EP0885453A2 - Systeme de tubes electroniques et son procede de production - Google Patents

Systeme de tubes electroniques et son procede de production

Info

Publication number
EP0885453A2
EP0885453A2 EP97918006A EP97918006A EP0885453A2 EP 0885453 A2 EP0885453 A2 EP 0885453A2 EP 97918006 A EP97918006 A EP 97918006A EP 97918006 A EP97918006 A EP 97918006A EP 0885453 A2 EP0885453 A2 EP 0885453A2
Authority
EP
European Patent Office
Prior art keywords
tubes
electrodes
pipe systems
field
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97918006A
Other languages
German (de)
English (en)
Inventor
Hans W. P. Koops
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nawotec GmbH
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Publication of EP0885453A2 publication Critical patent/EP0885453A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/02Tubes with a single discharge path
    • H01J21/06Tubes with a single discharge path having electrostatic control means only
    • H01J21/10Tubes with a single discharge path having electrostatic control means only with one or more immovable internal control electrodes, e.g. triode, pentode, octode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/40Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
    • H01J17/44Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes having one or more control electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/02Electron-emitting electrodes; Cathodes
    • H01J19/24Cold cathodes, e.g. field-emissive cathode

Definitions

  • the invention relates to pipe systems of the kind defined in the preamble of claim 1 and to a production method for such pipe systems.
  • Such micro-tube systems are known in vacuum micro-electrical engineering [Brodle, J. J. Muray “The physics of micro and nano-fabrication” Plenum Press, NY (1992)]
  • Such tube systems are equipped with "Spmdt" cathodes called lithographically made cathodes. These cathodes are produced with complicated lithographic processes in multilayer structuring with optical or corpuscular beam lithography with partly self-adjusting processes.
  • the field emission cathode can be etched from silicon, covered with heavy metals or built up from metal by vapor deposition.
  • the reproducibility of the production process is so low that many cathodes arranged in an array must always be used in order to ensure the emittance of the cathode and to achieve the required low internal resistance "transconductance" of the tubes.
  • the object of the invention is to provide pipe systems which are suitable for substantially higher frequencies and to specify a practical manufacturing process for this purpose.
  • the invention achieves the first part of this object with a system described in the characterizing part of patent claim 1.
  • Fig. 1 Principle structure for diode, triode and deflection
  • Fig. 2 Top: triode made of cathode, emitter and anode.
  • triode consisting of several cathodes, grid and anode to increase the emission current
  • FIG. 4 Micro pentode from field emitter cathode K, grids Gl to G3 and anode A with potentials
  • Fig. 5 Micro tubes constructed using the
  • the tube systems described consist of one or more field emission or field ionization cathodes connected in parallel for electrons or ions, a grid electrode with one or more ring-shaped openings and one or more anodes. All electrodes are built up one after the other using corpuscular beam lithography with induced deposition or simultaneously on a planar conductor track structure which supplies the voltages.
  • the electrode spacing is chosen so small that on average only a medium free path of the molecules at normal pressure fits between the emitter and anode electrode. At air and normal pressure, this distance is approximately 0.5 ⁇ m.
  • the electrodes supplying voltage are thick and the conductor tracks are made far apart. Diameters of 0.1 ⁇ m and distances of> 0.5 ⁇ m are sufficient to keep the field strengths in the pipes at the operating voltage of ⁇ 50 V below the limit required for permanent operation.
  • Such tubes require no or only a mild vacuum (1 Torr) for permanent operation and are therefore not called vacuum microelectronic tubes, but miniaturized multi-electrode tubes.
  • the tubes can be operated with different polarities, since electrons are ionized at 2 ⁇ IO 7 V / cm and water at IO 7 V / cm. These field strengths are achieved when etched single crystals are not used as field emitters or field ionizers, but when the nanocrystalline composite materials that are generated during electron beam or ion beam-reduced deposition are used.
  • These materials are nanocrystalline and can be used as super tips on blunt, prefabricated tips or electrodes be put on. Due to their nanocrystalline structure, these super peaks emit or ionize absorbed water or other gases at the specified field strengths, which are already achieved at low voltages below 50 V, if the cathode-anode distance is smaller than the mean free path length of the gases at normal pressure.
  • Such tubes have very small capacities and a flight time of the electrons of less than 1 ps or ⁇ 40 psec of the ions. This means that these tubes can be successfully used as an electronic component in ultra-high frequency technology. Due to the small space requirement of a few ⁇ m ⁇ several of these tubes can be interconnected in close proximity to arithmetic circuits. With the corpuscular beam-induced deposition, resistors with very small capacitances, small capacitances and inductivities with ⁇ m dimensions can be manufactured and built into the circuits, so that the integrated tube electronics for GHz applications is possible.
  • Diodes, triodes, tetrodes, pentodes, miniaturized accelerators and filters and other corpuscular beam optical arrangements can be built using this technique. Tips as field emission cathodes for electron emitters and for ion emitters can be used in other prefabricated circuits and tubes and the operating voltage required can thus be greatly reduced. With the help of electron beam-induced deposition, nanocrystalline composite material can be built with nanometer precision into nanoelectronic assemblies and circuits in a given wiring level.
