EP0889142A1 - Retortenofen zur Produktion von Magnesium - Google Patents

Retortenofen zur Produktion von Magnesium Download PDF

Info

Publication number
EP0889142A1
EP0889142A1 EP98111792A EP98111792A EP0889142A1 EP 0889142 A1 EP0889142 A1 EP 0889142A1 EP 98111792 A EP98111792 A EP 98111792A EP 98111792 A EP98111792 A EP 98111792A EP 0889142 A1 EP0889142 A1 EP 0889142A1
Authority
EP
European Patent Office
Prior art keywords
retort
vacuum
chamber
magnesium
sheet metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98111792A
Other languages
English (en)
French (fr)
Other versions
EP0889142B1 (de
Inventor
Manfred Prof. Dipl.-Ing. Knipfelberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Logistik Zentrum Institut fur Materialfluss Logistik und Expertensysteme GmbH
Original Assignee
Logistik Zentrum Institut fur Materialfluss Logistik und Expertensysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Logistik Zentrum Institut fur Materialfluss Logistik und Expertensysteme GmbH filed Critical Logistik Zentrum Institut fur Materialfluss Logistik und Expertensysteme GmbH
Publication of EP0889142A1 publication Critical patent/EP0889142A1/de
Application granted granted Critical
Publication of EP0889142B1 publication Critical patent/EP0889142B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/02Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated of multiple-chamber type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/004Linings or walls comprising means for securing bricks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/066Vacuum

