EP0860592B1 - Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates - Google Patents

Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates Download PDF

Info

Publication number
EP0860592B1
EP0860592B1 EP98100652A EP98100652A EP0860592B1 EP 0860592 B1 EP0860592 B1 EP 0860592B1 EP 98100652 A EP98100652 A EP 98100652A EP 98100652 A EP98100652 A EP 98100652A EP 0860592 B1 EP0860592 B1 EP 0860592B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
coolant
cooling liquid
valve
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98100652A
Other languages
English (en)
French (fr)
Other versions
EP0860592A1 (de
Inventor
Martin Brielmair
Christian Absmeier
Axel Temmesfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0860592A1 publication Critical patent/EP0860592A1/de
Application granted granted Critical
Publication of EP0860592B1 publication Critical patent/EP0860592B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/185Arrangements or mounting of liquid-to-air heat-exchangers arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/187Arrangements or mounting of liquid-to-air heat-exchangers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/06Retarder

Definitions

  • the invention relates to a coolant circuit of a motor vehicle drive unit according to that mentioned in the preamble of claim 1 Art.
  • Such a coolant circuit is known, in addition to further exemplary embodiments, from FIG. 8 in FR 2 682 160 A1.
  • the drive unit becomes hot coolant in a first coolant circuit from a pump thermostatically controlled by an air-coolant heat exchanger pumped, cooled by this and the Drive unit returned at a lower temperature.
  • the Air-coolant heat exchanger and the pump is one, the coolant volume flow influencing nozzle arranged.
  • the additional heat exchanger can also be used as a coolant / oil heat exchanger be designed for tempering oil.
  • the object of the invention is an accurate and low-loss pressure-dependent To represent coolant volume flow control, which has a large control range has.
  • This object is achieved by the features in the characterizing Part of claim 1 solved.
  • This solution is characterized by this that they are passive, that is, without active control, purely pressure-dependent is working. Due to the misaligned bearing of the throttle valve opens Throttle valve automatically as soon as in the direction of flow in front of the throttle valve a higher coolant pressure than behind (pressure difference) is present.
  • the size of the spring preload can advantageously be very precise Pressure difference from which the throttle valve opens; about the spring characteristic (force-travel / angle of rotation) can be influenced to reduce the throttle behavior. Since the throttle valve is practically none when fully opened An obstacle to flow is the integration into an existing one Pipe / hose system without a pipe / hose cross-sectional enlargement possible without generating major flow losses.
  • the flow temperature to the additional heat exchanger depending after the desired tempering in a wide temperature range can be set.
  • reference numeral 1 designates an internal combustion engine functioning as a motor vehicle drive unit, which is water-cooled and the cooling liquid of which, as usual, can be recooled in an air-cooling liquid heat exchanger 2, the flow of which is identified by the reference number 19.
  • the coolant is conveyed by a coolant pump 3, which, as usual, is preceded by a thermostatic valve 4, by means of which the coolant can be circulated either via the heat exchanger 2 or in the so-called "small circuit" bypassing the air-coolant heat exchanger 2.
  • the direction of flow of the coolant is shown by arrows.
  • a heating heat exchanger 5 is provided in the coolant circuit, which is preceded by a control valve 6.
  • Reference number 7 also denotes a conventional expansion tank, which is connected to the flow 19 of the air-coolant heat exchanger 2 is.
  • a coolant bypass leads through this expansion tank 7 21 through, which branches from the lead 19, and which within the expansion tank 7 a so-called.
  • Throttle branch 22 has.
