EP0832315B1 - Verfahren zum entmetallisieren von hochsauren bädern und verwendung dieses verfahrens beim elektropolieren von edelstahloberflächen - Google Patents

Verfahren zum entmetallisieren von hochsauren bädern und verwendung dieses verfahrens beim elektropolieren von edelstahloberflächen Download PDF

Info

Publication number
EP0832315B1
EP0832315B1 EP96921930A EP96921930A EP0832315B1 EP 0832315 B1 EP0832315 B1 EP 0832315B1 EP 96921930 A EP96921930 A EP 96921930A EP 96921930 A EP96921930 A EP 96921930A EP 0832315 B1 EP0832315 B1 EP 0832315B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
electropolishing
ions
weight
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96921930A
Other languages
English (en)
French (fr)
Other versions
EP0832315A1 (de
Inventor
Razmik Abedian
Olaf BÖHME
Siegfried Piesslinger-Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poligrat GmbH
Original Assignee
Poligrat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poligrat GmbH filed Critical Poligrat GmbH
Publication of EP0832315A1 publication Critical patent/EP0832315A1/de
Application granted granted Critical
Publication of EP0832315B1 publication Critical patent/EP0832315B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • C25F7/02Regeneration of process liquids

Definitions

  • the invention relates to a method for demetallizing highly acidic baths based on phosphoric and sulfuric acid.
  • the invention further relates to the use of a demetallization process when electropolishing stainless steel surfaces (Stainless steel).
  • Electropolishing or electrolytic polishing is a process electrochemical metalworking, in which the Polishing metal is usually connected as an anode in a circuit becomes.
  • the electrolyte consists of an acid or an acid mixture. From the metal to be polished outstanding bumps (tips, Burrs) superficially dissolved and thus polished the metal. So the previously matt metal is smoothed and shiny.
  • As an electrolyte is used for stainless steels and carbon steels mostly phosphoric acid-sulfuric acid mixtures with additives of catalysts, inhibitors and the like.
  • the objects to be polished are the on the corresponding support and contact elements or devices hanging or in baskets or the like, in the electrolyte, d. H. the polishing bath, sunk and after a certain polishing time out of this. After this Drain the bath liquid from the polished surfaces the treated objects are then in rinsing baths dipped to remove the electrolyte.
  • Electropolishing processes currently used for processing of stainless steels predominantly low-water mixtures of concentrated phosphoric acid and sulfuric acid as the electrolyte.
  • the optimal working range in the metal content more common Electrolytes are usually between 35 g / l and 70 g / l (2 - 4% by weight).
  • the electrolytes are up to the state of the art to a metal content of approx. 100 g / l, this corresponds to approx. 6% by weight, workable. With a higher metal content the decreases Polish quality drastically.
  • the enriched electrolyte is removed either continuously on the carryover of the surface of the machined workpieces the electropolishing bath in the subsequent rinsing process, or by direct withdrawal.
  • the removed electrolyte is either over a suitable wastewater treatment plant or directly processed that the resulting wastewater to the sewers can be released while the solids because of their content heavy metals are generally disposed of as hazardous waste have to.
  • the invention is based on the idea that one with metal ions selectively enriched electrolytes the metal ions must withdraw if an electropolishing electrolyte without partial exchange be kept permanently functional by electrolyte should.
  • Ordinary filtration processes (see DE-33 43 396 A1) are out of the question here, since in the course of a filtration yes only solid separated, not the concentration of metallic Ions is lowered.
  • the state of the art membranes used in electrodialysis for example, compared to highly concentrated acid mixtures resistant.
  • the aim of the present invention is thus a method that direct separation of metal ions including iron from the with the metal ions enriched electrolytes without that the electrolytes must be diluted significantly.
  • the Concentration of the metal ions in the depleted electrolyte should ideally be adjusted so that the metal concentration the optimal working area is reached.
  • those concentrated with metal ions are concentrated Mixtures based on phosphoric acid and sulfuric acid electrochemically demetallized.
  • the separation of the metal ions of the electrolyte takes place by means of the generated in situ Diaphragm.
  • the Suitable material can easily be found on the basis of simple experiments find.
  • An electrolysis cell is used to carry out the method (Fig.1), their anodic and cathodic area are separated from each other by a porous partition.
  • a porous partition When putting on of direct current to the electrolyte to be demetallized filled cell is formed by migration of the sulfate ions in the anolytes on the side of the catholyte one of sulfate ions depleted diffusion layer with high phosphoric acid content from, which complicates the passage of the metal ions and as Separation medium works.
  • the higher the content of phosphoric acid in the mixture the lower the exchange of metal ions in principle through the diaphragm.
  • the dissolved iron originally mainly lies in Form of readily soluble Fe (III) ions before. These are in the cathode compartment reduced to much less soluble Fe (II) ions and then fall in when the solubility limit is reached Form of iron (II) sulfate (mostly as cathode sludge). This is easy through appropriate processes such as sedimentation, Separate filtration, centrifugation etc. from the electrolyte. At the same time, nickel and chrome are also deposited. Advantageous it has also been shown that impurities in the electrolyte, those that got into them during electropolishing, largely bound to the sludge and also separated. In order to will be an accumulation of these substances at higher concentration could interfere with the electropolishing process.
