300 realized.
  • the regulator mentioned is preferably not a standard PI or PID controller, but a so-called intelligent controller.
  • the conveying speed of the workpiece can be from the times can be determined to which the spray streams of a first and a second spray gun 66-1 and 66-2 a predetermined one Threshold, and depending on the determined times and the known distance between the first and the second spray gun the speed of the workpiece is calculated.
  • Figure 4 shows in principle the arrangement of 3 guns.
  • a conveyor system brings different workpieces 200 in the shown direction in the coating booth 120.
  • a workpiece 200 now moves to the first coating gun 66-1.
  • a first high voltage module 400-1 registers one Increase in spray flow.
  • a real-time clock built into the module registers the exact time of detection and sends the start time of the measurement to a second high-voltage module 400-2.
  • the workpiece now moves to the second Coating gun 66-2 and releases one there again Start time with the help of a real-time clock.
  • This The start value of the second measurement is immediately via the bus system 402 sent to the third high voltage module.
  • the start time the second measurement is also the stop time the first measurement.
  • the speed is between the start and stop time of the workpiece is calculated and sent to any one via bus 402 sent to other bus subscriber 404 who is responsible for his Function must know the speed of the conveyor system.
  • the workpiece 200 now moves on to the third gun 66-3, the second stop time is triggered. From the second time difference (start time No. 2 and stop time No. 2) and the known distance B becomes the second measured speed value determined and transferred to bus 402.
  • This third measurement will be the most accurate because there are inaccuracies in the timing and in the Workpiece detection has less impact the longer the Measuring distance and the measuring time are. Because with every workpiece New speed can be determined from several measurements the average speed of the conveyor system can be calculated.
  • the information about the workpiece speed can Control and synchronization of the spray gun stroke be used.
  • the material deposit on the workpiece is similar in terms of the layer thickness of a Gaussian distribution, therefore can the width of the coating limit is not precisely specified become.
  • FIG. 5a it can be seen that the spray gun (2) that area of Workpiece coated, that of the spray gun (1) not could be coated. By blurring the spray zones in the case of FIG. 5a, the material distribution becomes optimal. Not so in the unsynchronized case of FIG. 5b. There the second gun (2) mainly coats the same Area that gun (1) previously coated. moreover there are intermediate zones that have not been coated.
  • Each coating module can thus both the fact that a workpiece 200 is approaching, as is the type, in particular Size and shape of the workpiece 200, the speed of the workpiece and the distance from the workpiece to the spray gun to capture. This information is put on the bus 100, 80 and are immediately at the other components of the powder coating system to disposal.
  • a high-voltage generation unit usually consists of a high-voltage control module with oscillator, output stage and control unit and a high-voltage generator in the gun, consisting of a high-voltage transformer, multiplier cascade and protective resistors. It has a U / I characteristic curve that determines the electrical behavior of the overall unit. If the total internal resistance were an ohmic resistance, the U / I characteristic curve would be a straight line with the key points: short-circuit current and open circuit voltage. See curve A in Figure 6. In practice, the internal resistance is divided into many, cumulative, complex internal resistances and ohmic components. The resulting characteristic curve is shown in FIG. 6 as curve B.
  • the actual load resistance of a coating unit is the air between the spray electrode and the workpiece and has a purely ohmic character.
  • this ohmic resistance depends on the shape of the workpiece, its size, surface quality, the shape of the spray electrode, the air quality, temperature, pressure, moisture content and the distance between the electrode and the workpiece and also on the high-voltage generator.