  • This so-called throttle branch 22, one opposite the coolant branch line 20 has a significantly smaller flow cross section has, the expansion tank 7 is thus as usual connected the entire coolant circuit.
  • Another component of the coolant circuit is an additional heat exchanger 8, about the u. a. recooled coolant (from a branch 20 coming in the return 12 of the air-coolant heat exchanger 2) is feasible, and in which this is another medium, such as hydraulic oil / gear oil can cool.
  • This additional heat exchanger 8 is also a thermostatic valve 9 upstream, in which the recooled coolant with non-recooled coolant - from said coolant bypass 21 coming - can be mixed in order in the additional heat exchanger 8 a desired temperature control of the one guided by it To be able to adjust the medium (hydraulic oil / gear oil).
  • additional cooler 10 In order to cool the additional heat exchanger 8 particularly intensively To enable medium is the air-coolant heat exchanger 2 another so-called additional cooler 10 is connected downstream.
  • This additional cooler 10 is thus in the lead 11 of the additional heat exchanger 8, in which the thermostatic valve 9 is provided and is from the return 12 of the Air-coolant heat exchanger 2 from the branch 20 with coolant provided.
  • the additional cooler 10 which is also an air-coolant heat exchanger is formed, preferably forms with the actual air-coolant heat exchanger 2 a structural unit, as in the not previously published German patent application 196 37 818 is described.
  • valve 13 does not exist, because of the flow resistance of the Additional cooler 10 and the additional heat exchanger 8 namely almost the complete exits from the air-coolant heat exchanger 2 Coolant flow directly (via the return 12) to the thermostatic valve 4 arrive, so that the additional heat exchanger 8 not at all would be flowed through.
  • a suitable throttling effect of the valve 13 it is possible, however, a more or less large proportion of the Coolant flow also via the additional heat exchanger 8 to the coolant pump 3 attributed.
  • valve 13 Only satisfactorily (additional) valve 13 if this Valve 13 as a throttle valve pretensioned in the closed position (cf. Fig. 2, reference numeral 14) is formed.
  • this valve 13 or the corresponding throttle valve remains 14 almost closed, so that (when the thermostatic valve is open 4) the air-coolant heat exchanger 2 as desired after flowing through the coolant leaving it almost completely passed through the additional cooler 10 and via the additional heat exchanger 8 becomes.
  • valve 13 designed as a throttle valve 14 is opened ever further, so that then the drive unit 1 or the internal combustion engine 1 on direct Ways (via the return 12) with a sufficient amount of im Air-coolant heat exchanger 2 recooled coolant supplied can be.
  • Fig. 2 shows a cross section through the as biased in the closed position Throttle valve 14 formed valve 13, soft with its valve housing 15 when the air-coolant heat exchanger 2 and the As already briefly mentioned, additional cooler 10 form a structural unit, preferably in the return nozzle of the air-coolant heat exchanger, not shown 2, to which the return 12 connects, can be arranged can.
  • the throttle valve 14 is located on the valve housing 15 biasing torsion spring 16 biased, the throttle valve 14 over its axis of rotation 17 is desaxially mounted in the valve housing 15. hereby acts the valve 13 or the throttle valve 14 with regard to coolant flow direction shown by an arrow 18 as Back pressure flap with respect to this flow, due to said Desaxing, depending on the dynamic pressure, the desired opening of the throttle valve 14 or the valve 13 takes place. In the case of insufficient back pressure, however this valve 13 remains fully or partially closed and leads then, depending on the dynamic pressure, the desired throttle function.
  • the throttle valve 14 itself can be made of brass, while the flap housing 15 and the torsion spring 16, the spring characteristics of which determine the throttle behavior of the valve 13, can be made of stainless steel.
  • this and a large number of further details can be designed quite differently from the exemplary embodiment shown, without departing from the content of the patent claims.