  • the iron content of the electrolyte is in the Usually around 2.5% by weight and thus in the ideal working range. After adding the sulfuric acid consumed by the precipitation and setting the correct density is the cleaned electrolyte usable again.
  • the process works in a very wide mixing range of Phosphoric acid and sulfuric acid and is effective as soon as the metal content is over 40 g / l.
  • a device for the recovery of entrained electrolytes and cleaned Water from the rinse water e.g. an evaporator in Connection with a suitable rinsing water supply is a waste water-free one Operation of electropolishing systems possible (Fig. 2).
  • the sludge from the process contains the separated sludge Metals in high concentration. He can after appropriate treatment may be used for further use. With that created the conditions to avoid the generation of hazardous waste, which places a heavy burden on the landfills and high disposal costs caused.
  • the invention in another aspect, relates to a method for demetallizing mixtures which are essentially phosphoric acid and contain sulfuric acid, the one enriched with metal ions Mixture is transferred to an electrolytic cell the Fe (III) ions are reduced to Fe (II) ions and these are then Form of Fe (II) sulfate can be precipitated.
  • a regeneration of highly acidic electropolishing baths can be achieved.
  • polishing stainless steel works with a current density of 5 - 50 A / dm 2 , preferably about 10 - 25 A / dm 2 , at about 40 - 80 ° C and a polishing time of approx. 15 min.
  • the method of the invention can be in terms of actual electropolishing subsequent process stages optimize.
  • electropolishing subsequent rinsing so that the rinse water using a cascade rinse with rinsing water regeneration (Evaporator) in a closed circuit.
  • the electrolyte recovered from the rinse water can then be used again be fed into the process.
  • the metal salts separated from the electrolyte during filtration contain the heavy metals in high concentration. she can, for example, be fed directly to an smelting process become. Through a treatment downstream of the filtration such as e.g. B. Rinsing with ice water can the metal salts as far from adhering acid residues are cleaned that a safe Handling is possible.
  • the method according to the invention is known per se Arrangement for electrolytic polishing with a separate one electrochemical cell including the diaphragm and agent performed for filtering the electrolysis bath. Usually include these means feeds and discharges, which are constant or discontinuous return of the electrolyte solution in the polishing process enable.
  • FIG. 1 shows a schematic structure of a demetallization device and illustrates the essential electrochemical Reactions.
  • FIG. 2 shows a process flow diagram of a wastewater-free Electropolishing system which uses the method according to the invention.
  • FIG. 1 shows a demetallization device as it is used externally but also integrated in an electropolishing process can be.
  • the electrolyte is fed through suitable leads into the electrolytic cell continuously or discontinuously performed and subjected to electrolysis there.
  • Fe (III) ions are reduced to Fe (II) ions and if exceeded a certain limit concentration (which by the Ion product is determined) precipitated as iron sulfate.
  • Electropolishing baths generally have high sulfate concentrations, the Fe (II) is precipitated practically quantitatively as sulfate.
  • the slurry or suspension from the electrolytic cell is then fed to a filter in which essentially that Iron sulfate is deposited.
  • the process flow diagram shown in FIG. 2 illustrates the particular advantages of the procedure according to the invention. Because both the electrolyte and the rinse water can be reused can, works optimally a system according to the invention practically wastewater-free. Workpieces that are electropolished have been subjected to, in a rinse stage (economy sink) in essentially rinsed with water. The waste water from the economy sink can then an evaporator can be fed to the electrolyte by distillation separates from the rinse water so that both can be reused separately can be. When the electrolyte is electropolished has reached a certain metal concentration in the Readjust the electropolishing effect. To prevent this condition or to regenerate the electropolishing ability Electrolyte from the electrolysis bath continuously or discontinuously a separate demetallization fed.
  • demetallization is electrochemical Fe (III) reduced to Fe (II) and the iron content essentially precipitated as Fe (II) sulfate.
  • a sludge is obtained which is another external one Refurbishment can be supplied.
  • a regenerated Get electrolyte in the electropolishing process is returned.
  • the external one shown here in Fig.2 Refurbishment is not essential to over a long period Period a continuous wastewater-free electropolishing system keep in operation. But it has certain advantages because acid components were also recovered from this external treatment which can then flow back into the electropolishing stage.
  • An electrolysis cell was used which could hold a volume of approximately 10 liters.
  • a porous ceramic plate with a pore size of approximately 1.0 ⁇ m was used as the separating material.
  • the separate electrolysis was carried out batchwise, with only the cathode space being filled with electrolyte after the filtrate had been returned from the cathode space of the electrolysis cell to the electropolishing device.
  • the temperature was set to 60 ° C and the voltage was 3 V. Carbon pins and stainless steel sheets were used as electrodes.
  • Electrolyte 1 85% phosphoric acid 60.0% by weight 96% sulfuric acid 36.0% by weight Morpholinomethane diphosphoric acid 1.0% by weight Diethanolamine 0.5% by weight water 2.5% by weight