  • Some preferred embodiments of tube systems which are built up on an insulating medium on conductor path structures prefabricated in planar technology with lithography using field current emission cathodes with a passive current stabilizing resistor and which are assigned at least one anode made of one or more wires are:
  • a diode connected as an ion emitter and operated with H 3 O + ions since all surfaces are covered with water in air and therefore field ionization is used for field strengths above IO 7 volts / cm and the inner tube resistance is determined
  • triode of conventional design, which can also be operated again with ions or electrons, in which in addition to the cathode and anode em grid in the form of one or more openings or even only in the form of 2 rods without upper and lower limits of the field between the two Electrodes is connected, • a tetrode or pentode, in which one or more grids are connected downstream of the first grid,
  • a tetrode or pentode in which a plurality of gratings and partial gratings are connected downstream of the first grid and which can be switched separately by two potential feeds, and thereby additionally also enable fast switching between two anodes which are insulated from one another.
  • All of these tubes can be operated in a moderate vacuum of 1 Torr, so that the mean free path of the electrons or ions in the gas is set at this pressure such that the tubes become functional due to the tube dimensions.
  • the tubes can be hermetically encapsulated in an evacuated vessel and the electrical feeds through the capsule be run as thin lines or the electrical leads are made through the walls of the encapsulation as lead-through wires in insulated filled bores.
  • the resistors for passive current control of the emitters connected upstream of the electron or ion emitters can, depending on the position m of the tubes, be designed in such a way that the field strength variation m of the tubes is compensated for and uniform current emission is achieved from the individual cathodes .
  • conductive and insulating wires can be built up in the plane and in space.
  • the wire diameter is approx. 0.1 ⁇ m, the length up to 10 ⁇ m.
  • the wires can withstand 2 mA / cm 2 current densities. The value is 8 times higher than for example with aluminum (250000 A / cm2).
  • Field emission is possible from the wire tips with approximately 15 times less internal resistance per emitter than with conventional field emitters in vacuum microelectronics.
  • field emitter electron sources can be built with a built-in current stabilizing resistor. Each tip works independently and in a controlled manner and passively stabilizes its emission current. So that the request for Redundancy at the tips in the tubes or m the parallel emitters reduced.
  • the wires end in a very fine tip with radii> 5 nm, but with nanometer-sized crystals that protrude from the tip and thus cause a field strengthening. This manifests itself in a greatly reduced extraction voltage for the field electron current.
  • the resistance of the deposited materials can be set in the range of 5 orders of magnitude via the deposition conditions.
  • the computer-controlled deposition produces 3-dimensional structures which serve as electrodes for micro tubes and tube systems, which generate individual beams, or which can often be produced side by side.
  • a technology has thus been found with which multiple electron beams can be produced on lithographic circuits and carrier boards, which in turn can then be used as production means for deposition structures. With this, the production technology has been found with which microtubes, Dynatron oscillators and fast amplifying switches or fast digital memories that can be erased with 100 GHz can be produced in parallel production technology.
  • FIG. 1 shows the basic structure for a diode, triode and deflection tetrode with THz Switching characteristics.
  • the deflection electrode With the deflection electrode, the amplification factor and a superimposed circuit can be carried out on 2 anodes, which enables particularly stable operation.
  • FIG. 2 shows a triode made of cathode, emitter and anode at the top and a triode made of several cathodes, grating and anode at the bottom for increasing the emission current and reducing the internal resistance.
  • the cathode is at 0 V, the grid at 50 V and the anode at 60 V.
  • Multiple electrodes that are installed between the cathode and anode can be used to thaw multi-electrode tubes, accelerators and decelerators and other tubes.
  • FIG. 4 shows a micro pentode consisting of field emitter cathode K, grids G1 to G3 and anode A with potentials.
  • triodes Structures already implemented to form triodes are shown in FIG. 5.
  • the structure of two micro tubes is shown here.
  • the tubes are constructed in a non-optimized form with the help of electron beam-induced deposition and computer control in the scanning electron microscope. Above the two pipes are shown m top view and below m side view.
  • FIG. 6 shows 2 micro-tube structures made of platinum-containing nanocrystalline material in the oblique view.
  • the picture shows the technical feasibility for structuring with additive lithography.
  • the hairpin carrying the tip can be designed as a low-resistance heating element and the shaft carrying the tip as a high-resistance passive stabilizing resistor.
  • Peak adsorbed gases can be desorbed and the emissions stabilized during operation. This is also due to continued heating or occasional "flashing", i.e. H. the tip is heated briefly, the tip being cleaned in a conventional manner by these methods.
  • the characteristic data that can be achieved with the triodes can be determined from the following data.
  • the field emitter tube operates at 150 uA emission current, with an acceleration voltage U e ⁇ r ⁇ 10 V. Then the internal resistance (“transconductance") R ⁇ > 15 ⁇ S.
  • Conventional field emitters achieve 1 - 2 ⁇ S! ,
  • the field emission tubes can be switched in different ways:
  • Switching with 0.1 ps can take place at 160 ⁇ A discharge current (voltage pulse at the extractor tube). This means that these tubes, which are constructed without semiconductor materials, considerably exceed the switching speed of circuits made of III / V or II / VI semiconductors.