Definitions

  • the invention relates to a retort furnace for the production of Magnesium by reducing an oxidic feed Magnesium, especially in the form of dolomite lime, with the help of a Reducing agent, especially ferrosilicon, at temperatures ⁇ 1,000 ° C and under a rough vacuum.
  • magnesium chloride in the electrolysis process. This process is very complex because of the high energy input is required and problems with by-products and waste products (especially chlorine and electrode sludge) occur.
  • the magnesium chloride must also be chemically processed in a complex manner become. This results in a relatively high price for the magnesium, although there are rich deposits of magnesium compounds gives.
  • magnesium by thermal reduction of magnesium oxide, which is in the form of dolomite lime (CaO MgO) is abundant to win.
  • Dolomite limestone is included a reducing agent made from inexpensive ferrosilicon can exist, mixed, especially in a stoichiometric Ratio of 2: 1, and in a heat-resistant steel retort spent.
  • the steel retort is external to a reaction temperature heated from about 1200 ° C and below 10 mbar evacuated. Magnesium vapor condenses on the cooled end of the retort, so that metallic magnesium is obtained.
  • This Process does not allow high yield, because because of the heat resistance of the steel retort at high temperatures the retort size is limited.
  • Industrial tube retorts are 3 m long and have an inside diameter of 27.5 cm. With these retorts, 70 kg of magnesium per day be generated. An economic use is with these low production capacities, at best for high-purity special magnesium conceivable.
  • the stated problem is solved with a retort furnace of the type mentioned, solved as a horizontal chamber furnace is formed with at least one over the longitudinal direction extending retort chamber with walls made of fireproof Material and an inner vacuum-tight sheet metal lining and is provided with filling openings at the top, along the retort chamber heating chambers arranged on both sides and with condensers for cooling magnesium vapor and picking up of condensed magnesium, which seals to the vacuum sealed Filling openings can be connected.
  • Retort furnace units which can be up to 14 m long, 6 m high and 0.3 to 0.6 m wide. Each furnace element can hold 30 tons of coal, for example.
  • the retort furnaces are loaded through filling openings at the top while using the coke produced Broaching machines with the doors open in the front of the furnace elements is applied.
  • Such coking plants have a high degree of mechanization since it has been used for many decades have been further developed.
  • the retort furnace according to the invention for the production of magnesium Similar to the structure of the known coke oven, but is to be carried out the thermal reduction of magnesium oxide according to the invention have been modified without doing that in coke production to change proven handling.
  • Through the sheet metal lining the retort chamber is vacuum-tight, so that the Vacuum formation required for magnesium reduction possible is.
  • the condensed magnesium with the capacitors connected vacuum-tight to the filling openings remove, for example, the capacitors be replaced.
  • the one used for the metal sheet lining Metal is preferably austenitic steel or a Nickel-based alloy, which is necessary for the reduction reaction Temperatures, in particular between 1200 ° and 1300 ° C, also withstands vacuum conditions, with a Drop in the sheet metal lining on the inside of the walls under the high temperature under vacuum conditions be expediently prevented by filled-in briquettes can.
  • the sinking of the sheet metal lining can be done in the non-fillable This prevents the upper section of the retort chamber be that the sheet metal liner within this section of the refractory material and is preferably above is closed by ceiling stones that attach to the retort chamber complete their top.
  • the retort furnace according to the invention allows the use of Pidgeon's process in a very economical way.
  • the Profitability can be increased by the fact that for the Magnesium production still existing but no longer needed Coke ovens can be used that are retrofitted with the invention Provide sheet metal lining and to accommodate the capacitors be changed in or at the filling openings.
  • the capacitors are with each other and with a vacuum line Vacuum source connected.
  • the evacuation of the retort chamber takes place thus via connections to those connected to the filling openings Capacitors instead.
  • the capacitors are preferably vacuum-tight on seals the filler openings can be fitted. Conveniently they essentially extend the filler opening with a lid, with the precipitate of magnesium the capacitor is used, which is removable.
  • the walls of the capacitors are preferably water-cooled.
  • the sheet metal lining can be made of an austenitic steel as well as a nickel-based alloy and so under temperature and vacuum conditions. It can be appropriate, the sheet metal lining under tension anchor fireproof walls of the retort chamber.
  • the refractory walls preferably made of silica wall have practically no temperature expansion in the temperature range between about 600 ° C and the reaction temperature. There this does not apply to the sheet metal linings, it is advantageous these with longitudinal and / or transverse beads to compensate for thermal expansion to provide.
  • the regularly provided for a horizontal chamber furnace front doors of the retort chamber are preferably with pasty, pourable or sprayable sealant vacuum-tight designed to be closable.
  • the doors or door frames can be used to prevent sealant Pocket segments may be provided for collecting the sealant.
  • Figure 1 shows a horizontal chamber furnace 1, the one Substructure 2 and a retort chamber extending over the length 3 has.
  • the retort chamber is on both ends closed by doors 4, 5.
  • Below doors 4, 5 are outside the furnace 1 frames 6, on which one Broaching machine (not shown) or a removal device are movable for clearing ash.
  • the retort chamber 3 has in the illustrated embodiment 3 filler openings 7 that 8 between ceiling stones are trained.
  • Capacitors 9 are placed on the filling openings 7 with vacuum lines 10 with each other and with a vacuum source 11 are connected.
