EP0806610B1 - Procédé pour le fonctionnement d'un brûleur à gaz - Google Patents

Procédé pour le fonctionnement d'un brûleur à gaz Download PDF

Info

Publication number
EP0806610B1
EP0806610B1 EP97105850A EP97105850A EP0806610B1 EP 0806610 B1 EP0806610 B1 EP 0806610B1 EP 97105850 A EP97105850 A EP 97105850A EP 97105850 A EP97105850 A EP 97105850A EP 0806610 B1 EP0806610 B1 EP 0806610B1
Authority
EP
European Patent Office
Prior art keywords
signal
gas
burner
control
ionisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97105850A
Other languages
German (de)
English (en)
Other versions
EP0806610A2 (fr
EP0806610A3 (fr
Inventor
Hubert Nolte
Martin Herrs
Roland Merker
Norbert Schwedler
Eckart Bredemeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19618573A external-priority patent/DE19618573C1/de
Priority claimed from DE19627857A external-priority patent/DE19627857C2/de
Priority claimed from DE19631821A external-priority patent/DE19631821C2/de
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Publication of EP0806610A2 publication Critical patent/EP0806610A2/fr
Publication of EP0806610A3 publication Critical patent/EP0806610A3/fr
Application granted granted Critical
Publication of EP0806610B1 publication Critical patent/EP0806610B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/30Representation of working time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Definitions

  • the invention relates to a method to operate a gas burner with the features of Preamble of claim 1.
  • DE 195 02 901 C1 is another Control device for a gas burner known. There is based on the fact that the intensity of the Flames always fluctuate, so a flickering picture of flames consists. It is recognized that the amplitudes of this Fluctuations in the gas-air ratio (lambda value) of the Depending on the combustion gas. A Safety flame monitoring for gas shutdown at Flame failure is not mentioned.
  • DE 43 09 454 A1 describes an ionization flame monitor known in which a charged to an operating voltage Capacitor is discharged by the ionization current.
  • the ionization flame monitor can be used during operation checked for function by means of a test signal become.
  • the ionization electrode itself and its Connection cable and in certain malfunctions of the Capacitor cannot be checked.
  • the flame is only monitored indirectly.
  • the flame detector is only in by the test signal periodically recurring periods checked.
  • the object of the invention is to provide an improved method and a device of the type mentioned to propose low-emission combustion to guarantee different operating states.
  • the above object is achieved by the features of the characterizing part of claim 1. It is thereby achieved that the gas burner can be operated with low emissions at least in the Wobbeiere range of natural gas (10 kWh / m 3 to 15.6 kWh / m 3 ). It is also achieved that the control does not undesirably affect the desired heat output to be provided by the gas heater working with the gas burner, so that the gas heater can cover the heat requirement with the requested heat output.
  • the control circuit regulates depending on Ionization signal the gas quantity valve so that the Combustion with one for low-emission operation desired lambda setpoint> 1, in particular between 1.1 and 1.35.
  • the control circuit itself serves not dependent on the heat demand Performance adjustment.
  • An adjustment of the heating power of the burner as a function of a power setpoint takes place in a manner known per se by means of Automatic control unit, the fan speed two or multi-stage or infinitely variable. With fast Changes in the performance target and accordingly There may be rapid changes in fan speed erratic control deviations on the control circuit come. These could lead to instabilities in the Control circuit.
  • the reserve share for the Control signal of the gas flow valve regardless of the Control circuit or derived in parallel to this. The The control circuit then only has to be fine-tuned make comparatively small control deviation.
  • the lead portion of the control signal is easily too win because of the device-specific power control signal characteristic is known by the manufacturer and so that it can be stored in the evaluation circuit.
  • the power control signal characteristic curve is preferred defines a tolerance band and it becomes when that Actual control signal leaves the tolerance band, on Shutdown signal generated for the burner.
  • the tolerance band is dimensioned so that it is in the normal operation of the Gas blower burner of the gas heater is not left and it will leave if in the course of operating the Gas heaters characteristic curves of the sensors, especially the Ionization electrode and / or the measured value recording, or the actuator system, especially the gas flow valve or the Air path of the fan or the exhaust path or the Change the burner, for example due to contamination.