Landscapes

  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

Dans les systèmes de tubes électroniques de la technique antérieure, les fréquences limites supérieures et les caractéristiques de bruit sont limitées par des procédés connus de production de tubes électroniques miniaturisés à électrodes multiples, par ex. des diodes, triodes et tubes à électrodes multiples. Les systèmes de tubes électroniques de l'invention comprennent une ou plusieurs cathodes à émission ou à ionisation de champ montées en parallèle, pour des électrons ou des ions, ainsi qu'une électrode de grille avec une ou plusieurs ouvertures annulaires, et une ou plusieurs anodes. Toutes les électrodes sont formées consécutivement ou simultanément par lithographie à rayonnement corpusculaire, avec dépôt indexé, sur une structure de tracés conducteurs de type planar délivrant les tensions. On choisit un écartement des électrodes suffisamment réduit pour qu'en moyenne seule une longueur de trajet libre moyenne des molécules puisse passer à une pression normale entre les émetteurs et l'anode. L'invention peut être utilisée dans de nombreux domaines mais de préférence dans la technique des hautes fréquences.
EP97918006A 1996-03-09 1997-03-03 Systeme de tubes electroniques et son procede de production Ceased EP0885453A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1996109234 DE19609234A1 (de) 1996-03-09 1996-03-09 Röhrensysteme und Herstellungsverfahren hierzu
DE19609234 1996-03-09
PCT/DE1997/000427 WO1997033295A2 (fr) 1996-03-09 1997-03-03 Systeme de tubes electroniques et son procede de production

Publications (1)