  • FIG. 1 shows that the retort chamber 3 with briquettes 12 filled with a mixture of dolomite lime (CaO ⁇ MgO) and ferrosilicon are manufactured, with an upper part of the Retort chamber cannot be filled.
  • dolomite lime CaO ⁇ MgO
  • FIG. 2 shows a plan view of a front door 4, 5 of the Retort chamber 3.
  • Doors 4, 5 on oven 1 according to the invention can be made vacuum tight so that a seal from the outside must be realized internally. This is for example can be achieved by injecting sealant into the sealing joint, is poured or preferably sprayed, the sealant be applied in excess in pasty or liquid form must, so that the sealant under the influence of negative pressure in the retort chamber 3 from the outside into the sealing joint and under the influence of heat in the retort chamber 3 or the door 4, 5 hardens and causes the sealing effect. There sealants run off in liquid form in the area of the door 4, 5 or drip off is the door with pocket-shaped segments 13 provided with which expired sealant 14 is collected can be.
  • FIG. 3 illustrates the enlarged detail A 'from FIG Structure of an embodiment of a capacitor 9 based on a receptacle 15 formed in the filling opening 7 is placed and is sealed with a seal 16.
  • the recording 15 is from a matched to the housing shape of the capacitor 9 Bevel.
  • the capacitor 9 consists essentially of a the filling opening 7 essentially continuing cylindrical Wall 17, the free top with a cover 18th is lockable.
  • the lid 18 is in the closed position lockable (not shown) and has an eyelet 19 for Lifting the cover 18 or the entire capacitor 9 with the closed, locked lid 18.
  • an insert 20 is used, which has the shape of a has the cup turned upside down and on the vaporous Magnesium deposits.
  • the interior of the cylindrical wall 17 is via a line 21 connected to a vacuum connecting flange 22.
  • a vacuum line 10 (FIG. 1) can be connected to the vacuum connection flange 22.
  • the cylindrical wall 17 is with a radially outer cylindrical Wall 23 surround that with an inlet port 24 and an outlet port 25 for cooling water is provided, through the the cylindrical wall 17 - and thus the insert 20 - on one Temperature of maximum 100 ° C is cooled down.
  • FIG. 4 illustrates the heating system for the retort chamber 3, which is carried out in a manner known for coke ovens.
  • the Walls of the retort chamber 3 are made of refractory material 26 formed and separate the retort chamber 3 from both sides adjacent heating chambers 27 from. Be in the heating chamber 27 Fuel gases and combustion air preheated in a recuperator introduced, namely over the length of the heating chambers 27 at several Places that are evenly spaced from each other. Exhaust gases pass through an upper exhaust opening 28, which with refractory Ring stones 29 is formed out of the furnace 1.
  • the retort chamber 3 is on the inside (with respect to the retort chamber 3) the walls made of refractory material 26 and Bottom of the retort chamber 3 with a sheet metal lining 30 Mistake.
  • the sheet metal lining 30 is supported flat from the walls made of refractory material 26.
  • the attachment to the Walls made of refractory material 26 is filled by the Supported retort chamber 3 with the briquettes 12 of the feed.
  • the sheet metal lining 30 is stepped expanded outside and is in an upper section 31 inside of the refractory material 26 led to an invasion of the Sheet metal lining 30 inside, in the area where the briquettes 12 no outward pressure on the sheet metal lining 30 exercise to exclude.
  • Figure 4 shows that the retort chamber 3 outside the Filling openings 7 with the ceiling stones 8 is closed.
  • the sheet metal lining 30 is above the ceiling stones 8 closed.
  • the exhaust openings 28 are inside a fireclay cover 32 performed, which covers the furnace 1 outside the capacitors 9.
  • Figure 5 illustrates the detail in an enlarged view A of Figure 4 on the construction of the walls made of refractory Material 26, which is preferably silica, with the sheet metal liner 30.
  • the walls made of refractory material 26 are made of refractory Composite stones 33 built.
  • the sheet metal liner 30 is with tie rods 34 against the wall made of refractory material 26 biased under train so that the concern of the sheet metal lining 30 on the wall made of fireproof material 26 also guaranteed is when the vacuum is formed within the retort chamber 3 and a high temperature is set.
  • the wall is made of refractory material 26, if it is made of silica there is no thermal expansion between 600 ° and 1200 ° C, the sheet metal lining 30, however, is significantly below Expands heat, beads 35 are provided in the sheet metal lining, which the thermal expansion of the sheet metal lining 30 through their Compensate for enlargement or reduction.
  • Figure 6 shows the detail B in Figure 5, the sheet metal lining 30 a bolt 36 with an internal thread 37 is welded on is into which a thread of the tie rod 34 can be screwed is, so that the sheet metal lining by screwing the tie rod 34 30 against the shaped blocks 33 of the wall made of refractory Material 26 is pulled.
  • the drawing shows that the retort furnace according to the invention compared to a conventional coke oven by the attachment the sheet metal lining 30 and the placement of the capacitors 9 is modified on the filling openings 7.
  • the capacitor 9 can completely after a batch cycle withdrawn to obtain the deposited magnesium become. However, it is also possible to open the cover 18 only to remove the insert 20 and the new loading of the Retort chamber 3 through the opened lid 18 of the capacitor 9 after insert 20 has been removed. In this case can the housing of the capacitor 9 more or less fixed be connected to the wall of the filling opening 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Zur Produktion von Magnesium durch Reduktion eines Einsatzmaterials (12) aus oxidischem Magnesium, insbesondere in Form von Dolomitkalk, mit Hilfe eines Reduktionsmittels, insbesondere Ferrosilizium, bei Temperaturen >= 1.000° C und unter einem Grobvakuum, wird ein Retortenofen verwendet, der als Horizontal-Kammerofen ausgebildet ist, wie er grundsätzlich für die Koksherstellung bekannt ist. Erfindungsgemäß ist die Retortenkammer (3) des Retortenofens (1) mit einer inneren vakuumdichten Blechauskleidung (30) der Wände aus feuerfestem Material (26) versehen und sind Kondensatoren (9) zum Aufnehmen von kondensiertem Magnesium an Einfüllöffnungen (7) der Retortenkammer (3) vakuumdicht anschließbar. <IMAGE>