  • the tolerance band will also fluctuate strongly Wobble payments of the gas, fluctuating strongly Gas supply pressure or fluctuating air resistance or if the control malfunctions. In all such cases, a shutdown signal for the Burner generated so that this is not in one for one low emission combustion unfavorable area continues to work.
  • This switch-off signal can be the same or, preferably, if the tolerance band for a certain period of time, for example 5 s, is left to take effect. It is thus safe and low-emission operation of the Brenners guaranteed even after many hours of operation.
  • the control circuit itself can also switch off signals generate if the specified lambda setpoint is not is observable.
  • the switch switches on a certain time after the switch-off signal Automatic control switch on the gas fan burner again. Do that Switch-off signal several times afterwards, a Lockout may be provided according to which Gas-blown burners only again through service measures can be switched on. By defining the tolerance band other, so far common No need for safety devices.
  • the tolerance band can be symmetrical or asymmetrical or a desired function according to the Power control signal characteristic curve can be laid.
  • a Throttle shutdown signal occurs both when the flame does not exist, and also occurs when a defect consists of a deceptive ionization signal produces a similar signal, such a defect the entire functional range of the Ionization electrode up to a monitoring circuit can be present.
  • This configuration becomes a characteristic Flame pattern that affects the ionization signal to Monitoring used.
  • Amplitude fluctuations are preferably evaluated. However, it can also, especially when targeted Modulation instead or in addition, the phase or Frequency can be evaluated.
  • the gas cut-off signal that blocks the gas supply not only occurs when the flame goes out. It also occurs if as a result of any technical defect on the real ionization signal there is a deceptively similar signal.
  • the gas cut-off signal only occurs when the characteristic fluctuations in the flame pattern and not the ionization signal derived from it available. A technical defect in the facility, the the characteristic fluctuations in the flame pattern pretends is excluded in practice.
  • the gas shutdown signal occurs independently on whether the pretending the ionization signal Defect in the ionization electrode itself or its Connection line or the monitoring circuit or otherwise where is in the system. This makes it a very high one System security achieved, even over the previous ones Safety regulations goes beyond.
  • the safety flame monitoring is also carried out monitoring for technical defects constantly during burner operation, i.e. with a burning flame. It can So it does not happen that a longer one after a defect There is time for unburned gas to escape. in the If the modulation is specifically applied to the flame it suffices if the modulation signal generates periodically , the time between two consecutive Modulation signals are dimensioned so short that at one No dangerous amount of gas defective during this time emanates unburned.
  • the ionization signal does not have to be alone or separately for the safety flame monitoring must be generated. It can serve at the same time the combustion control, which in the DE 44 33 425 A1 or DE 195 02 901 C1 is.
  • a blower is connected to a burner (1) of a gas heater (2) and a gas line (3) connected in the one Gas solenoid valve (4) or another gas control valve is located.
  • There is one in the flame area of the burner (1) Ionization electrode (5) arranged on a Evaluation circuit (6) for the in burner operation between the burner (1) and the ionization electrode (5) flowing Electricity is connected.
  • the evaluation circuit (6) has especially one connected to the AC mains voltage Capacitor (C) and a resistor (R).
  • the Evaluation circuit (6) forms from that of the combustion dependent ionization current an ionization voltage (Ui), which is connected to a control circuit (7).
  • the Evaluation circuit (6) can also be used in the control circuit (7) be integrated.
  • the control circuit (7) controls by means of a control signal (J), especially control current, the degree of opening of the Gas solenoid valve (4).
  • the power supply is due to the Control circuit (7) the AC mains voltage. It captures also the network frequency and the network amplitude.
  • the Control circuit (7) is, for example, by a digital PI controller, e.g. Microprocessor, realized.
  • an automatic control device 9 is provided as it is for example under the trade name "Furimat" is known on the market.
  • a Safety valve (10) can be switched on and off, whereas with the gas solenoid valve (4) the gas volume flow is infinitely variable is adjustable.
  • a Setpoint generator (8) connected, one of a Target room temperature and / or one Heating flow temperature and / or one Heating return temperature and an outside temperature dependent signal on the control automat (9).
  • a gas pressure switch (11) is located in the gas line (3) via the control automat (9) during the burning operation switches off insufficient gas pressure.
  • Gas pressure switch (11) In series with Gas pressure switch (11) is in the control circuit (7) Switch (12) integrated, which in the case of the closer below described control shutdowns and Fault shutdowns the burning operation over the Control automat (9) interrupts.