  • Electrolyte 2 85% phosphoric acid 54.0% by weight 96% sulfuric acid 43.0% by weight Morpholine 1.0% by weight Diisopropanolamine 0.5% by weight water 1.5% by weight
  • Electrolyte 3 85% phosphoric acid 56.0% by weight 96% sulfuric acid 40.0% by weight Nicotinic acid 1.5% by weight Diisopropanolamine 0.5% by weight water 2.0% by weight
  • the electrolyte was in the bypass flow during the entire operating time fed to the electrolysis cell described above and filtered, so that the total bath volume depending on the bath load every 3 up to 14 days.
  • the through the sludge discharge Losses of chemicals caused have been added. It revealed a steady state of the electrolyte with a total content on metals (mainly iron, chromium and nickel) of 2.5 up to 4% by weight.
  • the electrolyte remained functional and that The results achieved corresponded to the quality expectations the current state of the art. After reaching the stationary The state of the electrolyte became the whole when electropolishing Amount of metal removed immediately during electrolysis precipitated as metal salt sludge and via the filter circuit in concentrated form removed from the electrolyte.
  • Electrolytic solution of different composition demetallized was also consumed.
  • the electrolytic cell corresponded to the above information. It was found that with a wide variety of compositions the as typical examples of electropolishing solutions are considered can, successful demetallization is achieved and that the electropolishing solutions have been successfully regenerated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Entmetallisieren von hochsauren Bädern auf der Basis von Phosphor- und Schwefelsäure.
Die Erfindung betrifft weiterhin die Verwendung eines Entmetallisierverfahrens beim Elektropolieren von Edelstahloberflächen (nicht-rostender Stahl).
Das Elektropolieren oder elektrolytische Polieren ist ein Verfahren der elektrochemischen Metallbearbeitung, bei dem das zu polierende Metall in der Regel als Anode in einen Stromkreis geschaltet wird. Der Elektrolyt besteht hierbei aus einer Säure oder einem Säuregemisch. Von dem zu polierenden Metall werden beim Elektropolieren herausragende Unebenheiten (Spitzen, Grate) oberflächlich aufgelöst und so das Metall poliert. So wird das zuvor matte Metall geglättet und glänzend. Als Elektrolyten verwendet man bei rostfreien Stählen und Kohlenstoffstählen zumeist Phosphorsäure-Schwefelsäuremischungen mit Zusätzen von Katalysatoren, Inhibitoren und dergleichen.
Beim Elektropolieren werden die zu polierenden Gegenstände, die an den entsprechenden Trage- und Kontaktelementen oder Vorrichtungen hängen oder in Körben oder dergl. aufgenommen werden, in den Elektrolyten, d. h. das Polierbad, eingesenkt und nach einer gewissen Polierzeit aus diesem herausgehoben. Nach dem Abfließen der Bad-Flüssigkeit von den polierten Oberflächen werden die behandelten Gegenstände anschließend in Spülbäder getaucht, um den Elektrolyten zu entfernen.
Derzeit industriell eingesetzte Elektropolierverfahren zur Bearbeitung von nicht-rostenden Stählen (Edelstahl) setzen überwiegend wasserarme Gemische aus konzentrierter Phosphorsäure und Schwefelsäure als Elektrolyten ein. Regelmäßig werden dem Elektrolyten verschiedene organische und anorganische Zusätze zur Verbesserung der Polierwirkung, Erhöhung der Stromausbeute, Verringerung der erforderlichen Stromdichte und Vermeidung von sechswertigen Chromionen in den Spülwässern beigegeben.
Die während des Elektropolierens an der Werkstückoberfläche abgetragenen Metallionen gehen in Lösung und reichern sich dort mit der Zeit an. Alle heute industriell eingesetzten Elektrolyte haben den Nachteil, daß deren Wirksamkeit ab einem bestimmten Grad der Metallanreicherung stark nachläßt. Dann muß der Elektrolyt zumindest teilweise durch frischen Elektrolyten ergänzt oder vollständig ersetzt werden. Ein zuverlässig und wirtschaftlich vernünftiges Regenerationsverfahren für einen verbrauchten Elektrolyten steht im Stand der Technik nicht zur Verfügung. Stattdessen wird der verbrauchte Elektrolyt entsorgt. Aufgrund des hohen Gehaltes an Schwermetallen muß der verbrauchte Elektrolyt als Sonderabfall behandelt werden. Das Gleiche gilt für die während des Elektropolierens anfallenden Spülwässer und die bei deren Aufbereitung anfallenden Schlämme. Da das verfügbare Deponievolumen für Sondermüll in der Regel eng begrenzt ist und darüber hinaus Entsorgungskosten steigen - wenn es nicht in manchen Gebieten schon schwierig bis unmöglich ist, eine geeignete Deponiemöglichkeit zu finden - besteht ein erhebliches Bedürfnis nach einem Verfahren, das einen geringeren Entsorgungsaufwand ermöglicht.
Im Stand der Technik ist man davon ausgegangen, daß es gerade diese Anreicherung mit Metallionen ist, die den Elektrolyten unbrauchbar macht. Infolgedessen hat man einen Elektrolyten nach Erreichen eines bestimmten Metallgehaltes, zumeist zwischen 4 und 5 Gew.-% der Entsorgung zugeführt. Da der zulässige Gehalt an Phosphaten und Sulfaten im Abwasser zumeist eng begrenzt ist, mußte man hierzu das gesamte Volumen auch noch unverbrauchter Säure neutralisieren. Insgesamt fielen bei dieser Entsorgung große Mengen an Schlamm an.
Zusammengefaßt bestehen bei diesem Stand der Technik folglich Probleme darin, daß a) die Wirksamkeit des Elektropolierbades mit steigender Metallanreicherung deutlich abnimmt und daß b) die beim Elektropolieren anfallenden Abwässer eine aufwendige Entsorgung erfordern.