Description

Die Erfindung betrifft einen Retortenofen zur Produktion von Magnesium durch Reduktion eines Einsatzmaterials aus oxidischem Magnesium, insbesondere in Form von Dolomitkalk, mit Hilfe eines Reduktionsmittels, insbesondere Ferrosilizium, bei Temperaturen ≥ 1.000° C und unter einen Grobvakuum.
Der ganz überwiegende Anteil der Weltproduktion von Magnesium wird im Elektrolyseverfahren aus Magnesiumchlorid hergestellt. Dieses Verfahren ist sehr aufwendig, da ein hoher Energieeinsatz erforderlich ist und Probleme mit Neben- und Abfallprodukten (insbesondere Chlor und Elektrodenschlämme) auftreten. Das Magnesiumchlorid muß darüber hinaus aufwendig chemisch aufbereitet werden. Hieraus resultiert ein relativ hoher Preis für das Magnesium, obwohl es reiche Vorkommen an Magnesiumverbindungen gibt.
Es ist ferner bekannt, Magnesium durch eine thermische Reduktion von Magnesiumoxid, das in Form von Dolomitkalk (CaO MgO) reichlich vorhanden ist, zu gewinnen. Dabei wird Dolomitkalk mit einem Reduktionsmittel, das aus dem preiswerten Ferrosilizium bestehen kann, gemischt, insbesondere in einem stöchiometrischen Verhältnis von 2:1, und in eine hitzebeständige Stahlretorte verbracht. Die Stahlretorte wird extern auf eine Reaktionstemperatur von etwa 1200° C aufgeheizt und auf unter 10 mbar evakuiert. An dem gekühlten Ende der Retorte kondensiert Magnesiumdampf, so daß metallisches Magnesium gewonnen wird. Dieses Verfahren (Pidgeon-Verfahren) erlaubt keine hohe Ausbeute, da wegen der Warmfestigkeit der Stahlretorte bei hohen Temperaturen die Retortengröße beschränkt ist. Industriell eingesetzte Rohrretorten sind 3 m lang und weisen einen Innendurchmesser von 27,5 cm auf. Mit diesen Retorten kann 70 kg Magnesium pro Tag erzeugt werden. Eine wirtschaftliche Verwendung ist bei diesen geringen Produktionskapazitäten allenfalls für hochreines Spezialmagnesium denkbar.
Bei einem ähnlichen Verfahren (Bolzano-Verfahren) wird mit den gleichen Ausgangsmaterialien die silicothermische Reaktion in einem Reaktor durchgeführt, der intern mit Strom beheizbar ist. Dieser Reaktor besteht aus einem Stahlbehälter, der im Bereich der Aufheizung innen mit einem feuerfesten Material ausgekleidet ist. Der durch eine Kuppel gebildete obere Teil des Stahlreaktors wird gekühlt, so daß an den Wänden der Kuppel Magnesiumdampf kondensiert und sich Magnesium an den Wänden ansetzt. Die Kuppel ist zur Gewinnung des Magnesium abnehmbar. Auch dieses Verfahren ist unwirtschaftlich, da eine Mechanisierung der Beschickung und Entleerung des Reaktors kaum möglich ist. Darüber hinaus ist die elektrische Aufheizung nicht wirtschaftlich, da sie keine Verwendung von aufgeheizten Abgasen ermöglicht.
Das sich aus dem Stand der Technik ergebende Problem besteht somit darin, daß eine umweltfreundliche und wirtschaftliche Herstellung von Magnesium nicht möglich ist. Da Magnesium als leichtes und gießbares Metall zunehmend, beispielsweise im Automobilbau, eingesetzt wird, besteht ein erheblicher Bedarf an einer verbesserten Magnesiumgewinnung.
Das genannte Problem wird erfindungsgemäß mit einem Retortenofen der eingangs erwähnten Art gelöst, der als Horizontal-Kammerofen ausgebildet ist mit wenigstens einer sich über die Längsrichtung erstreckenden Retortenkammer, die mit Wänden aus feuerfestem Material und einer inneren vakuumdichten Metallblechauskleidung sowie mit oben liegenden Einfüllöffnungen versehen ist, mit entlang der Retortenkammer beidseitig angeordneten Heizkammern und mit Kondensatoren zum Abkühlen von Magnesiumdampf und Aufnehmen von kondensiertem Magnesium, die abgedichtet vakuumdicht an die Einfüllöffnungen anschließbar sind.
Horizontal-Kammeröfen, die extern beheizt werden, sind zur Kokserzeugung bekannt. Dabei werden Retortenofeneinheiten verwendet, die bis zu 14 m lang, 6 m hoch und 0,3 bis 0,6 m breit sein können. Jedes Ofenelement kann dabei beispielsweise 30 t Kohle aufnehmen. Die Beladung der Retortenöfen erfolgt durch Einfüllöffnungen an der Oberseite, während der produzierte Koks mittels Räummaschinen bei geöffneten Türen in den Stirnseiten der Ofenelemente ausgebracht wird. Derartige Verkokungsanlagen weisen einen hohen Mechanisierungsgrad auf, da sie über viele Jahrzehnte fortentwickelt worden sind.
Der erfindungsgemäße Retortenofen zur Herstellung von Magnesium ähnelt dem Aufbau des bekannten Koksofens, ist jedoch zur Durchführung der thermischen Reduktion von Magnesiumoxid erfindungsgemäß modifiziert worden, ohne dabei die bei der Koksproduktion bewährte Handhabung zu verändern. Durch die Metallblechauskleidung ist die Retortenkammer vakuumdicht ausgebildet, so daß die für die Magnesiumreduktion erforderliche Vakuumausbildung möglich ist. Darüber hinaus läßt sich das kondensierte Magnesium mit den vakuumdicht an die Einfüllöffnungen angeschlossenen Kondensatoren entnehmen, indem beispielsweise die Kondensatoren ausgewechselt werden. Das für die Metallblechauskleidung verwendete Metall ist vorzugsweise austenitischer Stahl oder eine Nickel-Basis-Legierung, die den für die Reduktionsreaktion erforderlichen Temperaturen, die insbesondere zwischen 1200° und 1300° C liegen, auch bei Vakuumbedingungen standhält, wobei ein Einfallen der auf der Innenseite der Wände angebrachten Blechauskleidung unter der hohen Temperatur bei Vakuumbedingungen zweckmäßigerweise durch eingefüllte Briketts verhindert werden kann. Das Einfallen der Blechauskleidung kann in dem nicht füllbaren oberen Abschnitt der Retortenkammer dadurch verhindert werden, daß die Blechauskleidung in diesem Abschnitt innerhalb des feuerfesten Materials geführt ist und vorzugsweise oberhalb von Deckensteinen geschlossen ist, die die Retortenkammer an ihrer Oberseite abschließen.