Description

Die Erfindung betrifft einen Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates gemäß der im Oberbegriff des Patentanspruchs 1 genannten Art.
Bekannt ist ein derartiger Kühlflüssigkeitskreislauf, neben weiteren Ausführungsbeispielen, aus der Fig. 8 in der FR 2 682 160 A1. Bei Betrieb des Antriebsaggregates wird heiße Kühlflüssigkeit in einem ersten Kühlflüssigkeitskreislauf von einer Pumpe thermostatgeregelt durch einen Luft-Kühlflüssigkeits-Wärmetauscher gepumpt, von diesem abgekühlt und dem Antriebsaggregat mit niedrigerer Temperatur rückgeführt. Zwischen dem Luft-Kühlflüssigkeits-Wärmetauscher und der Pumpe ist eine, den Kühlflüssigkeit-Volumenstrom beeinflussende Düse angeordnet.
In Strömungsrichtung nach dem Luft-Kühlflüssigkeits-Wärmetauscher und vor der Düse ist für die Kühlflüssigkeit eine Abzweigung für einen zweiten Kühlflüssigkeitskreislauf. In diesem wird der Anteil der Kühlflüssigkeit, der nicht durch die Düse direkt dem Antriebsaggregat rückgeführt wird, durch einen Zusatzkühler und anschließend durch einen Zusatzwärmetauscher wieder in den ersten Kühlflüssigkeitskreislauf zwischen der Düse und der Pumpe einspeist.
Durch diese Anordnung ist eine mehrstufige Abkühlung der Kühlflüssigkeit möglich, auch kann der Zusatzwärmtauscher als Kühlflüssigkeit/Öl-Wärmetauscher zur Temperierung von Öl ausgelegt sein.
Nachteilig an dieser Anordnung ist eine nur in engen Grenzen mögliche druckabhängige Kühlflüssigkeits-Volumenstromregelung.
Aufgabe der Erfindung ist es, eine genaue und verlustarme druckabhängige Kühlflüssigkeits-Volumenstromregelung darzustellen, die einen großen Regelbereich besitzt.
Diese Aufgabe wird erfindungsgemäß von den Merkmalen im kennzeichnenden Teil des Patentanspruchs 1 gelöst. Diese Lösung zeichnet sich dadurch aus, dass sie passiv, das heißt ohne aktive Steuerung, rein druckabhängig arbeitet. Aufgrund der desachsierten Lagerung der Drosselklappe öffnet die Drosselklappe selbstständig, sobald in Strömungsrichtung vor der Drosselklappe ein größerer Kühlflüssigkeitsdruck als dahinter (Druckdifferenz) anliegt. Über die Größe der Federvorspannkraft kann vorteilhaft eine sehr genaue Druckdifferenz definiert werden, ab der die Drosselklappe öffnet; über die Federcharakteristik (Kraft-Weg/Drehwinkel) ist das Drosselverhalten beeinflussbar. Da die Drosselklappe im ganz geöffneten Zustand praktisch kein Strömungshindernis darstellt, ist die Integration in ein vorhandenes Rohr/Schlauch-System ohne eine Rohr/Schlauch-Querschnittsvergrößerung möglich, ohne größere Strömungsverluste hierbei zu generieren.
Nach Anspruch 2 ist eine sehr kompakte, platzsparende und leichte Bauausführung möglich.
Nach Anspruch 3 kann die Vorlauftemperatur zum Zusatzwärmetauscher je nach der gewünschten Temperierung in einem weiten Temperaturbereich eingestellt werden.
Zur weiteren Erläuterung der Erfindung wird auf die beigefügten Prinzipskizzen eines bevorzugten Ausführungsbeispieles eines erfindungsgemäßen Kühlflüssigkeitskreislaufes verwiesen, wobei in Fig. 1 der Kühlflüssigkeitskreislauf als solcher und in Fig. 2 das den Kühlflüssigkeits-Volumenstrom beeinflussende Ventil im Detail dargestellt ist.
In Fig. 1 ist mit der Bezugsziffer 1 eine als Kraftfahrzeug-Antriebsaggregat fungierende Brennkraftmaschine bezeichnet, die wassergekühlt ist und deren Kühlflüssigkeit wie üblich in einem Luft-Kühlflüssigkeits-Wärmetauscher 2, dessen Vorlauf mit der Bezugsziffer 19 bezeichnet ist, rückkühlbar ist. Gefördert wird die Kühflüssigkeit von einer Kühlflüssigkeitspumpe 3, welcher wie üblich ein Thermostatventil 4 vorgeschaltet ist, mit Hilfe dessen die Kühflüssigkeit entweder über den Wärmetauscher 2 oder im sog. "kleinen Kreislauf" unter Umgehung des Luft-Kühlflüssigkeits-Wärmetauschers 2 umgewälzt werden kann. Die Strömungsrichtung der Kühlflüssigkeit ist durch Pfeile verdeutlicht.
Ebenfalls wie üblich ist im Kühlflüssigkeitskreislauf ein Heizungswärmetauscher 5 vorgesehen, dem ein Regelventil 6 vorgeschaltet ist.