Der optimale Arbeitsbereich im Metallgehalt gebräuchlicher Elektrolyte liegt in der Regel zwischen 35 g/l und 70 g/l (2 - 4 Gew.-%). Die Elektrolyte sind nach dem Stand der Technik bis zu einem Metallgehalt von ca. 100 g/l, dies entspricht ca. 6 Gew.-%, arbeitsfähig. Bei höherem Metallgehalt sinkt die Polierqualität drastisch ab. Um die Arbeitsfähigkeit zu erhalten, wird ein Teil des mit Metallionen angereicherten Elektrolyten entnommen und durch frischen, metallfreien Elektrolyten ersetzt. Die Entnahme des angereicherten Elektrolyten erfolgt entweder kontinuierlich über die Verschleppung des an der Oberfläche der bearbeiteten Werkstücke befindlichen Elektrolyten aus dem Elektropolierbad in den nachfolgenden Spülprozeß, oder durch direkte Entnahme. Der entnommene Elektrolyt wird entweder über eine geeignete Abwasseraufbereitungsanlage oder direkt so aufbereitet, daß das daraus resultierende Abwasser an die Kanalisation abgegeben werden kann, während die Feststoffe wegen ihres Gehaltes an Schwermetallen in der Regel als Sondermüll deponiert werden müssen.
Die Erfindung geht von der Vorstellung aus, daß man dem mit Metallionen angereicherten Elektrolyten selektiv die Metallionen entziehen muß, wenn ein Elektropolierelektrolyt ohne Teilaustausch von Elektrolyt dauerhaft arbeitsfähig gehalten werden soll. Gewöhnliche Filtrationsverfahren (vgl. DE-33 43 396 A1) kommen hierfür nicht in Frage, da im Zuge einer Filtration ja lediglich Feststoff abgetrennt, nicht die Konzentration an metallischen Ionen abgesenkt wird. Die weiterhin nach dem Stand der Technik bekannten Verfahren zur Abtrennung von Metallionen aus sauren Lösungen wie Ionenaustausch, Umkehrosmose, Membranelektrolyse, Elektrodialyse etc. lassen sich nicht in einfacher Weise auf Elektropolierelektrolyte übertragen. Die im Stand der Technik bei der Elektrodialyse üblicher Weise eingesetzten Membranen sind beispielsweise gegenüber hochkonzentrierten Säuregemischen nicht resistent. Darüber hinaus bilden sich mit Phosphorsäure Diffusionsschichten aus, die insbesondere einen Materialtransport von Metallionen stark behindern können. Diese Diffusionsschicht wirkt praktisch wie eine Sperrschicht. Folglich werden im Stand der Technik elektrochemische Verfahren mit stark konzentrierten sauren Lösungen nicht durchgeführt. Allgemein besteht sogar die Vorstellung, daß elektrochemische Verfahren zur Abtrennung von Eisen nicht geeignet sind (vgl. Ullmanns Encyclopedia of Industrial Chemistry, Vol.9, S.227 - 230). Darüber hinaus ist zur elektrolytischen Abscheidung von Eisen meist ein Hilfselektrolyt, beispielsweise verdünnte Ammoniumsulfatlösung, erforderlich (vgl. Kerti et al., Hungarian Journal of Industrial Chemistry, Vol. 1987, S.435ff), der bei der Anwendung den Elektropolierelektrolyten zerstören würden.
Ziel der vorliegenden Erfindung ist somit ein Verfahren, das die direkte Abtrennung von Metallionen einschließlich Eisen aus den mit den Metallionen angereicherten Elektrolyten ermöglicht, ohne daß dabei die Elektrolyte nennenswert verdünnt werden müssen. Die Konzentration der Metallionen im abgereicherten Elektrolyten sollte idealerweise so eingestellt werden, daß bezüglich der Metallkonzentration der optimale Arbeitsbereich erreicht wird.
Es wurde jetzt überraschenderweise festgestellt, daß unter bestimmten Umständen separat von dem Elektropolierbad eine Entmetallisierung elektrochemisch durchgeführt werden kann. Hierzu bedarf es lediglich einer an sich bekannten separaten Elektrolysezelle, die als Trennschicht einen keramischen Werkstoff, Kunststoffvlies oder Sintermaterial einsetzt. Bei Verwendung dieses Materials mit einer Porenweite zwischen etwa 0,5 µm und 10 µm bildet sich offenbar in situ eine gleichförmige Schicht, die als Diaphragma wirkt. Es läßt sich theoretisch eine mit Phosphorsäure angereicherte Diffusionsschicht (etwa 1 - 5 µm) postulieren, die als solche den Durchtritt von Sulfat-Ionen zum erforderlichen Ladungsaustausch ermöglicht, einen "Kurzschluß" durch Metallionen, insbesondere Eisenionen, aber ausschließt. Wirksame Diaphragmen konnten mit Phosphorsäure/Schwefelsäuregemischen mit einem Mischungsverhältnis von 1 : 10 bis 10 : 1 erreicht werden. Vorzugsweise werden Gemische mit einem Verhältnis Phosphor- zu Schwefelsäure von 2 : 1 bis 1 : 2 eingesetzt.
Erfindungsgemäß werden die mit Metallionen angereicherten konzentrierten Gemische auf Basis von Phosphorsäure und Schwefelsäure elektrochemisch entmetallisiert. Die Trennung der Metallionen vom Elektrolyten erfolgt mittels des in situ entstehenden Diaphragmas. Damit sind Porengröße und Struktur der Trennwand nicht mehr ausschlaggebend für die Wirksamkeit des Trennprozesses und es können stabile, relativ großporige Trägermedien wie Keramik, Kunststoffvlies oder Sintermaterial eingesetzt werden, deren Poren sich wegen ihrer Größe nicht verstopfen und die selbst keinen großen Diffusionswiderstand aufweisen (etwa 0,5 - 10 µm). Das geeignete Material läßt sich anhand einfacher Versuche leicht auffinden.
Zur Durchführung des Verfahrens bedient man sich einer Elektrolysezelle (Fig.1), deren anodischer und kathodischer Bereich durch eine poröse Trennwand voneinander getrennt sind. Beim Anlegen von Gleichstrom an die mit dem zu entmetallisierenden Elektrolyten gefüllte Zelle bildet sich durch Wanderung der sulfationen in den Anolyten auf der Seite des Katholyten eine an Sulfationen abgereicherte Diffusionsschicht mit hohem Phosphorsäuregehalt aus, die den Durchtritt der Metallionen erschwert und als Trennmedium wirkt. Je höher der Gehalt an Phosphorsäure im Gemisch ist, desto niedriger ist im Prinzip der Austausch von Metallionen durch das Diaphragma. Man kann jedoch die Permeabilität des Diaphragmas durch die Temperatur und den Wassergehalt des Elektrolyten beeinflussen.
Im Elektrolyt liegt das gelöste Eisen ursprünglich überwiegend in Form von gut löslichen Fe(III)-Ionen vor. Diese werden im Kathodenraum zu wesentlich geringer löslichen Fe(II)-Ionen reduziert und fallen anschließend beim Erreichen der Löslichkeitsgrenze in Form von Eisen(II)-Sulfat aus (zumeist als Kathodenschlamm). Dieser ist leicht durch entsprechende Verfahren wie Sedimentation, Filtration, Zentrifugierung etc. vom Eletrolyten abzutrennen. Gleichzeitig werden auch Nickel und Chrom abgeschieden. Vorteilhaft hat sich auch gezeigt, daß Verunreinigungen im Elektrolyten, die während des Elektropolierens in diesen gelangten, weitgehend an den Schlamm gebunden und ebenfalls abgetrennt werden. Damit wird eine Kumulierung dieser Stoffe, die bei höherer Konzentration den Elektropolierprozeß stören könnten, vermieden.