Der erfindungsgemäße Retortenofen erlaubt die Anwendung des Pidgeon-Verfahrens in einer sehr wirtschaftlichen Weise. Die Wirtschaftlichkeit kann noch dadurch erhöht werden, daß für die Magnesiumproduktion noch vorhandene, aber nicht mehr benötigte Koksöfen verwendet werden, die nachträglich mit der erfindungsgemäßen Blechauskleidung versehen und zur Aufnahme der Kondensatoren in bzw. an den Einfüllöffnungen verändert werden.
In einer bevorzugten Ausführungsform der Erfindung sind die Kondensatoren über eine Vakuumleitung miteinander und mit einer Vakuumquelle verbunden. Die Evakuierung der Retortenkammer findet somit über Anschlüsse an den an die Einfüllöffnungen angeschlossenen Kondensatoren statt.
Vorzugsweise sind die Kondensatoren vakuumdicht auf Dichtungen der Einfüllöffnungen aufsetzbar ausgebildet. Zweckmäßigerweise stellen sie im wesentlichen eine Verlängerung der Einfüllöffnung mit einem Deckel dar, wobei der Niederschlag des Magnesiums an einem Einsatz des Kondensators erfolgt, der herausnehmbar ist.
Die Wände der Kondensatoren sind vorzugsweise wassergekühlt.
Die Blechauskleidung kann sowohl aus einem austenitischen Stahl als auch aus einer Nickel-Basis-Legierung bestehen und so unter den Temperatur- und Vakuumbedingungen stabil sein. Dabei kann es zweckmäßig sein, die Blechauskleidung unter Vorspannung den feuerfesten Wänden der Retortenkammer zu verankern.
Die vorzugsweise aus Silicamauerverk gebildeten feuerfesten Wände weisen praktisch keine Temperaturausdehnung in dem Temperaturbereich zwischen etwa 600° C und Reaktionstemperatur auf. Da dies für die Blechauskleidungen nicht gilt, ist es vorteilhaft, diese mit Längs- und/oder Quersicken zum Ausgleich von Wärmedehnungen zu versehen.
Die bei einem Horizontal-Kammerofen regelmäßig vorgesehenen stirnseitigen Türen der Retortenkammer sind vorzugsweise mit pastösem, gießfähigem oder spritzfähigem Dichtmittel vakuumdicht schließbar ausgebildet. Um ein Ablaufen oder Abtropfen des Dichtmittels zu verhindern, können die Türen oder Türrahmen mit Taschensegmenten zum Auffangen des Dichtmittels versehen sein.
Die Erfindung soll im folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert werden. Es zeigen:
Figur 1 -
einen Längsschnitt durch einen erfindungsgemäßen Retortenofen,
Figur 2 -
eine schematische Ansicht einer stirnseitigen Tür mit Taschensegmenten für Dichtungsmittel
Figur 3 -
einen Vertikalschnitt durch einen auf eine Einfüllöffnung aufgesetzten Kondensator,
Figur 4 -
einen Querschnitt durch eine Retortenkammer und benachbarte Heizkammern des Retortenofens gemäß Figur 1,
Figur 5 -
eine Einzelheit A, die den Aufbau des feuerfesten Materials mit der Metallblechauskleidung zeigt,
Figur 6 -
eine Einzelheit B eines in Figur 5 dargestellten Zugankers.
Figur 1 läßt einen Horizontal-Kammerofen 1 erkennen, der einen Unterbau 2 und eine sich über die Länge erstreckende Retortenkammer 3 aufweist. Die Retortenkammer ist an ihren beiden Stirnseiten durch Türen 4, 5 verschlossen. Unterhalb der Türen 4, 5 befinden sich außerhalb des Ofens 1 Gestelle 6, auf denen eine (nicht dargestellte) Räummaschine bzw. eine Abfördereinrichtung für Räumasche verfahrbar sind.
Die Retortenkammer 3 weist in dem dargestellten Ausführungsbeispiel 3 Einfüllöffnungen 7 auf, die zwischen Deckensteinen 8 ausgebildet sind.
Auf die Einfüllöffnungen 7 sind Kondensatoren 9 aufgesetzt, die mit Vakuumleitungen 10 miteinander und mit einer Vakuumquelle 11 verbunden sind.
Figur 1 läßt erkennen, daß die Retortenkammer 3 mit Briketts 12 gefüllt ist, die aus einer Mischung von Dolomitkalk (CaO·MgO) und Ferrosilizium hergestellt sind, wobei ein oberer Teil der Retortenkammer nicht füllbar ist.
Figur 2 zeigt eine Draufsicht auf eine stirnseitige Tür 4, 5 der Retortenkammer 3. Im Gegensatz zu entsprechenden Türen an Koksöfen müssen die Türen 4, 5 an dem erfindungsgemäßen Ofen 1 vakuumdicht gemacht werden können, so daß eine Dichtung von aussen nach innen realisiert werden muß. Diese ist beispielsweise dadurch erreichbar, daß in die Dichtfuge Dichtmittel gespritzt, gegossen oder vorzugsweise gesprüht wird, wobei das Dichtmittel in pastöser oder flüssiger Form im Überschuß aufgebracht werden muß, damit das Dichtmittel unter Einwirkung des Unterdrucks in der Retortenkammer 3 von außen in die Dichtfuge hineinwandern und unter Einwirkung der Wärme in der Retortenkammer 3 bzw. an der Tür 4, 5 aushärtet und die Abdichtwirkung verursacht. Da dabei Dichtmittel im Bereich der Tür 4, 5 in flüssiger Form ablaufen bzw. abtropfen kann, ist die Tür mit taschenförmigen Segmenten 13 versehen, mit denen abgelaufenes Dichtmittel 14 aufgefangen werden kann.