Mit der Bezugsziffer 7 ist ferner ein üblicher Ausgleichsbehälter bezeichnet, der an den Vorlauf 19 des Luft-Kühlflüssigkeits-Wärmetauschers 2 angeschlossen ist. Hier führt durch diesen Ausgleichsbehälter 7 eine Kühlflüssigkeits-Nebenleitung 21 hindurch, welche vom Vorlauf 19 abzweigt, und welche innerhalb des Ausgleichsbehälters 7 einen in diesem mündenden, sog. Drosselabzweig 22 aufweist. Dieser sog. Drosselabzweig 22, der einen gegenüber der Kühlflüssigkeits-Nebenleitung 20 wesentlich geringeren Strömungsquerschnitt besitzt, ist der Ausgleichsbehälter 7 somit wie üblich an den gesamten Kühlflüssigkeitskreislauf angeschlossen.
Weiteres Bestandteil des Kühlflüssigkeitskreislaufes ist ein Zusatzwärmetauscher 8, über den u. a. rückgekühlte Kühlflüssigkeit (von einem Abzweig 20 im Rücklauf 12 des Luft-Kühlflüssigkeits-Wärmetauscher 2 kommend) führbar ist, und in welchem diese ein weiteres Medium, beispielsweise Hydrauliköl/Getriebeöl kühlen kann. Diesem Zusatzwärmetauscher 8 ist ferner ein Thermostatventil 9 vorgeschaltet, in welchem die rückgekühlte Kühlflüssigkeit mit nicht rückgekühlter Kühlflüssigkeit - von der besagten Kühlflüssigkeits-Nebenleitung 21 kommend - mischbar ist, um im Zusatzwärmetauscher 8 eine gewünschte Temperierung des daneben durch diesen geführten Mediums (Hydrauliköles / Getriebeöles) einstellen zu können. Selbstverständlich kann durch den Zusatzwärmetauscher 8 auch lediglich im Luft-Kühlflüssigkeits-Wärmetauscher 2 rückgekühlte Kühlflüssigkeit geführt werden, so daß das weitere Medium (Hydrauliköl / Getriebeöl) intensiv abgekühlt wird. Ebenso kann bei einer entsprechenden Position des Thermostatventiles 9 auch lediglich nicht rückgekühlte Kühlflüssigkeit von der Kühlflüssigkeits-Nebenleitung 21 kommend durch den Zusatzwärmetauscher 8 geführt werden, wobei dann das weitere Medium im Zusatzwärmetauscher 8 bevorzugt erwärmt wird.
Um im Zusatzwärmetauscher 8 eine besonders intensive Kühlung des weiteren Mediums zu ermöglichen, ist dem Luft-Kühlflüssigkeits-Wärmetauscher 2 ein weiterer sog. Zusatzkühler 10 nachgeschaltet. Dieser Zusatzkühler 10 befindet sich somit im Vorlauf 11 des Zusatzwärmetauschers 8, in welchem auch das Thermostatventil 9 vorgesehen ist und wird vom Rücklauf 12 des Luft-Kühlflüssigkeits-Wärmetauschers 2 aus über den Abzweig 20 mit Kühlflüssigkeit versorgt.
Der Zusatzkühler 10, der ebenfalls als Luft-Kühlflüssigkeits-Wärme-tauscher ausgebildet ist, bildet dabei bevorzugt mit dem eigentlichen Luft-Kühlflüssigkeits-Wärmetauscher 2 eine Baueinheit, wie dies in der nicht vorveröffentlichten deutschen Patentanmeldung 196 37 818 beschrieben ist.
Nachdem nicht nur der Zusatzwärmetauscher 8 sondern auch der Zusatzkühler 10 einen erheblichen Strömungswiderstand für die Kühflüssigkeit bilden, ist im Rücklauf 12, der im übrigen wie üblich im Thermostatventil 4 mündet, stromab des Abzweigs 20 zum Zusatzkühler 10 ein den zum Thermostatventil 4 gelangenden Kühflüssigkeits-Volumenstrom beeinflussendes Ventil 13 vorgesehen. Dieses Ventil 13 fungiert immer dann, wenn der Luft-Kühlflüssigkeits-Wärmetauscher 2 aufgrund einer Offenposition des Thermostatventiles 4 zumindest teilweise durchströmt wird, als Drossel bezüglich des vom Luft-Kühlflüssigkeits-Wärmetauscher 2 auf direktem Wege zum Thermostatventil 4 gelangenden Kühflüssigkeitsstromes. Wäre dieses Ventil 13 nicht vorhanden, so würde aufgrund des Strömungswiderstandes des Zusatzkühlers 10 sowie des Zusatzwärmetauschers 8 nämlich nahezu der vollständige aus dem Luft-Kühlflüssigkeits-Wärmetauscher 2 austretende Kühlflüssigkeitsstrom auf direktem Wege (über den Rücklauf 12) zum Thermostatventil 4 gelangen, so daß der Zusatzwärmetauscher 8 überhaupt nicht durchströmt werden würde. Durch eine geeignete Drosselwirkung des Ventiles 13 ist es jedoch möglich, einen mehr oder minder großen Anteil des Kühlflüssigkeitsstromes auch über den Zusatzwärmetauscher 8 zur Kühflüssigkeitspumpe 3 zurückzuführen.