  • a line (13) gives the control automat (9) to everyone Switching on an ignition pulse to an ignition electrode (14) the burner (1).
  • the Ionization electrode (5) placed on the control automat (9) (Line 15).
  • On operated with the mains voltage Safety valve (10) is tapped and connected to the Control circuit (7) laid (line 16).
  • On Speed control signal of the fan (2) is above a Line (17) on the control automat (9) and the Control circuit (7).
  • the evaluation circuit (6), the control circuit (7) and the Control machine (9) can also be in a single Switchgear can be integrated.
  • the device of Figure 1 is advantageous because of proven control automat (9) with its control and Safety functions for the burner (1) and the fan (2) can continue to be used.
  • the control circuit (7) only needs to control the gas solenoid valve (4).
  • the of her generated shutdown signals are from the Control automats (9) evaluated. It is possible Already existing control automatons (9) Retrofit gas heaters with the control circuit (7).
  • FIG. 2a shows the evaluation circuit (6), the Ionization electrode (5) with its equivalent circuit diagram as Resistor (Ri) and diode (D) is shown. Parallel to Ionization electrode (5 or Ri, D) is inserted Voltage divider made up of resistors (R1, R2). Between the Mains connection (N) and the voltage divider (R1, R2) and the Ionization electrode (5; Ri, D) is the capacitor (C).
  • the AC line voltage (Un) is one DC voltage component (Ug) to voltage (Ub) (see Fig. 2b), which is detected via the voltage divider (R1, R2) as Uc.
  • the DC voltage component (Ug) is then determined using a Low pass or filtered out by averaging and forms the ionization voltage (Ui).
  • the low pass or Devices for averaging are in the figures not shown. You can in the evaluation circuit (6) or be provided in the control circuit (7). In addition can be provided, the ionization voltage (Ui) according to a possible deviation of the Correct the AC mains voltage from the standard value (230 V).
  • the use of the AC line voltage on the Evaluation circuit (6) is cheap because the AC mains voltage is present anyway. However, it could another sufficiently large AC voltage be used.
  • FIG. 3 shows the course of the ionization voltage in Dependence on the air ratio Lambda (l) des Combustion state.
  • substoichiometric combustion (l ⁇ 1) and with overstoichiometric combustion (l> 1) decreases the ionization voltage (Ui).
  • Control range (RB) for the ionization voltage (Ui) with an upper limit (Uio) and a lower limit Limit value (Uiu) specified.
  • the upper limit (Uio) is below the maximum value (Uim).
  • the lower Limit value (Uiu) lies above the final value (Uie), which occurs when the lambda value (l) is much smaller than 1, the air-gas mixture is therefore due to maximum Gas supply or minimal air supply is so rich that the Combustion is no longer low in emissions.
  • the ionization voltage (Ui) is very short Time intervals, for example every 50 to 1000 ms, preferably about 100 ms newly acquired. It is with it achieved that the ionization voltage (Ui) never long can be outside the control range (RB), causing over seen every combustion process a low emissions Burning is guaranteed. Move in normal operation the values of the ionization voltage (Ui) in the permitted control range, i.e. between Uio and Uiu, see above that the lambda value (l) correspondingly in the range (lo to lu) is regulated to the lambda setpoint (ls).
  • the control circuit (7) opens the control signal (J) continues the gas solenoid valve (4), causing the combustion towards the Lambda setpoint (ls) is controlled. Will the Ionization voltage setpoint (Uis) exceeded, then the control circuit (7) controls the gas solenoid valve (4) in this way indicates that the gas supply is reduced, whereby the Lambda value is regulated again to the lambda setpoint (ls). This applies to the control area (RB) and also to Combustion states outside the control range (RB).
  • the gas solenoid valve (4) is opened to to reach the Lambda setpoint (ls) again.
  • the Ionization voltage (Ui) within that of the timer predetermined duration, for example 3 s to 10 s, especially 5 s, then back in the control range (RB) nothing else happens.
  • the burner (1) continues to run and the timer is reset.
  • control circuit (7) there is a starting gas ramp given (see Fig. 4), according to which in a Safety time (T) by controlling the gas quantity valve (4) each time the burner (1) starts, the gas pressure or Gas volume flow is continuously increased from pmin to pmax.