Publication Number Publication Date
EP0885453A2 true EP0885453A2 (fr) 1998-12-23

Family

ID=7787766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97918006A Ceased EP0885453A2 (fr) 1996-03-09 1997-03-03 Systeme de tubes electroniques et son procede de production

Country Status (4)

Country Link
EP (1) EP0885453A2 (fr)
DE (1) DE19609234A1 (fr)
TW (1) TW357932U (fr)
WO (1) WO1997033295A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021520A2 (fr) * 2005-08-04 2007-02-22 Applied Materials, Inc. Procedes et systemes d'elevation de la temperature du substrat dans des reacteurs a plasma

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198557B1 (en) 1997-06-25 2001-03-06 Deutsche Telekom Ag Telecommunication system having frequency-dividing optical components for the parallel processing of optical pulses
WO2000072413A2 (fr) 1999-05-25 2000-11-30 Deutsche Telekom Ag Source miniaturisee de rayonnement de l'ordre du terahertz
DE10006361A1 (de) * 1999-05-25 2000-11-30 Deutsche Telekom Ag Miniaturisierte Terahertz-Strahlungsquelle
EP1363164B1 (fr) 2002-05-16 2015-04-29 NaWoTec GmbH Procédé pour graver une surface par l'intermédiaire de réactions chimiques générées sur ladite surface par un faisceau d'électrons focalisé
DE10302794A1 (de) 2003-01-24 2004-07-29 Nawotec Gmbh Verfahren und Vorrichtung zur Herstellung von Korpuskularstrahlsystemen
JP2011508403A (ja) * 2007-12-28 2011-03-10 セレックス システミ インテグラティ エッセ. ピ. ア. 高周波三極管型電界放出デバイスおよびその製造プロセス
EP2413343B1 (fr) * 2010-07-26 2015-11-04 Hans W.P. Dr. Koops Dispositif de génération de rayonnements THz avec faisceaux à électrons libres

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721885A (en) * 1987-02-11 1988-01-26 Sri International Very high speed integrated microelectronic tubes
US4855636A (en) * 1987-10-08 1989-08-08 Busta Heinz H Micromachined cold cathode vacuum tube device and method of making
JP2968014B2 (ja) * 1990-01-29 1999-10-25 三菱電機株式会社 微小真空管及びその製造方法
US5192240A (en) * 1990-02-22 1993-03-09 Seiko Epson Corporation Method of manufacturing a microelectronic vacuum device
JPH0799666B2 (ja) * 1990-07-18 1995-10-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 集積真空超小型電子素子の製造方法及びその構造
US5203731A (en) * 1990-07-18 1993-04-20 International Business Machines Corporation Process and structure of an integrated vacuum microelectronic device
US5150019A (en) * 1990-10-01 1992-09-22 National Semiconductor Corp. Integrated circuit electronic grid device and method
EP0490536B1 (fr) * 1990-11-28 1998-01-14 Matsushita Electric Industrial Co., Ltd. Dispositif d'émission de champ microélectronique
JP3235172B2 (ja) * 1991-05-13 2001-12-04 セイコーエプソン株式会社 電界電子放出装置
US5249340A (en) * 1991-06-24 1993-10-05 Motorola, Inc. Field emission device employing a selective electrode deposition method
CA2070478A1 (fr) * 1991-06-27 1992-12-28 Wolfgang M. Feist Methode de fabrication de reseaux a emission par champ electrique
DE69205640T2 (de) * 1991-08-01 1996-04-04 Texas Instruments Inc Verfahren zur Herstellung eines Mikroelektronisches Bauelement.
US5382867A (en) * 1991-10-02 1995-01-17 Sharp Kabushiki Kaisha Field-emission type electronic device
JPH05182609A (ja) * 1991-12-27 1993-07-23 Sharp Corp 画像表示装置
JPH05314891A (ja) * 1992-05-12 1993-11-26 Nec Corp 電界放出冷陰極およびその製造方法
GB9210419D0 (en) * 1992-05-15 1992-07-01 Marconi Gec Ltd Cathode structures
US5409568A (en) * 1992-08-04 1995-04-25 Vasche; Gregory S. Method of fabricating a microelectronic vacuum triode structure
DE19502966A1 (de) * 1995-01-31 1995-06-14 Ignaz Prof Dr Eisele Anwendung von elektrisch leitenden Spitzen als Feldemitter in einer Gasatmosphäre zur Herstellung von flachen Bildschirmen oder Gassensoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9733295A3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021520A2 (fr) * 2005-08-04 2007-02-22 Applied Materials, Inc. Procedes et systemes d'elevation de la temperature du substrat dans des reacteurs a plasma
WO2007021520A3 (fr) * 2005-08-04 2007-07-12 Applied Materials Inc Procedes et systemes d'elevation de la temperature du substrat dans des reacteurs a plasma