Der Eisengehalt des Elektrolyten liegt nach der Fällung in der Regel bei ca. 2,5 Gew.-% und damit im idealen Arbeitsbereich. Nach Ergänzung der durch die Fällung verbrauchten Schwefelsäure und Einstellung der korrekten Dichte ist der gereinigte Elektrolyt wieder verwendungsfähig.
Das Verfahren arbeitet in einem sehr weiten Mischungsbereich von Phosphorsäure und Schwefelsäure und ist wirksam einzusetzen, sobald der Metallgehalt über 40 g/l liegt.
Kombiniert man das erfindungsgemäße Verfahren mit einer Einrichtung zur Rückgewinnung von verschlepptem Elektrolyten und gereinigtem Wasser aus dem Spülwasser, wie z.B. einem Verdampfer in Verbindung mit geeigneter Spülwasserführung, so ist ein abwasserfreier Betrieb von Elektropolieranlagen möglich (Fig.2).
Der aus dem Verfahren anfallende Schlamm enthält die abgetrennten Metalle in hoher Konzentration. Er kann nach entsprechender Behandlung ggf. einer Weiterverwendung zugeführt werden. Damit sind die Voraussetzungen geschaffen, den Anfall von Sondermüll zu vermeiden, der die Deponien in hohem Maße belastet und hohe Entsorgungskosten verursacht.
Nach einem anderen Aspekt betrifft die Erfindung ein Verfahren zum Entmetallisieren von Gemischen, die im wesentlichen Phosphorsäure und Schwefelsäure enthalten, wobei das mit Metallionen angereicherte Gemisch in eine Elektrolysezelle überführt wird, in der Fe(III)-Ionen zu Fe(II)-Ionen reduziert und diese dann in Form von Fe(II)-Sulfat ausgefällt werden. Durch dieses Verfahren kann separat von einem laufenden Elektropolierverfahren (unabhängig davon) eine Regenerierung von hochsauren Elektropolierbädern erreicht werden.
Die elektrolytischen Verfahrensbedingungen des erfindungsgemäßen Verfahren entsprechen im Großen und Ganzen denjenigen des Standes der Technik. Beispielsweise arbeitet man beim Polieren von Edelstahl mit einer Stromdichte von 5 - 50 A/dm2, vorzugsweise etwa 10 - 25 A/dm2, bei etwa 40 - 80° C und einer Polierzeit von ca. 15 min.
Das erfindungsgemäße Verfahren läßt sich hinsichtlich der an das eigentliche Elektropolieren anschließenden Verfahrensstufen weiter optimieren. Insbesondere ist es möglich, die der Elektropolitur nachfolgenden Spülvorgänge so zu gestalten, daß das Spülwasser unter Einsatz einer Kaskadenspülung mit Spülwasserregeneration (Verdampfer) in einem geschlossenen Kreislauf geführt wird. Der aus dem Spülwasser rückgewonnene Elektrolyt kann dann wieder dem Prozeß zugeführt werden. Diese vielfältigen Vorteile des erfindungsgemäßen Verfahrens wären mit dem Stand der Technik nicht zu realisieren gewesen. Prinzipiell hätte man zwar schon an eine destillative Aufarbeitung der Spülwässer denken können. Dies hätte aber kaum Vorteile gebracht, da ja einem beträchtlichen Energieeinsatz keine wirklichen Vorteile gegenüber gestanden hätten. Erst durch die Erfindung wird eine Spülwasserregeneration vernünftig nutzbar. Denn erst hierbei wird eine wiederverwendbare Säure für den Elektrolyten gewonnen. Im Stand der Technik wurden die Spülwässer regelmäßig zusammen mit der Säure - nach deren Neutralisation - verworfen.
Die bei der Filtration aus dem Elektrolyten abgetrennten Metallsalze enthalten die Schwermetalle in hoher Konzentration. Sie können beispielsweise direkt einem Verhüttungsprozeß zugeführt werden. Durch eine der Filtration nachgeschaltete Behandlung wie z. B. Spülen mit Eiswasser können die Metallsalze soweit von den anhaftenden Säureresten gereinigt werden, daß ein gefahrloses Handhaben möglich ist.
Das erfindungsgemäße Verfahren wird in einer an sich bekannten Anordnung für die elektrolytische Politur mit einer separaten elektrochemischen Zelle einschließlich dem Diaphragma und Mittel zum Filtern des Elektrolysebades durchgeführt. Üblicherweise umfassen diese Mittel Zu- und Ableitungen, die ein beständiges oder diskontinuierliches Rückführen der Elektrolytlösung in den Polierprozeß ermöglichen.
Die Fig.1 zeigt einen schematischen Aufbau eine Entmetallisierungsvorrichtung und veranschaulicht die wesentlichen elektrochemischen Reaktionen.
Die Fig.2 zeigt ein Verfahrensfließbild einer abwasserfreien Elektropolieranlage, die das erfindungsgemäße Verfahren einsetzt.
Die Fig.1 zeigt eine Entmetallisierungsvorrichtung, wie sie extern aber auch eingebunden in ein Elektropolierverfahren eingesetzt werden kann. Der Elektrolyt wird über geeignete Zuleitungen in die Elektrolysezelle kontinuierlich oder diskontinuierlich geführt und dort einer Elektrolyse unterworfen. Bei der Elektrolyse werden Fe(III)-Ionen zu Fe(II)-Ionen reduziert und bei Überschreiten einer bestimmten Grenzkonzentration (die durch das Ionenprodukt bestimmt wird) als Eisensulfat ausgefällt. Da in Elektropolierbädern in der Regel hohe Sulfatkonzentrationen vorliegen, wird das Fe(II) praktisch quantitativ als Sulfat ausgefällt. Die Aufschlämmung oder Suspension aus der Elektrolysezelle wird dann einem Filter zugeführt, in dem im wesentlichen das Eisensulfat abgeschieden wird. Neben dem Eisensulfat werden hierbei aus der Lösung auch andere schwerlösliche Metallsalze abgeschieden, wie diejenigen des Chroms, Nickels, Molybdäns oder Kupfers. Das Filtrat kann dann direkt in eine Elektropoliturvorrichtung zurückgeführt werden. Häufig bietet sich eine Auffrischung mit Phosphorsäure und/oder Schwefelsäure an. Dies ist wegen der angedeuteten Kreislauffahrweise in der Regel aber nicht erforderlich.