  • pmin and pmax are dimensioned in such a way that with each Wobbe number the gas family in question, for example natural gas, the Burner starts safely.
  • the control circuit (7) works as, preferably digital, PI controller, which uses the ionization voltage a sampling period of, for example, those mentioned above 100 ms detected and with the same frequency the new one Value for the control signal (J) calculated.
  • the respective Control signal change (dJ) consists of the by the I control part caused changes and that compared to last control value changed P control portion together.
  • the situation is similar when the burner (1) in a performance level (S1) higher performance and in one Power level (S2) of lower power through appropriate Fan speed setting should be operated (see Fig.5b).
  • the control circuit (7) detects the Fan speed or determines the load from the position of the connected gas solenoid valve (4) via the Line (17) and provides the same Ionization voltage setpoint (Uis) in the larger Power level (S1) higher values of the control signal (J) than in the lower power level (S2) (see Fig.5b).
  • Figure 6 shows the control signal change (dJ) in Dependence on the control deviation (d) of the respective Ionization voltage (Ui) from the target ionization voltage (Uis). It can be seen that with the same size positive and negative control deviations (d) the Control signal change (dJ) with positive control deviations (above dp1) is greater than with the same negative Control deviations (below dn1). Figure 6 also shows that the P control part only starts from a certain positive or negative control deviation (dp1, dn1) becomes active. There is no difference between the control deviations (dnl and dp1) Control signal change (dJ).
  • the P control component is shown in dotted lines in FIG. 6.
  • the I control component is with a solid line indicated. In the event of negative system deviations, the I control component for a longer reset time than for positive control deviations.
  • the modulation current (J) is an alternating current, for example with the network frequency of the Control circuit (7) superimposed.
  • the amplitude of the superimposed AC component is much smaller as the control signal (J) as such, for example is between 30 mA and 150 mA.
  • Through the overlaid AC component is due to the mechanical structure of the gas solenoid valve (4) conditional valve hysteresis reduced so that the gas solenoid valve (4) Control signal changes (dJ) quickly in both directions appeals.
  • the burner becomes a very low calorific gas delivered and the fan speed can not be lower to maintain full load, then it can even when the gas solenoid valve is opened to the maximum (4) or maximum control signal (J) that the Combustion is switched off. To avoid this, so Maintaining the heating operation is for one a higher value of the air ratio is permitted for a limited time. Accordingly, the control circuit for the ionization voltage setpoint (Uis) for a limited time.
  • the relationships are shown in FIG. 7. In the Control circuit (7) are threshold values (J1, J2) for the Control signal (J) specified.
  • the control circuit (7) first increases that Control signal (J) in the manner described to the Increase gas supply accordingly. However, the top Threshold (J1) is reached, then the Control circuit (7) the ionization voltage setpoint Uisn (a in Fig. 7). This is a minor one Linked to increase in lambda, however it is ensures that the burner (1) continues to burn. The Control signal (J) will then move towards the decrease the lower threshold (J2) if the gas is not becomes even lower calorific (arrow b in Fig. 7), which leads to a control shutdown or a lockout would lead. Then the lower threshold (J2) reached, then the control circuit (7) switches (see c in Fig.7) back to the original Ionization voltage setpoint (Uis) back.
  • the relationships between the Ionization electrode (5) and that of the gas solenoid valve (4) set gas flow, for example by Combustion residues on the ionization electrode (5) and / or their bending and / or wear or Move deposits in the gas quantity valve (4). It is therefore a calibration function in the control circuit (7) integrated.
  • the calibration function is in regular Intervals, through an event counter, for example Counter of the switch-on or switch-off processes, or by a Operating hours counter activated.
  • the control function described is switched off.
  • the Calibration is preferably not done by itself changing speed of the fan (2) to the influence of Fan (2) to suppress the combustion. Cheap is to calibrate at a medium speed perform so as not to turn on during calibration Modulation limits of the control signal (J).
  • the Calibration can also be done while switching the Blower (2) from one power level to the other Power level take place because the speed change in Compared to the calibration process is slow, so that the Speed virtually constant during the calibration process is.