Figur 3 verdeutlicht als vergrößertes Detail A' aus Figur 1 den Aufbau eines Ausführungsbeispiels eines Kondensators 9, der auf eine in der Einfüllöffnung 7 ausgebildete Aufnahme 15 aufgesetzt und mit einer Dichtung 16 abgedichtet ist. Die Aufnahme 15 besteht aus einer an die Gehäuseform des Kondensators 9 angepaßte Abschrägung. Der Kondensator 9 besteht im wesentlichen aus einer die Einfüllöffnung 7 im wesentlichen fortsetzenden zylindrischen Wandung 17, die an ihrer freien Oberseite mit einem Deckel 18 verschließbar ist. Der Deckel 18 ist in der geschlossenen Stellung verriegelbar (nicht dargestellt) und weist eine Öse 19 zum Anheben des Deckels 18 bzw. des gesamten Kondensators 9 mit geschlossenem, verriegelten Deckel 18 auf. In die zylindrische Wandung 17 ist ein Einsatz 20 eingesetzt, der die Form eines auf den Kopf gestellten Bechers aufweist und an dem sich dampfförmiges Magnesium anlagert.
Der Innenraum der zylindrischen Wandung 17 ist über eine Leitung 21 mit einem Vakuum-Anschlußflansch 22 verbunden. An den Vakuum-Anschlußflansch 22 ist eine Vakuumleitung 10 (Figur 1) anschließbar.
Die zylindrische Wandung 17 ist mit einer radial äußeren zylindrischen Wandung 23 umgeben, die mit einem Einlaufstutzen 24 und einem Auslaufstutzen 25 für Kühlwasser versehen ist, durch das die zylindrische Wand 17 - und damit der Einsatz 20 - auf eine Temperatur von maximal 100° C heruntergekühlt wird.
Figur 4 verdeutlicht das Heizsystem für die Retortenkammer 3, das in einer für Koksöfen bekannten Weise ausgeführt ist. Die Wände der Retortenkammer 3 sind durch feuerfestes Material 26 gebildet und trennen die Retortenkammer 3 von auf beiden Seiten benachbarten Heizkammern 27 ab. In die Heizkammer 27 werden Brenngase und in einem Rekuperator vorgewärmte Verbrennungsluft eingeführt, und zwar über die Länge der Heizkammern 27 an mehreren Stellen, die gleichmäßig voneinander beabstandet sind. Abgase gelangen über eine obere Abgasöffnung 28, die mit feuerfesten Ringsteinen 29 gebildet ist, aus dem Ofen 1 heraus.
Die Retortenkammer 3 ist auf der Innenseite (bezüglich der Retortenkammer 3) der Wände aus feuerfestem Material 26 und des Bodens der Retortenkammer 3 mit einer Metallblechauskleidung 30 versehen. Die Metallblechauskleidung 30 stützt sich flächig an den Wänden aus feuerfestem Material 26 ab. Die Anlage an den Wänden aus feuerfestem Material 26 wird durch die Füllung der Retortenkammer 3 mit den Briketts 12 des Einsatzmaterials unterstützt.
Im oberen Bereich der Retortenkammer 3, der nicht mit Briketts 12 füllbar ist, ist die Blechauskleidung 30 stufenförmig nach außen erweitert und wird in einem oberen Abschnitt 31 innerhalb des feuerfesten Materials 26 geführt, um ein Einfallen der Blechauskleidung 30 nach innen, in dem Bereich, in dem die Briketts 12 keinen nach außen gerichteten Fülldruck auf die Blechauskleidung 30 ausüben, auszuschließen.
Figur 4 läßt erkennen, daß die Retortenkammer 3 außerhalb der Einfüllöffnungen 7 mit den Deckensteinen 8 verschlossen ist. Oberhalb der Deckensteine 8 ist die Metallblechauskleidung 30 geschlossen.
Die Abgasöffnungen 28 sind innerhalb einer Schamotteabdeckung 32 geführt, die den Ofen 1 außerhalb der Kondensatoren 9 abdeckt.
Figur 5 verdeutlicht in einer vergrößerten Darstellung das Detail A der Figur 4 über den Aufbau der Wände aus feuerfestem Material 26, das vorzugsweise Silica ist, mit der Blechauskleidung 30. Die Wände aus feuerfestem Material 26 sind aus feuerfesten Verbundsteinen 33 aufgebaut. Die Metallblechauskleidung 30 ist mit Zugankern 34 gegen die Wand aus feuerfestem Material 26 unter Zug vorgespannt, so daß das Anliegen der Blechauskleidung 30 an der Wand aus feuerfestem Material 26 auch dann gewährleistet ist, wenn innerhalb der Retortenkammer 3 das Vakuum ausgebildet und eine hohe Temperatur eingestellt ist.
Da die Wand aus feuerfestem Material 26, wenn sie aus Silica besteht, zwischen 600° und 1200° C keine Wärmeausdehnung aufweist, die Blechauskleidung 30 sich hingegen erheblich unter Wärme ausdehnt, sind in der Blechauskleidung Sicken 35 vorgesehen, die die Wärmeausdehnung der Blechauskleidung 30 durch ihre Vergrößerung bzw. Verkleinerung ausgleichen können.
Figur 6 zeigt das Detail B in Figur 5, das auf die Blechauskleidung 30 ein Bolzen 36 mit einem Innengewinde 37 aufgeschweißt ist, in das ein Gewinde des Zugankers 34 einschraubbar ist, so daß durch das Festschrauben des Zugankers 34 die Blechauskleidung 30 gegen die Formsteine 33 der Wand aus feuerfestem Material 26 gezogen wird.
Die Zeichnung verdeutlicht, daß der erfindungsgemäße Retortenofen gegenüber einem herkömmlichen Koksofen durch die Anbringung der Blechauskleidung 30 und das Aufsetzen der Kondensatoren 9 auf die Einfüllöffnungen 7 modifiziert ist.
Der Kondensator 9 kann nach Beendigung eines Chargenzyklus vollständig zur Gewinnung des abgeschiedenen Magnesiums abgehoben werden. Es ist jedoch auch möglich, nach Öffnung des Deckels 18 lediglich den Einsatz 20 zu entfernen und die Neubeschickung der Retortenkammer 3 durch den geöffneten Deckel 18 des Kondensators 9 nach herausgenommenem Einsatz 20 vorzunehmen. In diesem Fall kann das Gehäuse des Kondensators 9 mehr oder weniger fest mit der Wandung der Einfüllöffnung 7 verbunden sein.

