EP0878015B1 - Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung - Google Patents

Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung Download PDF

Info

Publication number
EP0878015B1
EP0878015B1 EP97907032A EP97907032A EP0878015B1 EP 0878015 B1 EP0878015 B1 EP 0878015B1 EP 97907032 A EP97907032 A EP 97907032A EP 97907032 A EP97907032 A EP 97907032A EP 0878015 B1 EP0878015 B1 EP 0878015B1
Authority
EP
European Patent Office
Prior art keywords
armature
contactor
signal
voltage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97907032A
Other languages
English (en)
French (fr)
Other versions
EP0878015A1 (de
Inventor
Fritz Pohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0878015A1 publication Critical patent/EP0878015A1/de
Application granted granted Critical
Publication of EP0878015B1 publication Critical patent/EP0878015B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures

Definitions

  • the invention relates to a method for determination the remaining life of contacts in switchgear, in particular of contactor contacts, whereby as a replacement criterion for the erosion of the so-called contact pressure on the switching path is detected and used to determine the erosion the contact pieces each the change in pressure during Switch-off process measured and converted as the remaining service life is what for the contactor drive from armature with solenoid and associated yoke and a time measurement of the anchor path from Beginning of the armature movement up to the beginning of the contact opening he follows.
  • the invention also relates to the associated one Device with an evaluation device for determination and display of remaining life.
  • the time signals required for this are on the one hand Interruption of an auxiliary current path via the anchor and yoke of the Magnet drive and via the contact voltage on the main contact pieces detected and in defined voltage pulses reshaped.
  • opening the contact especially in the three-phase network by monitoring the voltage especially at an artificial star point. This allows the device to determine the remaining life as an independent additional device in the load circuit between the contactor and the electrical consumer too switch, which only with a communication line connected to the contactor to open the armature-yoke contact is.
  • the object of the invention is a possibility with which the remaining service life detection of one Modification on the contactor, such as in particular an armature-yoke contact, made independently and used by any shooter can be.
  • the object of the invention is in a method of type mentioned solved in that from the tension the time at which the armature is separated from the magnet coil Yoke of the contactor magnet drive is detected.
  • Advantageously will increase the magnetic resistance of the magnetic circuit when lifting the magnet armature. This is due to the change in flow over time Magnetic coil induced voltage signal used for time measurement.
  • the evaluation device has means for detection and detection of the voltage on the solenoid.
  • These means are preferably units for signal rectification, for signal limitation and shaping, as well as for Hiding and enabling signals.
  • the invention is based on the following physical behavior when a contactor magnet drive is switched off: To generate the necessary armature closing force, a current of a predetermined magnitude is built up in the iron circuit by the current of the magnet coil. When the control circuit is switched off, the magnet coil is de-energized and the magnetic flux decays in the closed iron circuit a few milliseconds later due to the remanence. The magnetic armature now begins to open at the moment when the magnetic closing force falls below the opening force, ie the sum of the spring forces of contacts and bridge girders. When the magnet armature is lifted, the magnetic resistance of the magnetic circuit increases suddenly, the remaining magnetic flux ⁇ (Kmagn ⁇ ⁇ 2 ) rapidly decaying and the change in flux over time induces a voltage signal on the magnet coil.
  • FIG. 1 schematically shows the structure and arrangement of a device 100 for detecting the remaining service life of the main contacts of a contactor 1 in the three-phase network.
  • This device is arranged on the load side between the protection 1 and a consumer 20, for example a three-phase motor. It contains a first evaluation module 101, preferably for detecting the contact opening time t k of the first main contacts, or alternatively for detecting the contact opening times of each main contact. It also contains a second evaluation module 102 for detecting the start of the armature movement, which is also referred to as time t A of the armature opening.
  • the contact pressure and therefrom the remaining service life are determined by an evaluation unit, for example a microprocessor 105, and this is shown on a display 106 and / or output via a data bus or further evaluation.
  • an evaluation unit for example a microprocessor 105
  • the second evaluation module 102 is connected with its two measuring inputs to the connections of the contactor magnet coil and determines the point in time at which the armature movement begins t A from the signal curve of the coil voltage during the switch-off process.
  • the device 100 for detecting the remaining service life of the Main contacts is advantageously on the load side of the monitored switching device arranged to with little technical Effort to open the monitored switchgear to monitor how it is in a parallel application in individual is described.
  • the device 100 can also arranged on the infeed side of the monitored switching device and in various facilities (e.g. overload relays) be integrated on the infeed or load side.
  • the capture of contact opening can be done by measuring the contact voltages via measuring connections at the terminals of the individual switching poles.
  • wire contactor coils It is common to wire contactor coils to avoid switching overvoltages to be avoided when the stream of arcs is interrupted (chopping).
  • Examples of wiring elements are R-C elements, Varistors and in the DC case Zener diodes intended.