Also Published As

Publication number Publication date
WO1997033295A3 (fr) 1997-12-04
WO1997033295A2 (fr) 1997-09-12
TW357932U (en) 1999-05-01
DE19609234A1 (de) 1997-09-11

Similar Documents

Publication Publication Date Title
DE60122747T2 (de) Feldemissionsvorrichtung mit kohlenstoffhaltigen spitzen
DE69027611T2 (de) Herstellungsverfahren und struktur einer integrierten vakuum-mikroelektronischen vorrichtung
DE69009307T2 (de) Anzeigevorrichtung mit flachem Bildschirm.
DE60112427T2 (de) Gitterlose fokussierungsvorrichtung zur extraktion von ionen für einen flugzeitmassenspektrometer
DE69601094T2 (de) Eine mehrschichtige säulenförmige Struktur für Feldemissionsvorrichtungen
DE69205094T2 (de) Ionisierungs-Vakuum-Messgerät.
WO1995023424A1 (fr) Cathode a emission par effet de champ et son procede de fabrication
DE69320712T2 (de) Verfahren zur Herstellung von Nano-Anordnungen und nach diesem Verfahren hergestellte Nano-Anordnungen
DE69025831T2 (de) Elektronemittierende Vorrichtung; Herstellungsverfahren Elektronemittierende Vorrichtung, Herstellungsverfahren derselben und Anzeigegerät und Elektronstrahl- Schreibvorrichtung, welche diese Vorrichtung verwendet.
EP1595266A1 (fr) Point quantique constitue de carbone electro-conducteur, son procede de production et son utilisation
WO1997033295A2 (fr) Systeme de tubes electroniques et son procede de production
DE2719660A1 (de) Steuergitter fuer eine elektronenquelle, damit ausgestattete elektronenquelle und verfahren zu deren herstellung
DE10228545A1 (de) Verfahren und System zur Erzeugung eines Elektronenstrahls in Röntgenstrahl-Erzeugungsvorrichtungen
DE69506375T2 (de) Partikel-optisches gerät mit einer elektronenquelle versehen die eine nadel und eine membranartige extraktionselektrode aufweist
DE4426594A1 (de) Schaltvorrichtung
EP0823711B1 (fr) Elément de mémoire digital
DE10210006A1 (de) Vorrichtung und Verfahren zum Erzeugen geladener Teilchen
AT408157B (de) Verfahren zur herstellung eines feldemissions-displays
EP1590825B1 (fr) Procede et dispositif pour produire des systemes a rayonnement corpusculaire
EP0662703A1 (fr) Emetteur d'électrons thermo-ionique réglable
DE19922759A1 (de) Verfahren zur Herstellung einer leitenden Struktur
DE102007010462A1 (de) Verfahren zur Herstellung einer Teilchenstrahlquelle
DE19802779A1 (de) Elektronenemittervorrichtung
EP2130211B1 (fr) Source d'émission de champ d'électrons conçue en tant que cathode d'émission de champ
DE60128063T2 (de) Elektronengenerierende kathode und herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980821

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19991105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NAWOTEC GMBH

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APAK Date of receipt of statement of grounds of an appeal modified

Free format text: ORIGINAL CODE: EPIDOSCNOA3E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20110329