  • the calibration process is carried out at time (t1) (see Fig. 8) from the event or operating hours counter during the transition from the full load level to the partial load level of the blower (2) started when the decreasing modulation current (J) reached a low value (Jk). This value is from the control circuit. It is then from the Control circuit (7) the modulation current (J) and thus over the gas solenoid valve (4) increases the gas supply, causing the Ionization voltage (Ui) increases accordingly. To the At time (t2) the ionization voltage (Ui) reaches one predetermined value, for example 0.9 Uimax.
  • the Time period (t1 to t2) serves to start the preheating the ionization electrode (5). From the time (t2) until the time (t3) the modulation current (J) remains constant held. During this period (t2 to t3) it heats up the ionization electrode (5) to a stable temperature and thereby guarantees reproducible measured values.
  • the modulation current (J) is increased further until the Ionization voltage (Ui) again about 10% below that Uimax value, which is in Figure 8 at time (t4) Case is.
  • the lambda value is in the period (t3 to t4) the incineration itself is unfavorable, but this does not ins Weight drops because this time span is at most a few Takes seconds.
  • the control circuit (7) switches including the previously saved Modulation current (JK) again on the above described Control process back. This starts when the Time (t5) the ionization voltage (Ui), the Modulation current (J) and the gas pressure (p) stabilized to have.
  • Measured values obtained are directed by the control circuit (7) a correspondingly adjusted new setpoint for the Ionization voltage (Uis).
  • Control circuit (7) will also change in the period (t3 to t4) result in a series of measured values. Compared to the other measured values of the series strongly differing measured values are suppressed because they rely on external electrical Interference may be based.
  • the first transfer criterion detects a sudden one Change all components of the control loop. It is fulfilled if the deviation of the new calibration value is sufficiently small from the previous calibration values.
  • the second handover criterion records a "creeping Drift "of the system (burner control), which in the event of deviation sufficient from the values provided by the manufacturer is small.
  • the control unit (9) switches the safety valve (10) and the blower (2) depending on the heat requirement and the gas pressure in the usual way ("normal Control shutdown ").
  • the repeated shutdowns are controlled by counters detected.
  • the counters for the control shutdown a, b, or Lockouts f, g, are caused by any "normal Control shutdown "of the control automat (9) reset.
  • the counter for the control shutdowns c, d, e, or Lockout h, is with a valid calibration reset.
  • the lockout can also be initiated by that the control circuit (7) by means of the gas solenoid valve (4) of the minimum value of the control signal (J) closes.
  • the Contact of the gas pressure switch (11) initially remains closed.
  • the control unit (9) then provides the Line (15) an extinguishing of the burner flame firmly, whereupon he closes the safety valve (10).
  • the tax automat (9) then tries to ignite the burner (1) again, whereby the safety valve (10) is connected to the mains voltage, which also through the line (16) Control circuit (7) is transmitted.
  • the attempt to ignite can not succeed because the gas solenoid valve (4) closed is.
  • the ignition controller (9) opens in vain attempts to ignite "Fault" and reports "Ignition not possible".
  • the Control circuit (7) counts the ignition attempts of the Control automaton (9) and then opens after a certain one Time, for example 10s after the end of the fourth Try the switch (12) so that the control unit (9) now for safety also the safety valve (10) closes. It is therefore a high level of operational security reached, the existing in the control automat (9) Security features are exploited.
  • a blower is connected to a burner (1) of a gas heater (2) and a gas line (3) connected in the one Gas solenoid valve (4) as a gas quantity valve.
  • a burner (1) of a gas heater (2) and a gas line (3) connected in the one Gas solenoid valve (4) as a gas quantity valve in the Flame area of the burner (1) is one Ionization electrode (5) arranged on a Control circuit (7) is connected.
  • About the Line (6 ') is the signal of the ionization electrode (5) also to those described in more detail below Automatic burner controls (9).
  • the control circuit (7) controls in Dependence on one in the burning operation over the 'Ionization electrode (5) flowing current and a preset lambda setpoint using a Control signal (J), especially control current, the degree of opening the gas solenoid valve (4).
  • the control circuit (7) is for example a digital PI controller that realized, for example, by a microprocessor is. Through the control circuit (7) is a low emissions Combustion, for example with a lambda setpoint between 1.1 and 1.35, preferably at 1.15, guaranteed.
  • the fan speed is controlled by an automatic control unit (9) provided, as for example under the trade name "Furimat” is known on the market.