  • a detection of the anchor opening time the coil voltage when using R-C suppressors not possible because when the coil current is switched off an excited one R-C-L resonant circuit is created and the coil voltage as decaying sine wave no significant waveform for assignment to the anchor opening time.
  • FIG. 3 shows a block diagram of a device for determination the anchor opening time from the switch-off voltage on the solenoid 5 of a contactor 1.
  • the control of the Contactor magnet system can expediently by an auxiliary contactor 2 take place, which the control supply voltage to the Contactor coil 5 turns on or off in two poles. The coil voltage is then at the potential at the time the anchor is opened the control supply voltage separately.
  • 3 is the evaluation module 102 from the series connection of a unit 110 for signal rectification, a unit 120 for signal limitation and formation, a unit 130 for signal suppression and a Unit 140 for signal release.
  • the output signals of the Units 120 and 140 are placed on an AND gate 150, that exactly outputs the desired anchor opening time. Especially because of the necessary exact determination of the small time intervals is a corresponding interpretation of the Units 110 to 140 thanks to problem-adapted components necessary.
  • an output pulse is generated with the characteristic voltage pulse, for example pulse width ⁇ 2 ms, pulse height ⁇ 50 V, in FIG 2, which at the Separation of the anchor from the yoke occurs, coinciding in time.
  • the output pulse for example with an optocoupler not shown in FIG. 3 an output signal can be derived from the supply network of the contactor magnet drive galvanically isolated is.
  • FIG 4 shows a specific wiring example of an evaluation circuit to record the anchor opening time with Components 111 to 136, which are used to assemble the units 110, 120, 130, 140 are self-explanatory.
  • the circuit connects to the Test leads for voltage monitoring of solenoid 6, 6 ' of the contactor drive 5 of FIG 1. Both measuring connections included the same series resistor 9 for voltage division of the Measurement signal to a free pin assignment on the contactor coil 5 to get.
  • the measuring earth is connected to the protective earth and is practically at zero potential, so that during the The auxiliary contactor is only switched on by the outer conductor L a measuring current flows into the evaluation circuit.
  • a characteristic measurement signal is generated.
  • This contains short voltage pulses when the contactor magnet drive is switched on of, for example, 300 ⁇ s width and at 50 Hz AC voltage 10 ms interval during the switch-off process two approximately 2 ms long voltage pulses with a few milliseconds Time interval arise, of which the first pulse is the Induction waste in the iron core marks during the second pulse by lifting the anchor from the yoke and the associated induction change is generated.
  • FIG. 5 shows measurement oscillograms of the evaluation circuit according to FIG. 4.
  • the armature-yoke auxiliary contact of the modified contactor was used to record the time at which the armature opening began electrically and mechanically and to be able to compare it with the output signal of the evaluation circuit.
  • time fluctuations which are caused by mechanical tolerances influenced contact separation of the main contactor contacts and different magnetization state of the contactor magnetic drive, can be largely eliminated, so that the averaged time difference between the beginning of the The armature opening movement and the start of the contact opening are recorded with a measuring accuracy of +/- 100 ... 200 ⁇ s.
  • FIG. 6 shows a further evaluation circuit for detecting the Anchor opening time. It differs from that Circuit in FIG. 4 only through the circuit part of the signal limitation and shaping, especially due to the high input resistance of comparators 128 and 129.
  • the evaluation circuit therefore processes the measurement signal from the contactor coil in the same way, regardless of whether the ground connection of the Electronics supply voltage is at ground potential, or Not. Furthermore, the detection of the anchor opening time even with single-pole interruption of the coil voltage enables.
  • the circuit of FIG. 6 can therefore be used for earthed and ungrounded Networks with both AC and DC voltage be used.
  • signal processing e.g. with an optocoupler galvanic isolation of the output signal to be provided by the supply network of the contactor magnet drive.
  • the exact time assignment of the armature opening time t A to the 'armature opening pulse' of the evaluation circuit according to FIG. 4 and 5 can be done by taking into account a contactor and circuit-specific time offset, calculated from the rising edge of the 'armature opening pulse', for example 0.7 ms for the above type of contactor. Depending on the size of the contactor and the voltage level of the control supply voltage, it may be necessary to adapt the circuit section for signal limitation.
  • FIG. 8 shows the signal curve of the armature opening time t A of the evaluation circuit according to FIG. 6 and the contact opening time of a standard contactor, again using the averaging.
  • the mean time interval from the beginning of the armature opening t A to the beginning of the contact opening t k can be specified in the measured example as 4.6 ms ⁇ 0.2 ms.
  • the evaluation circuit described for detecting the armature opening time can be part of an evaluation device for determining the remaining service life of contactor main contacts.
  • the evaluation device is located on the load side between the contactor and the electrical consumer and is contacted with the outer conductors L1, L2, L3 via a first monitoring module to detect the opening of the contact from the change in voltage at an artificial star point.
  • An in particular two-wire signal line connects the contacts of the contactor coil to a second monitoring module for the detection of the armature opening. From the time signals of the armature opening t A and the contact opening t K supplied by the monitoring modules, the microprocessor determines the current contact pressure and from this the electrical remaining service life of the main contact pieces.