  • the shape of the real U / I characteristic curve B is the same for every combination of control unit and high-voltage generator.
  • FIG. 7 shows a family of curves formed from several different voltage settings or, more precisely, different output stage supply voltage settings.
  • the values U 0x in FIG. 7 correspond to the open circuit voltages, which are proportional to the respectively selected supply voltages.
  • the curved characteristic curve is represented by a kink.
  • AP 1 corresponds to a very large distance between the workpiece and the spray electrode, whereby the workpiece is always grounded. The distance is so large that the load carriers moving in the air do not reach the workpiece, but, for example, the gun holder. In practice, point AP 1 represents the maximum high voltage and the minimum current. (Point U 01 can only be reached in the laboratory under certain conditions.) If the distance between the workpiece and the electrode is reduced, the working point moves along curve B 1 to AP 2 . At this point a considerable part of the load is already flowing off the workpiece. If the distance from the workpiece to the electrode is reduced further to the point of contact, the working point moves further via AP 3 to AP 4 (short circuit).
  • the shape of the U / I characteristic is stored in the high-voltage module.
  • the high-voltage module also knows the relationship between supply voltage and U 0 .
  • the high-voltage module thus knows the entire actual family of curves from FIG. 7, including all the curves not shown in between.
  • the high-voltage module calculates the current open-circuit voltage U 0a from the linear relationship between the supply voltage of the high-voltage generator (which is measured) and U 0 .
  • the associated U / I characteristic data are retrieved from the memory.
  • the measured spray current I sm is used by the computer to determine the current working point AP a . This also determines the current electrode voltage U a .
  • a current measuring circuit is shown.
  • the circuit the figure comprises a control device 10, two coupling capacitors 11, 37, a transformer 13 with a primary coil 14 and a secondary coil 15 connected via a bridge 12 are connected, a high-voltage cascade 16, an electrode 17 with an electrode resistor and a resistor 18, which are connected to one another in the manner shown in FIG are. Furthermore, there is a low pass indicated at 22 as well as a current-voltage converter designated 25. Also shown in Figure 8 is one to be coated Workpiece 19.
  • the low pass comprises a first low pass coil 21 which is on the Side of the bridge 12 with the primary coil 14 and one Capacitor 23 is connected to earth 9, and a second Low-pass coil 26, which the current-voltage converter 25 with the connection point 35 of the first low-pass coil 21 and capacitor 23 connects.
  • a resistor 24 connected to the capacitor 23 in series.
  • the current-voltage converter 25 has an operational amplifier 27, whose output is via a feedback resistor 28 is connected to its inverting input.
  • the second low-pass coil 26 is also on the inverting Input 38 of operational amplifier 27 connected, and the non-inverting input 39 of the operational amplifier 27 is connected to earth 9.
  • a filter network 29 from two resistors 30 and 31 and two capacitors 32 and 33 and an output amplifier 34 are arranged, which in the manner shown in Figure 8 with each other are connected.
  • the circuit of Figure 8 operates as follows. If one Workpiece 19 is in front of the electrode 17 and electrical Charge is transferred to the workpiece 19 flows in Spray current over air particles (ions) and powder particles for Workpiece and back to earth to the control unit. This Spray current flows through the operational amplifier 27 Low pass 22 and via the transformer bridge 12 into the high-voltage cascade 16 back.
  • the current-voltage converter 25 is constructed and dimensioned so that at the exit of the Operational amplifier 27 sets a voltage that is proportional to the electrical spray current from the electrode 19 to earth 9.
  • the voltage at the output 36 of this measuring circuit can on the be evaluated as described above.