Selbstverständlich gelten die eben beschriebenen Zusammenhänge nur für diejenigen Fälle, in denen sich das Thermostatventil 4 zumindest teilweise in seiner Offenposition befindet, d.h. dann, wenn der Luft-Kühlflüssigkeits-Wärmetauscher 2 zumindest teilweise von Kühlflüssigkeit durchströmt wird. Ist hingegen das Thermostatventil 4 geschlossen und wird demzufolge die Kühlflüssigkeit im sog. "kleinen Kreislauf" umgewälzt, so kann über die Kühlflüssigkeits-Nebenleitung 21 stets Kühlflüssigkeit zum Thermostatventil 9 und somit in Abhängigkeit von dessen Position gegebenenfalls zum Zusatz-Wärmetauscher 8 gelangen, so daß dann in diesem wie gewünscht das zusätzliche Medium bevorzugt erwärmt werden kann.
Diese im vorletzten Absatz beschriebene, gewünschte Funktion kann das (zusätzliche) Ventil 13 in befriedigender Weise nur dann erfüllen, wenn dieses Ventil 13 als eine in Schließstellung vorgespannte Drosselklappe (vgl. Fig. 2, Bezugsziffer 14) ausgebildet ist. Insbesondere bei niedriger Förderleistung der Kühflüssigkeitspumpe 3 beispielsweise bei niedrigen Drehzahlen derselben bzw. der diese Kühlflüssigkeitspumpe 3 antreibenden Brennkraftmaschine 1 bleibt dann dieses Ventil 13 bzw. die entsprechende Drosselklappe 14 nahezu geschlossen, so daß dann (bei geöffnetem Thermostatventil 4) wie gewünscht die den Luft-Kühflüssigkeits-Wärmetauscher 2 nach Durchströmen desselben verlassende Kühflüssigkeit nahezu vollständig über den Zusatzkühler 10 sowie über den Zusatzwärmetauscher 8 geleitet wird. Bei höherer Förderleistung der Kühlflüssigkeitspumpe 3 hingegen wird das als Drosselklappe 14 ausgebildete Ventil 13 immer weiter geöffnet, so daß dann das Antriebsaggregat 1 bzw. die Brennkraftmaschine 1 auf direktem Wege (über den Rücklauf 12) mit einer ausreichenden Menge von im Luft-Kühflüssigkeits-Wärmetauscher 2 rückgekühlter Kühlflüssigkeit versorgt werden kann.
Fig. 2 zeigt einen Querschnitt durch das als in Schließstellung vorgespannte Drosselklappe 14 ausgebildete Ventil 13, weiches mit seinem Klappengehäuse 15 dann, wenn der Luft-Kühlflüssigkeits-Wärmetauscher 2 sowie der Zusatzkühler 10 wie bereits kurz erwähnt eine Baueinheit bilden, bevorzugt im nicht gezeigten Rücklaufstutzen des Luft-Kühlflüssigkeits-Wärmetauschers 2, an welchen sich der Rücklauf 12 anschließt, angeordnet sein kann.
Wie ersichtlich ist die Drosselklappe 14 über eine sich am Klappengehäuse 15 abstützende Drehfeder 16 vorgespannt, wobei die Drosselklappe 14 über ihre Drehachse 17 desachsiert im Klappengehäuse 15 gelagert ist. Hierdurch wirkt das Ventil 13 bzw. die Drosselklappe 14 im Hinblick auf die durch einen Pfeil 18 dargestellten Kühlflüssigkeits-Strömungsrichtung als Staudruckklappe bezüglich dieser Strömung, wobei aufgrund der besagten Desachsierung staudruckabhängig das gewünschte Öffnen der Drosselklappe 14 bzw. des Ventiles 13 erfolgt. Bei nicht ausreichendem Staudruck hingegen bleibt dieses Ventil 13 ganz oder teilweise geschlossen und führt dann staudruckabhängig die gewünschte Drosselfunktion aus.
Mit dem gezeigten erhöhten Anstellwinkel der geschlossenen Drosselklappe 14 ist die Gefahr des Verklemmens derselben im geschlossenen Zustand minimiert.
Die Drosselklappe 14 selbst kann in Messing ausgeführt sein, während das Klappengehäuse 15 und die Drehfeder 16, deren Federcharakteristik des Drosselverhalten des Ventiles 13 bestimmt, in Edelstahl ausgeführt sein können. Jedoch kann dies sowie eine Vielzahl weiterer Details durchaus abweichend vom gezeigten Ausführungsbeispiel gestaltet sein, ohne den Inhalt der Patentansprüche zu verlassen. Stets erhält man mit geeigneter Auslegung der Vorspannung der Drosselklappe 14 in Schließstellung (beispielsweise durch die besagte Drehfeder 16) eine optimale Aufteilung des Kühlmittelstroms einerseits auf den direkt zum Thermostatventil 4 führenden Rücklauf 12, als auch andererseits auf den über den Zusatzkühler 10 sowie den Zusatzwärmetauscher 8 zur Kühlflüssigkeitspumpe 3 geführten Leitungszweig.