Landscapes

  • Keying Circuit Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

Es wurde bereits vorgeschlagen, zur Bestimmung der Restlebensdauer von Schützkontakten als Ersatzkriterium für den Abbrand den sogenannten Kontaktdurchdruck an der Schaltstrecke zu erfassen und zur Bestimmung des Abbrandes der Kontaktstücke jeweils die Durchdruckänderung während des Ausschaltvorganges zu messen und als Restlebensdauer umzurechnen. Dazu ist beim Magnetantrieb aus Joch und Anker mit Magnetspule eine Zeitmessung des Ankerweges von Beginn der Ankerbewegung bis zum Beginn der Kontaktöffnung notwendig. Erfindungsgemäß wird der Zeitpunkt der Trennung des Ankers vom Joch des Schützmagnetantriebes aus der Spannung an der Magnetspule detektiert. Dabei wird die Erhöhung des magnetischen Widerstandes des Magnetkreises beim Abheben des Magnetankers erfaßt. Bei der zugehörigen Anordnung mit einem Auswertegerät zur Bestimmung und Anzeige der Restlebensdauer hat das Auswertegerät (100) Mittel (110 - 150) zur Erfassung und Detektion der Spannung an der Magnetspule (5).

Description

Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten, insbesondere von Schützkontakten, wobei als Ersatzkriterium für den Abbrand der sogenannte Kontaktdurchdruck an der Schaltstrecke erfaßt wird und wobei zur Bestimmung des Abbrandes der Kontaktstücke jeweils die Durchdruckanderung während des Ausschaltvorganges gemessen und als Restlebensdauer umgerechnet wird, wozu beim Schützantrieb aus Anker mit Magnetspule und zugehörigem Joch und eine Zeitmessung des Ankerweges vom Beginn der Ankerbewegung bis zum Beginn der Kontaktöffnung erfolgt. Daneben bezieht sich die Erfindung auch auf die zugehörige Vorrichtung mit einem Auswertegerat zur Bestimmung und Anzeige der Restlebensdauer.
In der älteren, nicht vorveröffentlichten DE 44 27 006 A0 wird die Restlebensdauer eines Schützes beim Ausschaltvorgang aus der Zeitdifferenz zwischen dem Beginn der Ankeröffnungsbewegung und dem Kontaktöffnungsbeginn abgeleitet. Aus dem Wert der Zeitdifferenz bestimmt ein Mikroprozessor nach einem Auswertealgorithmus den aktuellen Wert des sog. Kontakt-Durchdruckes, welcher durch Abbrand von seinem Neuwert (= 100 % Restlebensdauer) auf seinen Mindestwert (= 0 % Restlebensdauer) abnimmt.
Die hierzu notwendigen Zeitsignale werden zum einen durch Unterbrechung eines Hilfsstrompfades über Anker und Joch des Magnetantriebes und über die Kontaktspannung an den Hauptschaltstücken detektiert und in definierte Spannungspulse umgeformt.
Zur Vereinfachung der Kontaktspannungsmessung wird gemäß Parallelpatentanmeldung vorgeschlagen, das Kontaktöffnen speziell im Drehstromnetz durch eine Überwachung der Spannung insbesondere an einem künstlichen Sternpunkt durchzuführen. Dies erlaubt es, die Einrichtung zur Bestimmung der Restlebensdauer als unabhängiges Zusatzgerät in den Lastkreis zwischen dem Schütz und dem elektrischen Verbraucher zu schalten, welches lediglich mit einer Kommunikationsleitung für das Öffnen des Anker-Joch-Kontaktes mit dem Schütz verbunden ist.
Aufgabe der Erfindung ist es, demgegenüber eine Möglichkeit aufzuzeigen, mit der die Restlebensdauerkennung von einer Modifikation am Schütz, wie insbesondere einem Anker-Joch-Kontakt, unabhängig gemacht und bei beliebigen Schützen eingesetzt werden kann.
Die Aufgabe ist erfindungsgemäß bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß aus der Spannung an der Magnetspule der Zeitpunkt der Trennung des Ankers vom Joch des Schützmagnetantriebes detektiert wird. Vorteilhafterweise wird dabei die Erhöhung des magnetischen Widerstandes des Magnetkreises beim Abheben des Magnetankers erfaßt. Dabei wird das durch die zeitliche Flußänderung an der Magnetspule induzierte Spannungssignal zur Zeitmessung herangezogen.
Bei der zugehörigen Anordnung hat das Auswertegerät Mittel zur Erfassung und Detektion der Spannung an der Magnetspule. Diese Mittel sind vorzugsweise Einheiten zur Signalgleichrichtung, zur Signalbegrenzung und -formung, sowie zur Signalausblendung und Signalfreigabe.
Der Erfindung liegt folgendes physikalische Verhalten beim Ausschalten eines Schützmagnetantriebes zugrunde: Zur Erzeugung der notwendigen Ankerschließkraft wird durch den Strom der Magnetspule im Eisenkreis ein magnetischer Fluß vorgegebener Größe aufgebaut. Beim Ausschalten des Steuerstromkreises wird die Magnetspule stromlos und der magnetische Fluß klingt im geschlossenen Eisenkreis auf Grund der Remanenz einige Millisekunden später ab. Der Magnetanker beginnt nun in dem Augenblick zu öffnen, in dem die magnetische Schließkraft die Öffnungskraft, d.h. die Summe der Federkräfte von Kontakten und Brückenträger, unterschreitet. Beim Abheben des Magnetankers erhöht sich schlagartig der magnetische Widerstand des Magnetkreises, wobei der restliche Magnetfluß Φ (Kmagn ∼ Φ2) rasch abklingt und die zeitliche Flußänderung an der Magnetspule ein Spannungssignal induziert.
Einzelheiten und weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen. Es zeigen
FIG 1
ein Prinzipschaltbild zur Erfassung der Restlebensdauer bei Schützen beim Ausschaltvorgang,
FIG 2a bis d
in mehreren Oszillogrammen die Signalverläufe von Spulenspannung und Spulenstrom als Funktion der Zeit beim Ausschalten eines Schützes bei Wechsel- bzw. Gleichstrombetätigung,
FIG 3
ein Blockschaltbild zur Auswertung der Ausschaltspannung gemäß FIG 2,
FIG 4
die konkrete schaltungsmäßige Realisierung der FIG 3,
FIG 5a und b