Claims (12)

  1. Procédé pour reconnaítre des pièces dans une installation électrostatique de revêtement comportant au moins un appareil électrostatique de revêtement (66) qui applique une haute tension à une électrode à haute tension (17), dans lequel un courant de pulvérisation, contenant une charge électrostatique pour charger des particules d'un matériau de revêtement à pulvériser, est produit par l'électrode à haute tension, une pièce (19 ; 200) électriquement conductrice, à recouvrir, est guidée devant l'appareil de revêtement et le courant de pulvérisation de l'électrode à haute tension (17) est déterminé, caractérisé en ce que le courant de pulvérisation déterminé est comparé à une première valeur de seuil puis, lorsque le courant de pulvérisation dépasse la première valeur de seuil, il est reconnu que la pièce (19 ; 200) s'approche de l'appareil de revêtement (66).
  2. Procédé selon la revendication 1, caractérisé en ce qu'au moins une fonction de l'installation de revêtement, en particulier la distribution du matériau de revêtement et/ou le mouvement du ou de chaque appareil de revêtement (66) dans la direction verticale et/ou la direction horizontale, est commandée en fonction de la grandeur du courant de pulvérisation déterminé.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'appareil de revêtement (66) initialise la distribution du matériau de revêtement lorsque le courant de pulvérisation dépasse la première valeur de seuil, et termine la distribution lorsque le courant de pulvérisation passe au-dessous d'une deuxième valeur de seuil.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la distance entre la pièce (19 ; 200) et l'électrode à haute tension (66) dans la direction de pulvérisation est déterminée et réglée en fonction du courant de pulvérisation déterminé.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que sont prévus au moins deux appareils de revêtement (66), en ce que sont déterminés les instants t1, t2 auxquels les courants de pulvérisation d'un premier et d'un deuxième appareil de revêtement dépassent une valeur de seuil prédéfinie, en ce qu'à partir de ces instants on calcule une différence de temps t2-t1, et en ce qu'en fonction de la différence de temps et de la distance entre le premier et le deuxième appareil de revêtement (66), on détermine la vitesse de la pièce (19 ; 200).
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que plusieurs courbes caractéristiques U/I sont mémorisées pour le ou chaque appareil de revêtement (66), en fonction de la tension d'alimentation d'un générateur de haute tension (12-16) une courbe caractéristique U/I est sélectionnée pour l'électrode à haute tension (17), le courant de pulvérisation 1 17-9 est mesuré, un point de travail est déterminé sur la courbe caractéristique U-I en fonction du courant de pulvérisation, et la haute tension réelle sur l'électrode est ainsi déterminée.
  7. Installation électrostatique de revêtement comportant au moins un appareil de revêtement (66), contenant une électrode à haute tension (17) qui délivre un courant de pulvérisation contenant des charges électrostatiques pour charger des particules d'un matériau de revêtement à pulvériser, à l'appareil de revêtement ou à chaque appareil de revêtement (66) étant associés un dispositif de mesure (22, 25) pour déterminer le courant de pulvérisation ainsi qu'un dispositif d'exploitation (60), caractérisée en ce que le dispositif d'exploitation est conçu de manière que le courant de pulvérisation déterminé soit comparé à une première valeur de seuil puis, à reconnaítre, lorsque le courant de pulvérisation dépasse la première valeur de seuil, que la pièce (19 ; 200) s'approche de l'appareil de revêtement (66).
  8. Installation de revêtement selon la revendication 7, caractérisée à ce qu'à l'appareil ou à chaque appareil de revêtement (66) est associé un appareil de commande numérique (60) pour commander le fonctionnement de l'appareil de revêtement en fonction du courant de pulvérisation déterminé, et en ce que l'appareil de revêtement et l'appareil de commande sont reliés par une structure bus (62).
  9. Installation de revêtement selon la revendication 8, caractérisée en ce que sont prévus plusieurs appareils de revêtement (66) qui sont reliés chacun, par un bus de pistolet (62), à leurs appareils de commande numériques (60), et forment un noeud de réseau et en ce que les appareils de commande numériques (60) sont reliés par un bus de revêtement (80) à d'autres composants de l'installation de revêtement, les noeuds de réseau étant des noeuds LON.
  10. Installation de revêtement selon l'une des revendications 7 à 9, caractérisée par un générateur de haute tension (13, 16) dans le ou chaque appareil de revêtement (66), qui comporte un convertisseur (13) avec une bobine primaire (14) et une bobine secondaire (15) lesquelles sont reliées par un pont (12), la bobine primaire pouvant recevoir une tension de commande alternative, et le dispositif de mesure contenant un passe-bas (22) qui est raccordé entre la bobine primaire et la terre, ainsi qu'un convertisseur courant-tension (25) qui est relié au passe-bas.
  11. Installation de revêtement selon la revendication 10, caractérisée en ce que le passe-bas (2) comporte deux bobines (21, 26), la première bobine étant reliée à la bobine primaire (14) et, par un condensateur (23) à la terre (9), et le convertisseur courant-tension (25) étant une source de tension (27, 28) commandée par courant, qui est raccordée par la deuxième bobine (26) au point de liaison (35) de la première bobine (21) et du condensateur (23).
  12. Installation de revêtement selon l'une des revendications 8 à 11, caractérisée en ce qu'à l'appareil de revêtement ou à chaque appareil de revêtement (66) sont associés un dispositif à mémoire pour mémoriser plusieurs courbes caractéristiques U/I pour différentes tensions d'alimentation de l'électrode à haute tension (17), un dispositif (60) pour déterminer la tension d'alimentation actuelle et un dispositif d'exploitation (60), afin de sélectionner une courbe caractéristique indépendamment de la tension d'alimentation et pour déterminer, en fonction du courant de pulvérisation, un point de travail sur la courbe caractéristique U/I, qui est utilisé pour déterminer la haute tension réelle sur l'électrode.
EP98113602A 1997-09-01 1998-07-21 Procédé de détecter la présence d'une pièce dans une installation de revêtement électrostatique et installation de revêtement électrostatique Expired - Lifetime EP0899020B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19738142 1997-09-01
DE19738142A DE19738142C1 (de) 1997-09-01 1997-09-01 Elektrostatische Beschichtungsanlage und Verfahren zur Erkennung und Beschichtung von Werkstücken in einer elektrostatischen Beschichtungsanlage