Claims (3)

  1. Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates mit einem Luft-Kühlflüssigkeits-Wärmetauscher (2) sowie mit zumindest einem Zusatzwärmetauscher (8), in welchem ein weiteres Medium durch die umgewälzte Kühlflüssigkeit temperierbar ist, wobei im Rücklauf (12) des Luft-Kühlflüssigkeits-Wärmetauschers (2) stromab eines Abzweigs (20) zum Zusatzwärmetauscher (8) ein den Kühlflüssigkeits-Volumenstrom beeinflussendes Ventil (13) vorgesehen ist, wobei in einem Vorlauf (11) zum Zusatzwärmetauscher (8) ein Zusatzkühler (10) für die Kühlflüssigkeit vorgesehen ist,
    dadurch gekennzeichnet, dass das Ventil (13) als eine federbelastete, in Schließstellung vorgespannte Drosselklappe (14), die in ihrem Klappengehäuse (15) desachsiert gelagert ist, ausgebildet ist.
  2. Kühlflüssigkeitskreislauf nach Anspruch 1,
    dadurch gekennzeichnet, daß der Zusatzkühler (10) mit dem Luft-Kühlflüssigkeits-Wärmetauscher (2) eine Baueinheit bildet und die Drosselklappe (14) im Rücklaufstutzen des Luft-Kühlflüssigkeits-Wärmetauschers (2) vorgesehen ist.
  3. Kühlflüssigkeitskreislauf nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß mittels eines im Vorlauf (11) zum Zusatzwärmetauscher (8) vorgesehenen Thermostatventiles (9) diesem im Zusatzkühler (10) rückgekühlte oder vom Vorlauf (19) zum Luft-Kühlflüssigkeits-Wärmetauscher (2) abgezweigte und somit nicht rückgekühlte Kühlflüssigkeit, oder eine Mischung hiervon zuführbar ist.
EP98100652A 1997-02-20 1998-01-15 Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates Expired - Lifetime EP0860592B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19706800 1997-02-20
DE19706800A DE19706800A1 (de) 1997-02-20 1997-02-20 Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates

Publications (2)

Publication Number Publication Date
EP0860592A1 EP0860592A1 (de) 1998-08-26
EP0860592B1 true EP0860592B1 (de) 2002-04-17