zwei zugehörige Oszillogramme mit Signalspannungen zum Zeitpunkt des Ankeröffnens,
FIG 6
eine Variante der schaltungsmäßigen Ausführung von FIG 4 ,
FIG 7
ein zugehöriges Oszillogramm mit der beim Ausschalten der Schützspule auftretenden Signalspannung und
FIG 8
ein Oszillogramm mit Messung der Zeitdifferenz zwischen Ankeröffnungsbeginn und Kontaktöffnungsbeginn beim Ausschalten eines wechselstrombetätigten, serienmäßigen Schützes mit Mittelwertbildung.
Identische bzw. gleichwirkende Teile haben in den Figuren gleiche Bezugszeichen. Die Figuren werden teilweise gemeinsam beschrieben.
FIG 1 zeigt schematisch Aufbau und Anordnung einer Einrichtung 100 zur Erkennung der Restlebensdauer der Hauptkontakte eines Schützes 1 im Drehstromnetz. Diese Einrichtung ist auf der Lastseite zwischen dem Schutz 1 und einem Verbraucher 20, z.B. einem Drehstrommotor, angeordnet. Sie enthält ein erstes Auswertemodul 101 vorzugsweise zur Erfassung des Kontaktöffnungszeitpunktes tk der erstöffnenden Hauptkontakte, bzw. alternativ zur Erfassung der Kontaktöffnungszeitpunkte eines jeden Hauptkontaktes. Sie enthält weiterhin ein zweites Auswertemodul 102 zur Erfassung des Ankerbewegungsbeginns, welcher auch als Zeitpunkt tA des Ankeröffnens bezeichnet ist. Aus den Zeitsignalen tA und tk wird durch eine Auswerteeinheit, beispielsweise einem Mikroprozessor 105, der Kontaktdurchdruck und daraus die Restlebensdauer bestimmt und diese über ein Display 106 angezeigt und/oder über einen Daten-BUS bzw. weiteren Auswertung ausgegeben.
Das zweite Auswertemodul 102 ist mit seinen beiden Meßeingängen mit den Anschlüssen der Schützmagnetspule verbunden und bestimmt aus dem Signalverlauf der Spulenspannung während des Ausschaltvorganges den Zeitpunkt des Ankerbewegungsbeginns tA.
Die Einrichtung 100 zur Erkennung der Restlebensdauer der Hauptkontakte wird vorteilhafterweise auf der Lastseite des überwachten Schaltgerätes angeordnet, um mit geringem technischem Aufwand das Kontaktöffnen des überwachten Schaltgerätes zu überwachen, wie es in einer Parallelanmeldung im einzelnen beschrieben ist. Die Einrichtung 100 kann aber auch auf der Einspeiseseite des überwachten Schaltgerätes angeordnet und in verschiedenen Einrichtungen (z.B. Überlastrelais) auf der Einspeise- oder Lastseite integriert sein. Die Erfassung des Kontaktöffnens kann durch Messung der Kontaktspannungen über Meßanschlüsse an den Anschlußklemmen der einzelnen Schaltpole erfolgen.
FIG 2 zeigt Meßoszillogramme der Spulenspannung und des Spulenstroms beim Ankeröffnen eines Schützes in einer für die Messung modifizierten Anordnung, bei welcher Anker und Joch bei gegenseitiger Berührung einen Hilfsstromkreis schließen bzw. diesen beim Abheben des Ankers trennen. Nach dem Ausschaltzeitpunkt taus erhält man zum Zeitpunkt tA des Ankeröffnens einen Spannungspuls von ca. 2 ms Dauer und 50 V Amplitude, da der rasch abklingende magnetische Restfluß einen Spannungsstoß induziert.
Wie aus den einzelnen Oszillogrammen gemäß FIG 2a, 2b für Wechselspannung und gemäß FIG 2c bzw. 2d für Gleichspannung hervorgeht, ist das Auftreten des charakteristischen Spannungspulses unabhängig davon, ob als Haltestrom des Magnetsystems ein Wechselstrom (z.B. 150 mA eff) oder ein Gleichstrom (z.B. 150 mA=) vorliegt.
Es ist üblich Schützspulen zu beschalten, um Schaltüberspannungen beim Abriß des Bogenstromes (chopping) zu vermeiden. Als Beschaltungselemente sind beispielsweise R-C-Glieder, Varistoren und im Gleichstromfall Zener-Dioden vorgesehen. Eine Erfassung des Ankeröffnungszeitpunktes aus der Spulenspannung bei Verwendung von R-C-Entstörgliedern ist nicht möglich, da beim Abschalten des Spulenstromes ein angeregter R-C-L-Schwingkreis entsteht und die Spulenspannung als abklingende Sinusschwingung keinen signifikanten Signalverlauf für eine Zuordnung zum Ankeröffnungszeitpunkt besitzt.
FIG 3 zeigt ein Blockschaltbid einer Einrichtung zur Bestimmung des Ankeröffnungszeitpunktes aus der Ausschaltspannung an der Magnetspule 5 eines Schützes 1. Die Ansteuerung des Schützmagnetsystems kann zweckmäßigerweise durch ein Hilfsschütz 2 erfolgen, welches die Steuerspeisespannung an die Schützspule 5 zweipolig zu- oder abschaltet. Die Spulenspannung ist dann zum Zeitpunkt des Ankeröffnens vom Potential der Steuerspeisespannung getrennt.
Im Blockschaltbild der FIG 3 besteht das Auswertemodul 102 aus der Hintereinanderschaltung einer Einheit 110 zur Signalgleichrichtung, einer Einheit 120 zur Signalbegrenzung und - formung, einer Einheit 130 zur Signalausblendung und einer Einheit 140 zur Signalfreigabe. Die Ausgangssignale der Einheiten 120 und 140 werden auf ein UND-Glied 150 gegeben, das den gewünschten Ankeröffnungszeitpunkt exakt ausgibt. Insbesondere wegen der notwendigen exakten Bestimmung der kleinen Zeitintervalle ist eine entsprechende Auslegung der Einheiten 110 bis 140 durch problemangepaßte Bauelemente notwendig.
Mit der nunmehr vorgeschlagenen Signalverarbeitung der Spulenspannung - d.h. Gleichrichtung, Begrenzung/Formung, Ausblendung, Freigabe- wird ein Ausgangspuls erzeugt, der mit dem charakteristischen Spannungspuls, beispielsweise Pulsbreite ≈ 2 ms, Pulshöhe ≈ 50 V, in FIG 2, welcher bei der Trennung des Ankers vom Joch entsteht, zeitlich zusammenfällt. Zur weiteren Signalverarbeitung kann vom Ausgangspuls beispielsweise mit einem in FIG 3 nicht dargestellten Optokoppler ein Ausgangssignal abgeleitet werden, das vom Versorgungsnetz des Schützmagnetantriebes galvanisch getrennt ist.