  • a safety valve (10) can be switched on and off, whereas with the gas solenoid valve (4) the gas volume flow is continuously adjustable.
  • a setpoint generator (8) connected, one of a Target room temperature and / or one Heating flow temperature and / or one Heating return temperature and an outside temperature dependent signal on the control automat (9).
  • a gas pressure switch (11) is located in the gas line (3) via the control automat (9) during the burning operation switches off insufficient gas pressure.
  • a switch (12) is integrated, which over the Control unit (9) interrupts the burning operation when the desired lambda setpoint cannot be guaranteed.
  • the control automat (9) gives each Switching on an ignition pulse to an ignition electrode (14) the burner (1).
  • On the speed of the fan (2) determining signal is from the control machine (9) via a line (17 ') on the one hand to the blower (2) and on the other hand, placed on an evaluation circuit (18).
  • the device-specific is in the evaluation circuit (18) Speed, i.e. Power control signal characteristic curve (K) filed.
  • This characteristic curve - regardless of the respective setting of the control circuit (7) - the Connection between the at a respective Fan speed for reaching the desired one Burner output necessary opening degree of Gas solenoid valve (4).
  • the evaluation circuit (18) generates a reference signal according to the characteristic (K) (J '). It detects the change in a circuit part (19) of the reference signal (J ') against the previous one Status. This corresponds to the change in speed Change (dJ ') has a positive or negative impact on you Adders (20) to the control signal (J) as a reserve component. This makes the control signal (J) corresponding to the Speed change parallel to the control circuit (7) to the desired power or the fan speed adjusted.
  • the gas solenoid valve (4) is one of the desired Change in service approximately corresponding amount further opened or closed.
  • the control circuit (7) must therefore change the desired performance itself do not process. It regulates the respective Power setting the gas solenoid valve (4) to the for a low-emission combustion necessary lambda setpoint.
  • the reference signal (J ') and that around the reserve component (dJ') changed control signal (J) are sent to a comparator (21) placed.
  • This is connected to a correlator (22) in which is a tolerance band with an upper tolerance limit (To) and a lower tolerance limit (Tu) is stored (see Fig. 2).
  • the correlator (22) detects whether the respective value still within the tolerance band (To, Tu) lies, or migrated outside the tolerance band is. Is the respective value of the reserve share (dJ ') changed control signal (J) from the by Characteristic curve (K) hiked tolerance band, then this is a sign that due to any Malfunctions a low-emission combustion in the desired Dimensions is no longer guaranteed.
  • the automatic control unit (9) after a certain time after switching off the burner (1) starts again. Then the shutdown signal from Correlator (22) several times, for example three times, then the automatic control unit (9) is switched to malfunction, so that the burner (1) only again by service personnel can be switched on.
  • the functions of the evaluation circuit (18) with the Storage of the characteristic (K), the circuit part (19), the Adder (20), the comparator (21) and the correlator (22) can be implemented in a microprocessor that at the same time the functions of the control circuit (7) takes over.
  • the characteristic curve (K) is shown in FIG. 10, in which Point I the blower (2) at a speed (D1) for one low power level is running. This corresponds ideally Case - without the necessary by the control circuit (7) Readjustment - a control signal reference signal (J'1). At a higher speed (D2) for a larger one The power level results from the characteristic curve (K) (cf. Point II) corresponding to a reference signal (J'2). Between points I and II the characteristic (K) runs in essentially linear. But this does not necessarily have to be rather, it can also have a kinking curve. This is above and below the characteristic curve (K) Tolerance band with its upper tolerance limit (To) and its lower tolerance limit (Tu). Within the Tolerance limits are that of the control circuit (7) dominant control range. The tolerance band does not have to run symmetrically to the characteristic (K). It can vary the specific device properties also asymmetrical or even spread or according to special functions be defined.
  • the Correlator (22) no switch-off signal. Comes this value however at the speed (D1) or the speed (D2) or an intermediate speed outside the Tolerance band, then the shutdown signal is initiated.
  • gas burner (1) for a gas heater Gas line (3) connected in which a switchable and adjustable gas valve (4), for example solenoid valve, lies.
  • a switchable and adjustable gas valve (4) for example solenoid valve
  • At the gas burner (1) are an air connection (2 ') and possibly an air-promoting, speed-controllable Blower (2) arranged.