Family

ID=7820981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98100652A Expired - Lifetime EP0860592B1 (de) 1997-02-20 1998-01-15 Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates

Country Status (2)

Country Link
EP (1) EP0860592B1 (de)
DE (2) DE19706800A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943004B4 (de) * 1999-09-09 2004-11-18 Dr.Ing.H.C. F. Porsche Ag Kühleinrichtung für eine Brennkraftmaschine
DE10035480A1 (de) * 2000-07-21 2002-01-31 Zahnradfabrik Friedrichshafen Schiffsgetriebe mit Heizvorrichtung
GB2366365B (en) * 2000-08-26 2004-07-21 Land Rover Group Ltd Engine Cooling Systems
SE525993C2 (sv) * 2003-10-15 2005-06-07 Volvo Lastvagnar Ab Arrangemang för kylning av fordonskomponent samt fordon innefattande ett dylikt arrangemang
DE102007025149A1 (de) 2007-05-30 2008-12-04 Bayerische Motoren Werke Aktiengesellschaft Kühlsystem für eine Brennkraftmaschine
US8162797B2 (en) * 2009-02-04 2012-04-24 Ford Global Technologies, Llc Methods and systems for heating transmission fluid
DE102017213777B4 (de) * 2017-08-08 2022-02-17 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung eines Kraftfahrzeugs mit mehreren Kühlmittelkühlern sowie entsprechende Antriebseinrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526144A1 (de) * 1995-07-18 1997-01-23 Pierburg Ag Anordnung einer Drosselklappe

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1511204A (en) * 1920-04-19 1924-10-07 Fred E Aseltine Cooling system for internal-combustion engines
GB310750A (en) * 1929-01-12 1929-05-02 Harry Taylor Mcintosh Apparatus for controlling the circulation of cooling water in internal combustion engines
DE607229C (de) * 1931-11-13 1934-12-19 Robert Bosch Akt Ges Selbsttaetige Drosselklappe fuer Ansaugeleitungen von Brennkraftmaschinen
DE632153C (de) * 1935-03-14 1936-07-03 Franz Wilhelm Sieber Dr Regelungsvorrichtung fuer den Kuehlmittellauf einer Brennkraftmaschine
DE766237C (de) * 1938-02-17 1952-04-21 Sueddeutsche Kuehler Behr Fluessigkeitsgekuehlter OElkuehler fuer Brennkraftmaschinen mit Heisskuehlung
DE754272C (de) * 1940-11-10 1953-08-17 Hans Windhoff App Und Maschine Kuehlanlage fuer wassergekuehlte Brennkraftmaschinen mit einem Haupt-, einem Sonderkuehler und einem Waermeaustauscher zur Kuehlung von OEl
US2670933A (en) * 1950-02-24 1954-03-02 Thomas J Bay Engine cooling apparatus
DE1714198U (de) * 1955-10-21 1955-12-29 Auto Union Gmbh Thermostat insbesondere fuer kraftfahrzeugmotoren mit thermosyphonkuehlung.
SE383401B (sv) * 1973-06-08 1976-03-08 Saab Scania Ab Anordning vid backventiler av det slag som har ett ventilhus med rakt genomlopp och med ett cirkulert ventilsete anordnat lengs ett genomloppets symmetrilinje korsande plan, och ett spjell, som er vridbart m.m
GB2088529A (en) * 1979-02-21 1982-06-09 Foster Wheeler Power Prod Damper system
DE3047672A1 (de) * 1980-12-18 1982-07-22 Aktiengesellschaft Adolph Saurer, 9320 Arbon Kuehleinrichtung zur kuehlung einer brennkraftmaschine und der ladeluft
JPS588221A (ja) * 1981-07-03 1983-01-18 Mazda Motor Corp 水冷式エンジンの冷却装置
DE8121873U1 (de) * 1981-07-25 1982-11-11 MSR Armaturen AG, 1110 Morges, Vaud "rueckschlagklappe"
DE3131162A1 (de) * 1981-08-06 1983-04-28 Leybold-Heraeus GmbH, 5000 Köln Drosselklappe mit genauer einstellung des durchflussspaltes fuer vakuumtechnische anlagen
US4535729A (en) * 1984-10-05 1985-08-20 Deere & Company Vehicle cooling system utilizing one radiator
DE4104093A1 (de) * 1991-02-11 1992-08-13 Behr Gmbh & Co Kuehlanlage fuer ein fahrzeug mit verbrennungsmotor
DE9110034U1 (de) * 1991-08-14 1991-09-26 Abb Patent Gmbh, 6800 Mannheim, De
FR2682160B1 (fr) * 1991-10-07 1995-04-21 Renault Vehicules Ind Systeme de refroidissement pour moteur a combustion interne comportant deux parties distinctes de radiateur.
DE4304649A1 (de) * 1993-02-16 1994-09-01 Alfons Dr Uhl Selbsttätige Absperrvorrichtung für ein gasführendes Rohr