Das in der Fig.2 gezeigte Verfahrensfließbild veranschaulicht die besonderen Vorzüge der erfindungsgemäßen Arbeitsweise. Da sowohl der Elektrolyt als auch die Spülwässer wiederverwendet werden können, arbeitet optimalerweise eine erfindungsgemäße Anlage praktisch abwasserfrei. Werkstücke, die einer Elektropolitur unterworfen wurden, werden in einer Spülstufe (Sparspüle) im wesentlichen mit Wasser gespült. Das Abwasser der Sparspüle kann dann einen Verdampfer zugeführt werden, der destillativ den Elektrolyten vom Spülwasser trennt, so daß beide separat wiederverwendet werden können. Wenn der Elektrolyt im Elektropolierverfahren eine gewisse Metallkonzentration erreicht hat, läßt in der Regel die Elektropolierwirkung nach. Um diesem Zustand vorzubeugen oder die Elektropolierfähigkeit zu regenerieren, wird der Elektrolyt aus dem Elektrolysebad kontinuierlich oder diskontinuierlich einer separaten Entmetallisierung zugeführt. In der Entmetallisierung wird, wie oben beschrieben, elektrochemisch Fe(III) zu Fe(II) reduziert und der Eisengehalt im wesentlichen als Fe(II)-Sulfat ausgefällt. Bei der sich anschließenden Filtrierung wird dann ein Schlamm erhalten, der einer weiteren externen Aufarbeitung zugeführt werden kann. Zugleich wird ein regenerierter Elektrolyt erhalten, der in das Elektropolierverfahren zurückgeführt wird. Die hier in Fig.2 abgebildete externe Aufarbeitung ist nicht zwingend erforderlich, um über einen langen Zeitraum eine kontinuierliche abwasserfreie Elektropolieranlage im Betrieb zu halten. Sie hat aber gewisse Vorteile, da auch aus dieser externen Aufarbeitung Säurebestandteile zurückgewonnen werden können, die dann in die Elektropolierstufe zurückfließen.
Das erfindungsgemäße Verfahren wird anhand der folgenden Beispiele näher erläutert.
Beispiele
Es wurden mehrere Elektrolytlösungen mit den weiter unten angegebenen Zusammensetzungen zubereitet. Diese Elektrolyte wurden einem erfindungsgemäßen Verfahren und vergleichsweise einem Verfahren nach dem Stand der Technik unterworfen. Es zeigte sich, daß in einem erfindungsgemäßen Verfahren mit einer kontinuierlichen separaten Elektrolyse und Filtration des Elektrolyten und Rückführung des Filtrates in den Elektrolyten nicht nur gleichbleibende Polierergebnisse erzielt werden konnten, sondern daß diese auch über einen längeren Zeitraum erhalten blieben.
Es wurde mit einer Elektrolysezelle gearbeitet, die ein Volumen von etwa 10 1 aufnehmen konnte. Als Trennmaterial diente eine poröse Keramikplatte mit einer Porengröße von etwa 1,0 µm. Die separate Elektrolyse wurde diskontinuierlich in Chargen durchgeführt, wobei lediglich der Kathodenraum mit Elektrolyt nach vorhergehender Rückführung des Filtrats aus dem Kathodenraum der Elektrolysezelle in die Elektropoliervorrichtung aufgefüllt wurde. Die Temperatur wurde auf 60°C eingestellt und die Spannung betrug 3 V. Es wurden als Elektroden Kohlestifte und Edelstahlbleche eingesetzt.
Elektrolyt 1:
Phosphorsäure 85%-ig 60,0 Gew.-%
Schwefelsäure 96%-ig 36,0 Gew.-%
Morpholinomethandiphosphorsäure 1,0 Gew.-%
Diethanolamin 0,5 Gew.-%
Wasser 2,5 Gew.-%
Elektrolyt 2:
Phosphorsäure 85%-ig 54,0 Gew.-%
Schwefelsäure 96%-ig 43,0 Gew.-%
Morpholin 1,0 Gew.-%
Diisopropanolamin 0,5 Gew.-%
Wasser 1,5 Gew.-%
Elektrolyt 3:
Phosphorsäure 85%-ig 56,0 Gew.-%
Schwefelsäure 96%-ig 40,0 Gew.-%
Nicotinsäure 1,5 Gew.-%
Diisopropanolamin 0,5 Gew.-%
Wasser 2,0 Gew.-%
Mit den oben genannten Elektrolyten wurden verschiedene Edelstahlsorten elektropoliert bei einer Elektrolyttemperatur von 45 - 80°C und einer Stromdichte von 5 - 25 A/dm2 mit nachgeschalteter Spülung der Teile in einer mehrstufigen Spülkaskade mit Spülwasserrückführung. Das Spülwasser aus der ersten, konzentriertesten Spülstufe wurde im Nebenstrom durch Destillation aufkonzentriert und das Konzentrat dem Elektropolierbad wieder zugeführt. Das reine Kondensatwasser wurde zur Endspülung in der Spülkaskade verwendet, womit der Spülwasserkreislauf geschlossen wurde.
Während der gesamten Betriebsdauer wurde der Elektrolyt im Nebenstrom der oben beschriebenen Elektrolysezelle zugeführt und filtriert, so daß das gesamte Badvolumen je nach Badbelastung alle 3 bis 14 Tage einmal umgewälzt wurde. Die durch den Schlammaustrag hervorgerufenen Verluste an Chemikalien wurden ergänzt. Es ergab sich ein stationärer Zustand des Elektrolyten bei einem Gesamtgehalt an Metallen (überwiegend Eisen, Chrom und Nickel) von 2,5 bis 4 Gew.-%. Der Elektrolyt blieb dabei arbeitsfähig und die erzielten Ergebnisse entsprachen den Qualitätserwartungen nach dem derzeitigen Stand der Technik. Nach dem Erreichen des stationären Zustandes des Elektrolyten wurde die gesamte beim Elektropolieren abgetragene Metallmenge unmittelbar bei der Elektrolyse als Metallsalzschlamm ausgefällt und über den Filterkreislauf in konzentrierter Form aus dem Elektrolyten entfernt.
Separat von den vorstehenden Untersuchungen wurde auch verbrauchte Elektrolytlösung verschiedener Zusammensetzung entmetallisiert. Die Elektrolysezelle entsprach den vorstehenden Angaben. Es zeigte sich, daß bei verschiedensten Zusammensetzungen die als typische Beispiele für Elektropolierlösungen angesehen werden können, eine erfolgreiche Entmetallisierung erreicht wird und daß die Elektropolierlösungen erfolgreich regeneriert wurden.
Ausführungsbeispiele:
Verbrauchte Elektrolyte folgender Zusammensetzung wurden entmetallisiert. Dabei wurde als Trennwand ein Polypropylensintermaterial eingesetzt (Vyon T; 1,5 mm dick, Porendurchmesser 0,3 - 5 µm).
  • 1)
    Dichte 1.760
    H2SO4 35.1 Gew.-%
    H3PO4 37.8 Gew.-%
    Eisen 4.5 Gew.-% 82 g/l
    Die Entmetallisierung erfolgte bei 60°C // 3 V // 1,5 A/1 // 20 Stunden. Es wurde ein Elektrolyt folgender Zusammensetzung erhalten:
    Dichte 1.675
    H2SO4 31 Gew.-%
    H3PO4 38 Gew.-%
    Eisen 2.5 Gew.-% 41 g/l
  • 2)
    Dichte 1.760
    H2SO4 21 Gew.-%
    H3PO4 43 Gew.-%
    Eisen 4.5 Gew.-% 80 g/l
    Entmetallisierung: 60°C // 2.5 V // 1.2 A/1 // 20 Stunden
    Dichte 1.610
    H2SO4 17.6 Gew.-%
    H3PO4 45 Gew.-%
    Eisen 2.5 Gew.-% 37 g/l
  • 3)
    Dichte 1.750
    H2SO4 40.5 Gew.-%
    H3PO4 26.5 Gew.-%
    Eisen 5 Gew.-% 89 g/l
  • Entmetallisierung: 60°C // 3 V // 1.5 A/1 // 18 Stunden
    Dichte 1.675
    H2SO4 35.1 Gew.-%
    H3PO4 28.5 Gew.-%
    Eisen 2.5 Gew.-% 42 g/l
    Nach Zugabe der durch Fällung verbrauchten Schwefelsäure und Einstellung der Dichte auf die geforderten Werte sind die Elektrolyte wieder problemlos zu verwenden.