Claims (12)

  1. Retortenofen zur Produktion von Magnesium durch Reduktion eines Einsatzmaterials (12) aus oxidischem Magnesium, insbesondere in Form von Dolomitkalk, mit Hilfe eines Reduktionsmittels, insbesondere Ferrosilizium, bei Temperaturen ≥ 1.000° C und unter einem Grobvakuum, gekennzeichnet durch einen Aufbau als Horizontal-Kammerofen mit wenigstens einer sich über die Längsrichtung erstreckenden Retortenkammer (3), die mit Wänden aus feuerfestem Material (26) und einer inneren vakuumdichten Blechauskleidung (30) sowie mit obenliegenden Einfüllöffnungen (7) versehen ist, mit entlang der Retortenkammer (3) beidseitig angeordneten Heizkammern (27) und mit Kondensatoren (9) zum Abkühlen von Magnesiumdampf und Aufnehmen von kondensiertem Magnesium, die abgedichtet vakuumdicht an die Einfüllöffnungen (7) anschließbar sind.
  2. Retortenofen nach Anspruch 1, dadurch gekennzeichnet, daß die Kondensatoren (9) über Vakuumleitungen (10) miteinander und mit einer Vakuumquelle (11) verbunden sind.
  3. Retortenofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kondensatoren (9) vakuumdicht auf Dichtungen (16) der Einfüllöffnungen (7) aufsetzbar ausgebildet sind.
  4. Retortenofen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Blechauskleidung (30) aus einem austenitischem Stahl besteht.
  5. Retortenofen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Blechauskleidung (30) aus einer Nickel-Basis-Legierung besteht.
  6. Retortenofen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Blechauskleidung (30) unter Vorspannung an den Wänden der aus feuerfestem Material (26) bestehenden Retortenkammer (3) verankert ist.
  7. Retortenofen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Blechauskleidung (30) mit Längs- und/oder Quersicken (35) zum Ausgleich von Wärmedehnungen versehen ist.
  8. Retortenofen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die vakuumdichte Blechauskleidung (30) im Bereich der Füllung der Retortenkammer (3) auf der Innenseite der durch feuerfestes Material (26) gebildeten Wände angebracht ist und daß sie im oberen Abschnitt (31) der Retortenkammer (3) innerhalb des feuerfesten Materials (26) geführt ist.
  9. Retortenofen nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Retortenkammer (3) an ihrer Oberseite durch Deckensteine (8) abgeschlossen ist und daß die Blechauskleidung (30) oberhalb der Deckensteine (8) geschlossen ist.
  10. Retortenofen nach einem der Ansprüche 1 bis 9, gekennzeichnet durch stirnseitig angeordnete Türen (4, 5) der Retortenkammer (3), die mit pastösem, gießfähigem oder spritzfähigem Dichtmittel (14) vakuumdicht schließbar sind.
  11. Retortenofen nach Anspruch 10, dadurch gekennzeichnet, daß die Türen (4, 5) oder Türrahmen mit Taschensegmenten (13) zum Auffangen von ablaufendem oder abtropfendem Dichtmittel (14) versehen sind.
  12. Verwendung eines Horizontal-Kammer-Koksofens als Retortenofen zur Produktion von Magnesium nach einem der Ansprüche 1 bis 11 nach Auskleidung der Retortenkammer (3) mit der vakuumdichten Blechauskleidung (30) und Ansetzen von Kondensatoren (9) an die Einfüllöffnungen (7).
EP98111792A 1997-07-02 1998-06-26 Retortenofen zur Produktion von Magnesium Expired - Lifetime EP0889142B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19728075 1997-07-02
DE19728075A DE19728075C1 (de) 1997-07-02 1997-07-02 Retortenofen zur Produktion von Magnesium und Verwendung eines Horizontalkammer-Koksofens

Publications (2)

Publication Number Publication Date
EP0889142A1 true EP0889142A1 (de) 1999-01-07
EP0889142B1 EP0889142B1 (de) 2001-11-28

Family

ID=7834312

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98111792A Expired - Lifetime EP0889142B1 (de) 1997-07-02 1998-06-26 Retortenofen zur Produktion von Magnesium

Country Status (6)

Country Link
EP (1) EP0889142B1 (de)
AT (1) ATE209704T1 (de)
CZ (1) CZ203498A3 (de)
DE (2) DE19728075C1 (de)
PL (1) PL327119A1 (de)
SK (1) SK283044B6 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363516C (zh) * 2004-08-02 2008-01-23 刘伟杰 缩短皮江法还原周期和延长还原罐使用寿命的方法和装置
CN104152720A (zh) * 2014-06-23 2014-11-19 石家庄新华能源环保科技股份有限公司 一种电加热还原金属镁及副产水泥熟料的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191155B (zh) * 2006-11-22 2012-07-18 贵州世纪天元矿业有限公司 还原罐的电加热方法及其所用的还原罐