Publications (2)

Publication Number Publication Date
EP0899020A1 EP0899020A1 (fr) 1999-03-03
EP0899020B1 true EP0899020B1 (fr) 2004-09-29

Family

ID=7840843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113602A Expired - Lifetime EP0899020B1 (fr) 1997-09-01 1998-07-21 Procédé de détecter la présence d'une pièce dans une installation de revêtement électrostatique et installation de revêtement électrostatique

Country Status (4)

Country Link
US (1) US6068877A (fr)
EP (1) EP0899020B1 (fr)
JP (1) JPH11156247A (fr)
DE (2) DE19738142C1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347437A (ja) * 1991-05-23 1992-12-02 Matsushita Seiko Co Ltd 空気調和機の制御装置
DE19926926A1 (de) * 1999-06-14 2000-12-21 Itw Gema Ag Sprühbeschichtungseinrichtung
CA2461377A1 (fr) * 2001-10-18 2003-05-15 Nordson Corporation Pistolet-pulverisateur a commande de ligne de charge variable
US6755339B2 (en) 2002-06-21 2004-06-29 Delphi Technologies, Inc. Fluxing apparatus for applying powdered flux
DE102006032645B4 (de) * 2006-07-13 2008-06-12 J. Wagner Ag Vorrichtung zur Erfassung des Profils eines mit Pulver oder Nasslack zu beschichtenden Werkstücks
JP5352799B2 (ja) * 2008-04-01 2013-11-27 旭サナック株式会社 コロナ帯電式塗装装置
JP5731218B2 (ja) * 2011-02-08 2015-06-10 旭サナック株式会社 静電塗装装置
JP5731219B2 (ja) * 2011-02-08 2015-06-10 旭サナック株式会社 静電塗装装置
JP5623931B2 (ja) * 2011-02-08 2014-11-12 旭サナック株式会社 静電塗装装置
JP6100807B2 (ja) * 2015-01-09 2017-03-22 トヨタ自動車株式会社 静電塗装装置及びその導電性検査方法
JP2016221518A (ja) * 2016-08-26 2016-12-28 アピックヤマダ株式会社 導電膜形成装置とその方法
DE102019006501A1 (de) * 2019-09-16 2021-03-18 Zasso Group Ag Dielektrischer Driftanalysator
CN114789102B (zh) * 2022-05-23 2024-03-26 佛山市德珼尔科技有限公司 智能曲面喷涂生产方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966880A (en) * 1956-11-23 1961-01-03 Daimler Benz Ag Control arrangement for electrostatic spray installation
US3851618A (en) * 1974-01-14 1974-12-03 Ransburg Corp Electrostatic coating apparatus
DE2849295C2 (de) * 1978-11-14 1985-04-04 Ransburg-Gema AG, St.Gallen Sprühbeschichtungsvorrichtung zum Beschichten von Gegenständen
DE3014114C2 (de) * 1980-04-12 1982-04-29 Gema AG Apparatebau, 9015 St. Gallen Einrichtung zum automatischen Beschichten von Gegenständen mit einer Spritzvorrichtung
SE8100726L (sv) * 1980-05-29 1981-11-30 Ransburg Corp Hogspenningsanordning
US4324812A (en) * 1980-05-29 1982-04-13 Ransburg Corporation Method for controlling the flow of coating material
DE3822835A1 (de) * 1988-07-06 1990-03-08 Josef Schucker Verfahren und anordnung zum lackieren von werkstueckoberflaechen
DE4232026C2 (de) * 1992-09-24 1996-10-24 Wagner Int Elektrostatische Beschichtungspistole und Verfahren zum Erzeugen einer Hochspannung
DE4406046C2 (de) * 1994-02-24 1997-11-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
DE19502390C2 (de) * 1995-01-26 1997-09-25 S & S Metallsuchgeraete & Recy Verfahren und Vorrichtung zum Auftragen von Schmierstoffen auf Bandmaterial
DE19650112C1 (de) * 1996-12-03 1998-05-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
DE19738141C2 (de) * 1997-09-01 2003-06-05 Wagner Int Steuersystem einer Beschichtungsanlage mit einer LON-Busstruktur