    Claims (4)

    1. Verfahren zum Entmetallisieren von Gemischen, die im wesentlichen Phosphorsäure und Schwefelsäure enthalten, wobei das Gemisch einer Elektrolysezelle zugeführt wird mit einer Trennwand, die aus einem Material mit einer Porenweite zwischen 0,5 µm und 10 µm besteht und derart ist, daß sich beim Anlegen eines Gleichstroms in situ ein Diaphragma bildet, das den Durchtritt von Metallionen erschwert, zwischen dem anodischen und kathodischen Bereich der Elektrolysezelle, und wobei die in dem Gemisch vorhandenen Fe(III)-Ionen zu Fe(II)-Ionen reduziert und beim Erreichen der Löslichkeitsgrenze als FeSO4 ausgefällt und die Ausfällungen abgetrennt werden.
    2. Verwendung eines Verfahrens nach Anspruch 1 beim Elektropolieren von Edelstahloberflächen, bei dem
      als Elektrolyt eine Schwefelsäure/Phosphorsäure-Mischung eingesetzt wird,
      der Elektrolyt separat kontinuierlich oder diskontinuierlich einer Elektrolyse unterworfen wird, wobei Fe(III)-Ionen zu Fe(II)-Ionen reduziert und
      auftretende Ausfällungen abfiltriert werden und das Filtrat in den Elektrolyten zurückgeführt wird.
    3. Verwendung nach Anspruch 2,
      dadurch gekennzeichnet, daß in dem sich an das Elektropolieren anschließenden Spülprozeß das Spülwasser im Kreislauf geführt wird.
    4. Verwendung nach Anspruch 3,
      dadurch gekennzeichnet, daß der aus dem Spülwasserkreislauf gewonnene Elektrolyt zurückgeführt wird.
    EP96921930A 1995-06-09 1996-06-04 Verfahren zum entmetallisieren von hochsauren bädern und verwendung dieses verfahrens beim elektropolieren von edelstahloberflächen Expired - Lifetime EP0832315B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19521132 1995-06-09
    DE19521132A DE19521132C1 (de) 1995-06-09 1995-06-09 Verfahren zum Entmetallisieren von hochsauren Bädern und Verwendung dieses Verfahrens beim Elektropolieren von Edelstahloberflächen
    PCT/EP1996/002439 WO1996041905A1 (de) 1995-06-09 1996-06-04 Verfahren zum entmetallisieren von hochsauren bädern und verwendung dieses verfahrens beim elektropolieren von edelstahloberflächen