FIG 4 zeigt ein konkretes Beschaltungsbeispiel einer Auswerteschaltung zur Erfassung des Ankeröffnungszeitpunktes mit Bauteilen 111 bis 136, die zum Aufbau der Einheiten 110, 120, 130, 140 selbsterklärend sind. Die Schaltung schließt an die Meßleitungen zur Spannungsüberwachung der Magnetspule 6, 6' des Schützantriebes 5 der FIG 1 an. Beide Meßanschlüsse enthalten den gleichen Vorwiderstand 9 zur Spannungsteilung des Meßsignals, um eine freie Anschlußbelegung an der Schützspule 5 zu erhalten. Die Meßerde ist mit der Schutzerde verbunden und liegt praktisch auf Null-Potential, so daß während des Einschaltzustandes des Hilfsschützes nur vom Außenleiter L ein Meßstrom in die Auswerteschaltung fließt.
Durch die Signalgleichrichtung und die Begrenzerschaltung wird ein charakteristisches Meßsignal erzeugt. Dieses enthält im Einschaltzustand des Schützmagnetantriebes kurze Spannungspulse von beispielsweise 300 µs Breite und bei 50 Hz Wechselspannung 10 ms Zeitabstand, während beim Ausschaltvorgang zwei etwa 2 ms lange Spannungspulse mit wenigen Millisekunden Zeitabstand entstehen, von denen der erste Puls den Induktionsabfall im Eisenkern kennzeichnet, während der zweite Puls durch das Abheben des Ankers vom Joch und der damit verbundenen Induktionsänderung erzeugt wird.
Im nachfolgenden Teil der elektronischen Schaltung werden alle Spannungspulse bis auf den letztgenannten unterdrückt , so daß die Auswerteschaltung nur einen einzigen Ausgangsimpuls liefert, der mit dem Ankeröffnungsbeginn zeitlich zusammen fällt.
FIG 5 zeigt Meßoszillogramme der Auswerteschaltung nach FIG 4. Der Anker-Joch-Hilfskontakt des modifizierten Schützes wurde dazu genutzt, den Zeitpunkt des Ankeröffnungsbeginns elektrisch/mechanisch zu erfassen und mit dem Ausgangssignal der Auswerteschaltung vergleichen zu können. Durch Signalmittelung (sog. Averaging) der Zeitsignale tA und tk können Zeitschwankungen, die durch mechanische Toleranzen beeinflußte Kontakttrennung der Schütz-Hauptkontakte und unterschiedlichen Magnetisierungszustand des Schütz-Magnetantriebes verursacht werden, weitgehend eliminiert werden, so daß die gemittelte Zeitdifferenz zwischen dem Beginn der Ankeröffnungsbewegung und dem Kontaktöffnungsbeginn mit einer Meßgenauigkeit von +/- 100...200 µs erfaßt wird.
FIG 6 zeigt eine weitere Auswerteschaltung zur Erfassung des Ankeröffnungszeitpunktes. Sie unterscheidet sich von der Schaltung in FIG. 4 nur durch den Schaltungsteil der Signalbegrenzung und -formung, insbesondere durch den hohen Eingangswiderstand der Komparatoren 128 und 129. Die Auswerteschaltung verarbeitet daher das Meßsignal von der Schützspule in gleicher Weise, unabhängig davon, ob der Masseanschluß der Elektronikversorgungsspannung auf Erdpotential liegt, oder nicht. Des weiteren wird die Erfassung des Ankeröffnungszeitpunktes auch bei einpoliger Unterbrechung der Spulenspannung ermöglicht.
Die Schaltung nach FIG. 6 kann daher bei geerdeten und ungeerdeten Netzen sowohl bei Wechsel- als auch bei Gleichspannung eingesetzt werden. Zur Signalweiterverarbeitung ist z.B. mit einem Optokoppler eine galvanische Trennung des Ausgangssignals vom Versorgungsnetz des Schützmagnetantriebes vorzusehen.
FIG 7 zeigt Meßoszillogramme der Auswerteschaltung nach FIG. 6, wobei das Elektronik-Massepotential hierbei auf Erdpotential gelegt war. Man erhält vergleichbare Ausgangssignale mit gleicher Meßgenauigkeit wie bei der Schaltung nach FIG. 4.
Die zeitlich exakte Zuordnung des Ankeröffnungszeitpunktes tA zum 'Anker-Öffnungspuls' der Auswerteschaltung gemäß FIG. 4 und 5 kann durch die Berücksichtigung eines schütz- und schaltungsspezifischen Zeitversatzes, gerechnet von der ansteigenden Flanke des 'Anker-Öffnungspulses', beispielsweise 0,7 ms bei obigem Schütztyp, erfolgen. Abhängig von der Schütz-Baugröße und der Spannungshöhe der Steuerspeisespannung kann eine Anpassung des Schaltungsteils für die Signalbegrenzung erforderlich sein.
FIG 8 zeigt den Signalverlauf des Ankeröffnungszeitpunktes tA der Auswerteschaltung nach FIG 6 und des Kontaktöffnungszeitpunktes eines serienmäßigen Schützes, wobei wiederum die Mittelwertbildung (sog. Averaging) angewandt wurde.
Die Signalmittelung über 64 Schaltungen, bei denen die positive Flanke des Anker-Öffnungspulses jeweils der Triggerzeitpunkt ist, zeigt eine schwache Streuung in der Breite des Anker-Öffnungspulses und eine zeitliche Streuung des Kontaktöffnungszeitpunktes von ≈ 0,5 ms. Das mittlere Zeitintervall vom Ankeröffnungsbeginn tA bis zum Kontaktöffnungsbeginn tk kann in gemessenem Beispiel mit 4,6 ms ± 0,2 ms angegeben werden.
Die beschriebene Auswerteschaltung zur Erfassung des Ankeröffnungszeitpunktes kann Teil eines Auswertegerätes zur Bestimmung der Restlebensdauer von Schütz-Hauptkontakten sein. Dabei befindet sich das Auswertegerät auf der Lastseite zwischen dem Schütz und dem elektrischen Verbraucher und ist über ein erstes Überwachungsmodul zur Erkennung des Kontaktöffnens aus der Spannungsänderung an einem künstlichen Sternpunkt mit den Außenleitern L1,L2,L3 kontaktiert. Eine insbesondere zweiadrige Signalleitung verbindet die Anschlüsse der Schützspule mit einem zweiten Überwachungsmodul zur Erkennung des Ankeröffnens. Aus den von den Überwachungsmodulen gelieferten Zeitsignalen des Ankeröffnens tA und des Kontaktöffnens tK bestimmt der Mikroprozessor den aktuellen Kontaktdurchdruck und daraus die elektrische Restlebensdauer der Hauptschaltstücke.