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB606640A (en) * 1942-01-13 1948-08-18 Honorary Advisory Council Sci Direct production of ductile magnesium
CH649096A5 (en) * 1981-11-11 1985-04-30 Technomet Ag Process and equipment for thermal metal production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2837328A (en) * 1953-01-27 1958-06-03 Chromium Mining & Smelting Cor Apparatus for producing magnesium
DE1194151B (de) * 1963-04-23 1965-06-03 Dominion Magnesium Ltd Vorrichtung zur Herstellung von Metallen, insbesondere von Magnesium und Calcium, durch Reduktion ihrer Oxyde
JPS57185938A (en) * 1981-05-06 1982-11-16 Toyota Motor Corp Manufacture of metallic magnesium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB606640A (en) * 1942-01-13 1948-08-18 Honorary Advisory Council Sci Direct production of ductile magnesium
CH649096A5 (en) * 1981-11-11 1985-04-30 Technomet Ag Process and equipment for thermal metal production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363516C (zh) * 2004-08-02 2008-01-23 刘伟杰 缩短皮江法还原周期和延长还原罐使用寿命的方法和装置
CN104152720A (zh) * 2014-06-23 2014-11-19 石家庄新华能源环保科技股份有限公司 一种电加热还原金属镁及副产水泥熟料的方法和装置
CN104152720B (zh) * 2014-06-23 2017-04-05 石家庄新华能源环保科技股份有限公司 一种电加热还原金属镁及副产水泥熟料的方法和装置

Also Published As

Publication number Publication date
EP0889142B1 (de) 2001-11-28
SK90598A3 (en) 2000-04-10
ATE209704T1 (de) 2001-12-15
DE59802210D1 (de) 2002-01-10
PL327119A1 (en) 1999-01-04
DE19728075C1 (de) 1999-02-18
CZ203498A3 (cs) 1999-01-13
SK283044B6 (sk) 2003-02-04

Similar Documents

Publication Publication Date Title
DE3742349C1 (de) Verfahren zum Schmelzen von Metallschrott und Vorrichtung zur Durchfuehrung des Verfahrens
DE102007058473B4 (de) Verfahren und Vorrichtung zum Verschließen eines Koksofens, der durch eine horizontal gerichtete, vorder- und hinterseitige Ofenöffnung beladen oder für die Verkokung vorbereitet wird
EP0889142B1 (de) Retortenofen zur Produktion von Magnesium
DE854340C (de) Verfahren zum Instandsetzen von Koksofenwaenden
DE2828904A1 (de) Vertikaler schachtofen zum schmelzen von metall
EP0820532A1 (de) Verfahren zum abtrennen von kupfer und schwermetallen aus müllverbrennungsrückständen und -schlacken
EP2185881B1 (de) Verfahren zum aufarbeiten von metalloxidhältigen stäuben oder schlacken sowie vorrichtung zur durchführung dieses verfahrens
DD248862A5 (de) Brennofen zur kontinuierlichen herstellung selbstbackender langgestreckter kohlekoerper
DE1167041B (de) Lichtbogen-Reduktionsofen, insbesondere zur Reduktion von Aluminiumoxyd mit Kohlenstoff
DE2908839A1 (de) Vorrichtung zur abdichtung der kammern von verkokungsoefen
DE2114077A1 (de) Reduktionsverfahren fuer Eisenerze
DE58779C (de) Verfahren und Einrichtung zur Herstellung von Ultramarin
DE671806C (de) Sich drehender Muffelofen
DE52555C (de) Verfahren und Apparat zur Ge. winnung von Alkalimetall
DE3531261A1 (de) Verfahren und konverter zum herstellen von stahl
DE618820C (de) Vorrichtung zur Entfernung von Blei aus Zink durch Destillation mit Rueckflusskondensation
DE2303509A1 (de) Vakuum-lichtbogenheizung
DE2132353C3 (de) Verfahren zur Herstellung von AIuminium-Silizium-Legierungen
DE1471585C (de) Rohrbündel Drehofen zur kontinuierlichen Gewinnung von Formkoks aus Kohlekorpern
DE817527C (de) Drehtrommel zum Ausschmelzen von Zink aus Zinkstaub, Trass oder aehnlichem metallisches Zink enthaltendem Gut
DE2641757A1 (de) Schachtofen mit feuerfester ausmauerung
AT156253B (de) Retorte und Retortenanlage zur Behandlung von festen, flüssigen, gas- oder dampfförmigen Rohstoffen bei Temperaturen bis zu 1000° C.
AT149683B (de) Verfahren zum unterbrochenen Betriebe waagrechter Kammeröfen.
DE2337304A1 (de) Gas- oder oelbefeuerter kupolofen
DE75090C (de) Verfahren und Vorrichtung zur Gewinnung von Zink

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990702

AKX Designation fees paid

Free format text: AT BE DE ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010108

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20011128

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011128

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011128

REF Corresponds to:

Ref document number: 209704

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59802210

Country of ref document: DE

Date of ref document: 20020110

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20011128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020624

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: *LOGISTIK ZENTRUM INSTITUT FUR MATERIALFLUSS LOGIS

Effective date: 20020630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030605

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101