    Publications (2)

    Publication Number Publication Date
    EP0832315A1 EP0832315A1 (de) 1998-04-01
    EP0832315B1 true EP0832315B1 (de) 1999-03-24

    Family

    ID=7764051

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96921930A Expired - Lifetime EP0832315B1 (de) 1995-06-09 1996-06-04 Verfahren zum entmetallisieren von hochsauren bädern und verwendung dieses verfahrens beim elektropolieren von edelstahloberflächen

    Country Status (11)

    Country Link
    US (1) US5882500A (de)
    EP (1) EP0832315B1 (de)
    JP (1) JP2000512685A (de)
    AT (1) ATE178106T1 (de)
    AU (1) AU6300596A (de)
    CA (1) CA2226367A1 (de)
    CZ (1) CZ396197A3 (de)
    DE (2) DE19521132C1 (de)
    ES (1) ES2129268T3 (de)
    TW (1) TW358831B (de)
    WO (1) WO1996041905A1 (de)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0931860A1 (de) * 1997-12-31 1999-07-28 Otomec S.r.l. Vorrichtung zum Behandlen von Eisendrahten und nicht Eisendrahten
    US6428683B1 (en) * 2000-12-15 2002-08-06 United Technologies Corporation Feedback controlled airfoil stripping system with integrated water management and acid recycling system
    CN103361660A (zh) * 2012-03-27 2013-10-23 中国科学院大连化学物理研究所 一种质子交换膜燃料电池不锈钢双极板前处理方法
    US9057272B2 (en) * 2012-06-29 2015-06-16 United Technologies Corporation Protective polishing mask
    WO2016030506A1 (de) * 2014-08-29 2016-03-03 Poligrat Gmbh Elektrolyt zum polieren von edelstählen, enthaltend eine pyridincarbonsäure
    US20170088971A1 (en) * 2015-09-30 2017-03-30 Macdermid Acumen, Inc. Treatment of Etch Baths

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3206538C2 (de) * 1982-02-24 1984-04-12 Keramchemie GmbH, 5433 Siershahn Verfahren zur elektrolytischen Regenerierung von verbrauchter Schwefelsäure-Beizflüssigkeit
    DE3343396A1 (de) * 1983-11-30 1985-06-05 Kraftwerk Union AG, 4330 Mülheim Verfahren zum dekontaminieren metallischer komponenten einer kerntechnischen anlage
    DE4218915A1 (de) * 1992-06-10 1993-12-16 Heraeus Elektrochemie Verfahren und Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wäßrigen Lösung sowie Verwendung

    Also Published As

    Publication number Publication date
    ES2129268T3 (es) 1999-06-01
    DE59601506D1 (de) 1999-04-29
    CA2226367A1 (en) 1996-12-27
    TW358831B (en) 1999-05-21
    EP0832315A1 (de) 1998-04-01
    AU6300596A (en) 1997-01-09
    ATE178106T1 (de) 1999-04-15
    US5882500A (en) 1999-03-16
    WO1996041905A1 (de) 1996-12-27
    CZ396197A3 (cs) 1998-06-17
    JP2000512685A (ja) 2000-09-26
    DE19521132C1 (de) 1996-10-17

    Similar Documents

    Publication Publication Date Title
    DE2930194C2 (de) Vorrichtung zum Aufbereiten von Abwasser
    DE2604371C2 (de)
    DE2256286A1 (de) Elektrodialyse-verfahren und -geraet
    EP0832315B1 (de) Verfahren zum entmetallisieren von hochsauren bädern und verwendung dieses verfahrens beim elektropolieren von edelstahloberflächen
    DE2527853B2 (de) Verfahren zur Verbesserung des Wasserhaushalts bei der Phosphatierung von Metallen
    DE202009012539U1 (de) Einrichtung zur Abwasserbehandlung
    EP0968322A1 (de) Verfahren und vorrichtung zum betreiben von fräsbädern
    WO1990003332A1 (de) Verfahren zum entsorgen verbrauchter öl-/wasseremulsionen
    EP0613398B1 (de) Verfahren, mittel und vorrichtung zum elektrodialytischen regenerieren des elektrolyten eines galvanischen bades oder dergl.
    CH642033A5 (en) Process and equipment for the treatment of waste waters containing heavy metals
    DE2623277A1 (de) Verfahren zur wiedergewinnung von schwermetallen
    EP0968756B1 (de) Verfahren zur Aufbereitung metallhaltiger verbrauchter Beizsäuren
    DE10024239C1 (de) Verfahren zum galvanotechnischen Behandeln von Werkstücken mit einer Palladiumkolloidlösung
    EP1776489A1 (de) Vorrichtung und verfahren zur entfernung von fremdstoffen aus prozesslösungen
    Schoeman et al. Evaluation of reverse osmosis for electroplating effluent treatment
    DE10161841A1 (de) Verfahren zur Aufbereitung von Umlaufwasser in Koaguliereinrichtungen von Lackieranlagen
    DE4109434C2 (de) Verfahren zum Aufarbeiten von chromathaltigen Abwässern und/oder Prozeßlösungen
    JP3558392B2 (ja) 電着塗装排水のリサイクルシステム
    DE4218554C2 (de) Verfahren und Vorrichtung zur Aufbereitung von Behandlungslösungen
    DE19729493C2 (de) Verfahren und Vorrichtung zur Aufbereitung von mit Metallionen verunreinigtem Spülwasser
    DE19923607A1 (de) Wasseraufbereitung von galvanischen Spülbädern
    DE3431276A1 (de) Verfahren zur steuerung von elektrolytgehaltes waessriger harzdispersionen
    EP0601504A1 (de) Verfahren zur Verlängerung der Nutzungsdauer von Elektrolytlösungen durch Eliminierung organischer Störstoffe
    DE2537591A1 (de) Verfahren zum regenerieren von verbrauchten chromathaltigen metallbehandlungsbaedern
    DE19812005A1 (de) Verfahren zur elektrodialytischen Regeneration von Prozesslösungen und Vorrichtung zur Durchführung des Verfahrens

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19971203

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19980629

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    ITF It: translation for a ep patent filed

    Owner name: BARZANO' E ZANARDO MILANO S.P.A.

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990324

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990324

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990324

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990324

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990324

    REF Corresponds to:

    Ref document number: 178106

    Country of ref document: AT

    Date of ref document: 19990415

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59601506

    Country of ref document: DE

    Date of ref document: 19990429

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2129268

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990604

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990604

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990624

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990624

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990630

    ET Fr: translation filed
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 19990324

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991019

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: POLIGRAT G.M.B.H.

    Effective date: 19990630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991231

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000503

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000630

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050604

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20080402

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090629

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20090605

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090605

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20110228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630