Claims (12)

  1. Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten, insbesondere von Schützkontakten, wobei als Ersatzkriterium für den Abbrand der sogenannte Kontaktdurchdruck an der Schaltstrecke erfaßt wird und wobei zur Bestimmung des Abbrandes der Kontaktstücke jeweils die Durchdruckänderung während des Ausschaltvorganges gemessen und als Restlebensdauer umgerechnet wird, wozu beim Schützmagnetantrieb aus Joch und Anker mit Magnetspule eine Zeitmessung des Ankerweges vom Beginn der Ankerbewegung bis zum Beginn der Kontaktöffnung erfolgt, dadurch gekennzeichnet, daß aus der Spannung an der Magnetspule der Zeitpunkt der Trennung des Ankers vom Joch des Schützmagnetantriebes detektiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Erhöhung des magnetischen Widerstandes des Magnetkreises beim Abheben des Magnetankers erfaßt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das durch die zeitliche Flußänderung an der Magnetspule induzierte Spannungssignal zur Zeitmessung herangezogen wird.
  4. Anordnung zur Durchführung des Verfahrens nach Anspruch 1 oder einem der Ansprüche 2 und 3, mit einem Auswertegerät zur Bestimmung und Anzeige der Restlebensdauer, dadurch gekennzeichnet, daß das Auswertegerät (100) Mittel (110-150) zur Erfassung und Detektion der Spannung an der Magnetspule (5) aufweist.
  5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die Mittel zur Detektion der Signalspannung einer Einheit zur Signalgleichrichtung (110), eine Einheit zur Signalbegrenzung und -formung (120), eine Einheit zur Signalausblendung (130) und eine Einheit zur Signalfreigabe (140) sind.
  6. Anordnung nach Anspruch 5, dadurch gekennzeichnet, daß die Einheiten (110, 120, 130, 140) aus diskreten Schaltungen zur Generierung eines Zeitsignals für den Anker-Öffnungszeitpunkt bestehen.
  7. Anordnung nach Anspruch 5, dadurch gekennzeichnet, daß die Einheit (130) zur Signalausblendung des Signals für den Anker-Öffnungszeitpunkt mehrere Zeitstufen (131, 132, 133) enthält.
  8. Anordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Zeitstufen (131, 132, 133) über wenigstens eine UND-Stufe (135) miteinander verbunden sind.
  9. Anordnung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß das Auswertegerät (100) als Zusatzbaustein in das zu überwachende Schütz (1) integriert ist.
  10. Anordnung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß das Auswertegerät (100) an das zu überwachende Schütz (1) angeschlossen ist.
  11. Anordnung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß das Auswertegerät (100) in einem Überlastrelais auf der Lastseite des zu überwachenden Schützes (1) angeordnet ist.
  12. Anordnung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß das Auswertegerät (100) als unabhängiges Zusatzgerät auf der Lastseite des zu überwachenden Schützes (1) angeordnet ist.
EP97907032A 1996-01-31 1997-01-29 Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung Expired - Lifetime EP0878015B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19603319A DE19603319A1 (de) 1996-01-31 1996-01-31 Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige Anordnung
DE19603319 1996-01-31
PCT/DE1997/000174 WO1997028549A1 (de) 1996-01-31 1997-01-29 Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung

Publications (2)

Publication Number Publication Date
EP0878015A1 EP0878015A1 (de) 1998-11-18
EP0878015B1 true EP0878015B1 (de) 1999-10-20

Family

ID=7784065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97907032A Expired - Lifetime EP0878015B1 (de) 1996-01-31 1997-01-29 Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung

Country Status (5)

Country Link
US (1) US6225807B1 (de)
EP (1) EP0878015B1 (de)
CN (1) CN1065352C (de)
DE (2) DE19603319A1 (de)
WO (1) WO1997028549A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260258A1 (de) * 2002-12-20 2004-07-22 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Restlebensdauer eines Schaltgerätes
DE10260248A1 (de) * 2002-12-20 2004-07-22 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer eines Schaltgerätes und zugehörige Anordnung
DE10260249A1 (de) * 2002-12-20 2004-08-12 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Restlebensdauer eines Schaltgerätes
DE102005045095A1 (de) * 2005-09-21 2007-04-05 Siemens Ag Verfahren zum Bestimmen des Abbrandes von Kontakten eines elektromagnetischen Schaltgerätes und elektromagnetisches Schaltgerät mit einer nach diesem Verfahren arbeitenden Einrichtung
FR2952222A1 (fr) * 2009-11-05 2011-05-06 Schneider Electric Ind Sas Dispositif de determination de l'usure des contacts d'appareils de commutation electrique