Also Published As

Publication number Publication date
EP0899020A1 (fr) 1999-03-03
JPH11156247A (ja) 1999-06-15
DE59812017D1 (de) 2004-11-04
DE19738142C1 (de) 1999-05-20
US6068877A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
EP0899020B1 (fr) Procédé de détecter la présence d'une pièce dans une installation de revêtement électrostatique et installation de revêtement électrostatique
DE3305058A1 (de) Steuerschaltung
DE1287532B (de) Vorrichtung zum Bestimmen des Hochspannungswiderstandes von Materialstuecken
DE2713249C2 (de) Verfahren und Vorrichtung zum Beschichten einer Unterlage mittels pulverförmigen Werkstoffes auf elektrostatischem Wege
EP0899019B1 (fr) Méthode de commande d'une installation de revêtement électrostatique dépendante de pièces et installation de revêtement électrostatique
EP0283936B1 (fr) Procédé de commande d'une installation de revêtement électrostatique
EP0185311B1 (fr) Dispositif et procédé pour la régulation d'un appareil de pulvérisation électrostatique
EP2496364A1 (fr) Dispositif de revêtement et installation de revêtement avec adaptation dynamique de la vitesse du pulvérisateur et de la haute tension
EP0132659B1 (fr) Arrangement de régulation pour un électrofiltre
EP1060795B1 (fr) Commande pour un dispositif de revêtement par pulvérisation électrostatique
EP0899022B1 (fr) Méthode de commande d'un système d'évacuation d'une installation de poudrage électrostatique et installation de poudrage électrostatique
EP0734778A2 (fr) Dispositif de revêtement par pulvérisation électrostatique
DE19717353A1 (de) Pulverbeschichtungsanlage
DE3737774C2 (fr)
EP2051345B1 (fr) Dispositif d'électrodes
WO2017025227A1 (fr) Circuit de commande pour protéger d'une décharge par étincelles
DE102011122056A1 (de) Anlage zum Beschichten von Gegenständen
WO2004101164A1 (fr) Procede de revetement, buse de pulverisation et cabine de revetement
DE19511254A1 (de) Elektrostatische Sprühbeschichtungseinrichtung
DE2810169B1 (de) Vorrichtung zur Stromversorgung von Werkstuecken beim Durchlaufen von elektrophoretischen Lackierbaedern
DE102007060211A1 (de) Verfahren und Vorrichtung zum elektrostatischen Sprühbeschichten von Objekten
DE102011004037A1 (de) Oszillator für eine Pulversprühbeschichtungseinrichtung
DE4409739A1 (de) Verfahren und Schaltungsanordnung zur Durchführung des Verfahrens für einen Kapazitätsänderungsdetektor zur Überwachung eines Gegenstandes
DE2003768A1 (de) Verfahren zur Fahrzeugerfassung
DE3606749A1 (de) Verfahren zum verarbeiten eines als eine frequenz vorliegenden messwertes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990804

AKX Designation fees paid

Free format text: CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20030210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 59812017

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080718

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100714

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100726

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100714

Year of fee payment: 13

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812017

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110721