  • the blower (2) is not in everyone Case necessary; it can also be one act atmospheric gas burner.
  • Ionization electrode (5) One protrudes into the flame area of the gas burner (1) Ionization electrode (5).
  • Ionization electrode (5) On the ionization electrode (5) is a via a capacitive coupling element (27) AC voltage, preferably the mains AC voltage (U), activated.
  • the coupling element (27) consists of a Capacitor and a resistor.
  • the coupling link (27) is connected via a resistor (28), like the gas burner (1), electrically to earth.
  • a voltage divider (29) connected to the voltage that occurs, for example, reduced by a factor of 10. With the Voltage divider (29) is connected to a filter (210) the frequency of the coupled AC voltage (50 Hz) sieves.
  • ionization voltage Uio ionization voltage
  • the ionization signal inevitably fluctuates accordingly flickering flames (fluctuations in Flame intensity) around an average (M). in the Fluctuation curve occur weaker one after the other Fluctuations caused by the bandwidth (S1) in Figure 12 are indicated, and stronger fluctuations due to the bandwidth (S2) are shown in Figure 12.
  • FIG. 1 An example of a decreasing temporal is in FIG The course of the mean (M) is shown, which is at a change in the excess air (lambda value) of the the respective combustion process and the respective lambda value is proportional.
  • the output (213) of the first function block (212) is on second function block (214) downstream, the one around the mean (M) lying amplitude tolerance band generated, the width of which is denoted by B in FIG.
  • the tolerance range (B) is such that it is smaller than the smallest bandwidth (S1) Fluctuations.
  • the output (215) of the function block (214) is at one Comparator function block (216), on which the Exit (211) is.
  • the comparator function block (216) is on the output side. at a reset input of a Timer (217) which is based on a control device (218) for the gas valve (4) acts.
  • a control device (218) is common as a "burner control”.
  • Control device (218) only the output signal of the Timer (217) in a shutdown signal for the Convert the gas valve (4).
  • the comparator function block (216) constantly compares whether an amplitude fluctuation in the ionization signal (Ui) occurs that the amplitude tolerance band (B) over or falls below. Such an amplitude fluctuation occurs on, the comparator function block (216) inputs Reset signal to the timer (217).
  • the timer (217) is activated by each reset signal of the Comparator function blocks (216) set to zero and then starts counting again and again. Is that on Timer (217) preset duration, for example 5 s, has expired and is not in this period Reset signal occurred, then the timer (217) a gas shutdown signal to the controller (218) that then the gas valve (4) closes.
  • the said The time period is set in such a way that undisturbed burner operation an amplitude fluctuation of the Ionization signal occurs safely. To the It is also possible to avoid making the sensitivity too high be provided that the gas valve is only switched off if some, for example two or three Sequence of gas cut-off signals.
  • FIG. 11 there is an output (213) Control circuit (219 or 7), such as in the DE 44 33 425 A1 is described. With this it will Gas valve (4) and / or the blower (2) regulated so that different gas qualities and different environmental conditions Combustion at a desired lambda setpoint results.
  • the control circuit (219) and the components described (29 to 217) can be in a microcontroller or Realize microprocessor. The effort for that Safety flame monitoring is therefore low.
  • Figure 14 shows a further embodiment schematically.
  • Figure 11 corresponding parts are with the provided there reference numerals.
  • a modulator (220) connected to the gas valve (4) . This modulates the Gas supply to the gas burner (1) so that fluctuations in the Flame intensity result. Such deliberate fluctuations the flame intensity can also be achieved that the air supply, for example by means of the blower (2) (see Fig. 11), is specifically modulated.
  • the modulation can be continuous or periodic, for example every 5 s to 10 s during one in contrast, a short time, for example 1 s to 3 s, respectively.
  • periodic modulation ensures that over the burn time seen the Modulation has only a slight influence on the lambda value of the combustion process.