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0970554B1 (de) * 1997-03-26 2003-10-22 Siemens Aktiengesellschaft Verfahren und anordung zur selektiven netzüberwachung bei schaltanlagen
DE19734224C1 (de) * 1997-08-07 1999-02-04 Siemens Ag Verfahren und Vorrichtung zur Bestimmung von schaltgerätespezifischen Daten an Kontakten in Schaltgeräten und/oder zur Bestimmung von betriebsspezifischen Daten im damit geschalteten Netz
DE19947105C2 (de) * 1999-09-30 2002-01-24 Siemens Ag Verfahren und zugehörige Anordnungen zum Schalten elektrischer Lastkreise
DE19948551C1 (de) * 1999-10-08 2001-07-05 Siemens Ag Verfahren zur Vergleichmäßigung von Gesamtabbränden eines elektromagnetischen Schaltgeräts und hiermit korrespondierendes elektromagnetisches Schaltgerät
DE10003918C1 (de) 2000-01-29 2001-07-05 Reinhausen Maschf Scheubeck Verfahren zur Überwachung des Kontaktabbrandes bei Stufenschaltern
DE10028559C1 (de) * 2000-06-09 2001-11-22 Siemens Ag Elektromagnetisches Schaltgerät, insbesondere Schütz
DE10051161C1 (de) * 2000-10-16 2002-03-07 Siemens Ag Verfahren und Vorrichtung zur Reduzierung des Kontaktabbrandes eines Schaltgerätes
FR2834120B1 (fr) 2001-12-21 2004-02-06 Schneider Electric Ind Sa Procede pour determiner l'usure des contacts d'un appareil interrupteur
DE10352580B3 (de) * 2003-11-11 2005-04-28 Reinhausen Maschf Scheubeck Verfahren zur Überwachung des Kontaktabbrandes bei Stufenschaltern
FR2891392B1 (fr) * 2005-09-23 2009-03-20 Schneider Electric Ind Sas Dispositif de neutralisation d'un appareil electrique interrupteur
DE102008048828A1 (de) * 2008-09-22 2010-04-08 Siemens Aktiengesellschaft Verfahren zum Ermitteln und/oder zum Einstellen eines Hubes von Betätigungselementen
FR2940509B1 (fr) * 2008-12-19 2010-12-10 Schneider Electric Ind Sas Appareil electrique interrupteur a fonctionnement optimise
FR2945661A1 (fr) 2009-05-18 2010-11-19 Schneider Electric Ind Sas Evaluation de l'usure de contacts enfonces par la variation de la rotation de l'arbre des poles
US20110062960A1 (en) * 2009-09-15 2011-03-17 Lenin Prakash Device and method to monitor electrical contact status
DE102010011394A1 (de) * 2010-03-12 2011-09-15 Franz-Josef Rapp Verfahren und Vorrichtung zur Überwachung des mechanischen Zustandes einer elektromechanischen Relaisanordnung
DE102010041449A1 (de) * 2010-09-27 2012-03-29 Siemens Aktiengesellschaft Verfahren zur Prüfung der Funktionsfähigkeit der elektromagnetischen Auslösung eines Schalters, insbesondere eines Leistungsschalters für Niederspannungen
CN102183728B (zh) * 2011-02-23 2013-10-09 国家电网公司 一种高压断路器电气状况检测方法
FR2981787B1 (fr) 2011-10-21 2014-08-01 Schneider Electric Ind Sas Procede de diagnostic d'un etat de fonctionnement d'un contacteur et contacteur pour la mise en oeuvre dudit procede
RU2486474C1 (ru) * 2012-02-06 2013-06-27 Сергей Владимирович Карпенко Селективный датчик контроля неметаллических изделий
CN102590741B (zh) * 2012-02-29 2014-03-12 温州奔龙自动化科技有限公司 交流接触器自动测试装置
FR3011673B1 (fr) * 2013-10-08 2015-12-11 Schneider Electric Ind Sas Dispositif de commutation et procede de detection d'un defaut d'un tel dispositif de commutation
CN104406786A (zh) * 2014-12-06 2015-03-11 无锡高卓流体设备有限公司 一种电磁继电器机械寿命测试装置
EP3309529B1 (de) * 2016-10-11 2022-02-23 ABB Schweiz AG Vorhersage der verbleibenden lebensdauer für lager
LU93350B1 (de) * 2016-12-12 2018-07-03 Phoenix Contact Gmbh & Co Kg Intellectual Property Licenses & Standards Verfahren zur Überwachung einer elektromechanischen Komponente eines Automatisierungssystems
CN106842013A (zh) * 2017-02-10 2017-06-13 云南电网有限责任公司电力科学研究院 基于电磁波的断路器触头烧蚀程度的带电检测方法及装置
DE102017003755B4 (de) * 2017-03-10 2019-01-03 Plättner Elektronik GmbH Schaltung zur internen und externen Funktionsprüfung eines elektrischen Relais und /oder Schützes
DE202017002030U1 (de) 2017-03-13 2017-06-29 Plättner Elektronik GmbH Schaltung zur internen und externen Funktionsprüfung eines elektrischen Relais und/oder Schützes
US10340640B2 (en) 2017-05-04 2019-07-02 Schneider Electric USA, Inc. System and method for determining the current condition of power contacts
KR102295771B1 (ko) 2017-10-12 2021-08-31 주식회사 엘지에너지솔루션 컨택터 코일 전류를 이용한 컨택터 수명 진단 시스템 및 방법
US10727010B1 (en) * 2019-01-29 2020-07-28 Arc Suppression Technologies Power contact end-of-life (EoL) predictor apparatus and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988664A (en) * 1975-02-18 1976-10-26 Burroughs Corporation System for predicting or detecting a fault in a solenoid utilization system
CH668669A5 (de) * 1985-10-08 1989-01-13 Sprecher Energie Ag Verfahren zum ermitteln des abbrandes der kontaktstuecke eines in einer gekapselten schaltanlage eingebauten schaltgeraetes.
DE3608572A1 (de) * 1986-03-14 1987-09-17 Krupp Gmbh Verfahren und vorrichtung zur beruehrungslosen bruch- und verschleissueberwachung von werkzeugen
FR2602610B1 (fr) * 1986-08-08 1994-05-20 Merlin Et Gerin Declencheur statique d'un disjoncteur electrique a indicateur d'usure des contacts
DE3714802A1 (de) * 1987-05-04 1988-11-17 Siemens Ag Elektrischer schalter
US5270900A (en) * 1989-06-01 1993-12-14 Allied-Signal Inc. Solenoid response detector
DE4028721C2 (de) * 1990-09-10 1995-05-11 Siemens Ag Verfahren und Anordnung zur Ermittlung der Restlebensdauer von Schaltgeräten
US5204633A (en) 1992-02-25 1993-04-20 International Business Machines Corporation Electromagnetic contactor with closure fault indicator
DE4309177A1 (de) * 1993-03-22 1994-09-29 Siemens Ag Schaltgerät, insbesondere Schütz- oder Leistungsschalter
US5629869A (en) * 1994-04-11 1997-05-13 Abb Power T&D Company Intelligent circuit breaker providing synchronous switching and condition monitoring
DE4417694A1 (de) * 1994-05-20 1995-11-23 Licentia Gmbh Verfahren und Schaltungsanordnung zur Messung der Schaltzeit eines einen elektromagnetischen Auslöser enthaltenden Schaltgeräts
DE4427006A1 (de) 1994-07-29 1996-02-01 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige Anordnung
DE4433209C2 (de) * 1994-09-17 2000-02-03 Mtu Friedrichshafen Gmbh Einrichtung zur Erkennung des Ankeraufprallzeitpunktes bei Entstromung eines Magnetventils
DE19603310A1 (de) 1996-01-31 1997-08-07 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige Anordnung
US5668693A (en) * 1996-06-25 1997-09-16 Eaton Corporation Method of monitoring a contactor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260258A1 (de) * 2002-12-20 2004-07-22 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Restlebensdauer eines Schaltgerätes
DE10260248A1 (de) * 2002-12-20 2004-07-22 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer eines Schaltgerätes und zugehörige Anordnung
DE10260249A1 (de) * 2002-12-20 2004-08-12 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Restlebensdauer eines Schaltgerätes
DE10260258B4 (de) * 2002-12-20 2005-02-24 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Restlebensdauer eines Schaltgerätes
DE10260248B4 (de) * 2002-12-20 2005-07-21 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer eines Schaltgerätes und zugehörige Anordnung
DE10260249B4 (de) * 2002-12-20 2005-07-28 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Restlebensdauer eines Schaltgerätes
DE102005045095A1 (de) * 2005-09-21 2007-04-05 Siemens Ag Verfahren zum Bestimmen des Abbrandes von Kontakten eines elektromagnetischen Schaltgerätes und elektromagnetisches Schaltgerät mit einer nach diesem Verfahren arbeitenden Einrichtung
FR2952222A1 (fr) * 2009-11-05 2011-05-06 Schneider Electric Ind Sas Dispositif de determination de l'usure des contacts d'appareils de commutation electrique
EP2320443A3 (de) * 2009-11-05 2012-08-29 Schneider Electric Industries SAS Vorrichtung zur Bestimmung des Kontaktabbrands von elektrischen Schaltgeräten