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526144A1 (de) * 1995-07-18 1997-01-23 Pierburg Ag Anordnung einer Drosselklappe

Also Published As

Publication number Publication date
DE59803811D1 (de) 2002-05-23
EP0860592A1 (de) 1998-08-26
DE19706800A1 (de) 1998-08-27

Similar Documents

Publication Publication Date Title
DE102010025733B4 (de) Wärmetauschsysteme für Kraftfahrzeuge
EP0787929B1 (de) Vorrichtung zur Temperierung des Getriebeöls eines Kraftfahrzeuges
DE102012200005B4 (de) Verfahren zum Betreiben eines Kühlmittelkreislaufs
DE102007056949B4 (de) Von zwei Kühlmitteltemperaturen gesteuerter Thermostat für ein Motorkühlsystem
DE102005048286B4 (de) Verfahren zum Betrieb eines Kühlsystems für eine Verbrennungskraftmaschine
DE4410249B4 (de) Flüssigkeitskühlkreislauf für Verbrennungsmotoren
DE10311188B4 (de) Verfahren und Vorrichtung zur bedarfsgerechten Kühlung von Verbrennungskraftmaschinen unter Verwendung eines Bypassventils und mindestens einer Wärmesenke
DE19849492A1 (de) Steuervorrichtung für einen Kühlkreislauf einer Brennkraftmaschine
DE102014215074A1 (de) Temperieranordnung für Getriebeöl eines Kraftfahrzeugs sowie Verfahren zum Temperieren von Getriebeöl eines Kraftfahrzeugs
DE10301448B4 (de) Vorrichtung zur Temperierung von Schmieröl eines Kraftfahrzeugs
DE102004020589A1 (de) Temperaturabhängige Strömungsregelventile für Motorkühlsysteme
EP2876274A1 (de) Kühlsystem
DE102016119181A1 (de) Brennkraftmaschine
DE2623621C2 (de) Einrichtung zum Beheizen der Bedienungskabine einer Maschine
EP0376150B1 (de) Brennkraftmaschine mit zwei hydraulischen Flüssigkeitskreisläufen
EP0860592B1 (de) Kühlflüssigkeitskreislauf eines Kraftfahrzeug-Antriebsaggregates
DE102009032647A1 (de) Kühlsystem für eine Verbrennungskraftmaschine
EP1998021B1 (de) Kühlsystem für eine Brennkraftmaschine
EP0718133A1 (de) Heizsystem, insbesondere für Kraftfahrzeuge
DE4432292B4 (de) Verteilereinrichtung für das Kühl- bzw. Heizsystem von Fahrzeugen mit Verbrennungsmotoren
EP3470714B1 (de) Ventil zum einstellen eines kühlfluidflusses zur kolbenkühlung
DE102010009508A1 (de) Kraftfahrzeug mit gekühltem Vorderachsgetriebe
EP3412883B1 (de) Brennkraftmaschine und kraftfahrzeug
DE10241228A1 (de) Kühlsystem für ein Kraftfahrzeug
DE102005057702A1 (de) Kühlanordnung mit einem Thermostatventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980915

AKX Designation fees paid

Free format text: DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20000925

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020417

REF Corresponds to:

Ref document number: 59803811

Country of ref document: DE

Date of ref document: 20020523

ET Fr: translation filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110224

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120214

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120125

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59803811

Country of ref document: DE

Effective date: 20120801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130115

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131