Also Published As

Publication number Publication date
CN1207200A (zh) 1999-02-03
US6225807B1 (en) 2001-05-01
DE19603319A1 (de) 1997-08-07
WO1997028549A1 (de) 1997-08-07
DE59700585D1 (de) 1999-11-25
CN1065352C (zh) 2001-05-02
EP0878015A1 (de) 1998-11-18

Similar Documents

Publication Publication Date Title
EP0878015B1 (de) Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung
DE19734224C1 (de) Verfahren und Vorrichtung zur Bestimmung von schaltgerätespezifischen Daten an Kontakten in Schaltgeräten und/oder zur Bestimmung von betriebsspezifischen Daten im damit geschalteten Netz
EP0777907B1 (de) Elektromechanisches schaltgerät sowie anordnung mit mehreren derartigen schaltgeräten
EP0694937B1 (de) Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige Anordnung
EP0878016B1 (de) Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung
WO2006069962A1 (de) Verfahren und vorrichtung zum sicheren betrieb eines schaltgerätes
EP2795652A1 (de) Vorrichtung und verfahren zum schalten elektrischer lastkreise
EP1089308B1 (de) Anordnung zum Ein- und Ausschalten elektrischer Lastkreise
WO2014015947A2 (de) Vorrichtung zum sicheren schalten einer photovoltaikanlage
DE102013110993A1 (de) Verfahren und Vorrichtung zum Überwachen zumindest eines elektronischen Schaltkontakts für ein Fahrzeug
DE19702116C2 (de) Schutzvorrichtung gegen Falschpolung im elektrischen Bordnetz eines Fahrzeuges
EP0609261B1 (de) Einrichtung zur überprüfung eines elektrischen antriebs
EP0140093B1 (de) Schütz mit Steuerstufe und Überstromauslöser
DE19707729C2 (de) Elektromechanisches Schaltgerät
DE4313532B4 (de) Verfahren zur Überprüfung einer Endstufe
DE19733268C2 (de) Verfahren und Einrichtung zum Detektieren von Überströmen in einer Schaltanlage
DE4326942C2 (de) Einrichtung und Verfahren zur Überwachung eines Auslösekreises eines elektrischen Betriebsmittels
DE19602122A1 (de) Überwachungsgerät mit Selbstdiagnose
DE19619629C1 (de) Verfahren und Anordnung zur automatischen Überwachung von Fehlerstromschutzschaltern
EP1051786B1 (de) Schutzschaltungsanordnung
DE19816964A1 (de) Verfahren und Schaltungsanordnung zur Erfassung einer Zustandsänderung eines elektromagnetischen Systems
DE9320915U1 (de) Einrichtung zur Überwachung eines Auslösekreises eines elektrischen Betriebsmittels
WO1999041759A1 (de) Verfahren und vorrichtung zum betrieb eines leistungsschalters
DE102016213692A1 (de) Erkennung eines Windungsschlusses in einer Spule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 59700585

Country of ref document: DE

Date of ref document: 19991125

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110120

Year of fee payment: 15

Ref country code: DE

Payment date: 20110321

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59700585

Country of ref document: DE

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131