  • the control circuit (219 or 7) is not in FIG. 14 shown. You can also in this embodiment to be available. The control circuit works with one Microprocessor or microcontroller, then can also this embodiment, the function of the safety flame monitoring simply be integrated into it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Gas Burners (AREA)

Claims (17)

  1. Procédé pour le fonctionnement d'un brûleur à gaz, notamment d'un brûleur à gaz à soufflante (1), où est détecté par un dispositif de réglage (7) un signal d'ionisation (Ui) dérivé d'une électrode d'ionisation (5) disposée dans la zone de flamme et le rapport gaz-air (Lambda I) est réglé par une modification du flux volumique de gaz et/ou d'air amené au brûleur (1) à une valeur de consigne lambda >1 à laquelle correspond une valeur de consigne (Uis) du signal d'ionisation, caractérisé en ce qu'il est déterminé une zone de réglage autorisée (RB) du signal d'ionisation (Ui) dont la valeur limite supérieure (Uio) est plus petite que la valeur maximale (Uim) du signal d'ionisation (Ui), et dont la valeur limite inférieure (Uiu) assurant encore un fonctionnement pauvre en émission est au-dessus d'une valeur limite (Uie) à laquelle la combustion n'est plus pauvre en émission, et qu'il est produit par le dispositif de réglage (7) un signal de coupure pour le brûleur (1) lorsque le signal d'ionisation (Ui) quitte plus longtemps qu'une durée prédéterminée la zone de réglage autorisée (RB), et que lors du passage en dessous de la valeur limite inférieure (Uiu) du signal d'ionisation (Ui) et lors d'un passage en dessous de la valeur de consigne (Uis) du signal d'ionisation (Ui) à une valeur lambda <1, par suite du couplage du dispositif de réglage (7), le flux volumique de gaz est augmenté respectivement le flux volumique d'air est étranglé et cela jusqu'à la valeur finale (le respectivement Uie) à laquelle la combustion n'est plus pauvre en émission et à l'atteinte de laquelle est produit un signal de coupure additionnel par le dispositif de réglage (7) pour le brûleur (1).
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'après le signal de coupure, le dispositif de réglage (7) fait redémarrer le brûleur (1) et que, lorsqu'une telle coupure de réglage a lieu plusieurs fois successivement, le dispositif de réglage (7) procède à une coupure pour incident.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce qu'un organe de temps définissant la durée de temps prédéterminée est remis à l'état initial lorsque le signal d'ionisation (Ui) revient à l'intérieur de la durée prédéterminée dans la zone de réglage (RB).
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que la valeur finale est une valeur maximale et/ou une valeur minimale d'un signal de commande (J) pour la vanne magnétique de gaz (4).
  5. Procédé selon la revendication 4,
    caractérisé en ce que lors de l'atteinte de la valeur minimale du signal de commande (J) de la vanne magnétique de gaz (4), cela est détecté électroniquement et que le brûleur (1) est coupé par fermeture d'une vanne de gaz de sécurité (10).
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que lors d'un signal de démarrage pour le brûleur (1), le flux volumique de gaz est augmenté en forme de rampe lors d'une vitesse de rotation de soufflante constante jusqu'à ce que le brûleur s'allume, et en ce que le flux volumique de gaz est maintenu constant ensuite jusqu'à l'expiration d'un temps de sécurité prédéterminé (T).
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que lors de l'atteinte d'une valeur seule supérieure (J1) du signal de commande (J), le dispositif de réglage (7) commute à une valeur de consigne basse (Uisn) du signal d'ionisation (Ui) et ensuite, lors de l'atteinte d'une valeur seule inférieure (J2) du signal de commande (j) commute à la valeur de consigne antérieure (Uis) du signal d'ionisation (Ui).
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que le dispositif de réglage (7) commute à des intervalles réguliers à une opération de calibrage pour le signal d'ionisation (Ui).
  9. Procédé selon la revendication 8,
    caractérisé en ce que lors de chaque opération de calibrage, le signal de commande (J) pour la vanne magnétique de gaz (4) est d'abord amené à une valeur appropriée pour un préchauffage de l'électrode d'ionisation (5) et qu'ensuite, le signal de commande (J) est augmenté jusqu'à ce que la valeur maximale du signal d'ionisation (Ui) soit traversée, et la valeur obtenue est utilisée pour le calibrage.
  10. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'il est prévu pour la commande du brûleur à gaz (1) un dispositif automatique de commande (9) connu en tant que tel avec une vanne de sécurité (10) et un manostat (11), et en ce que le dispositif de réglage (7) commande une vanne magnétique de gaz (4) et que le signal de coupure produit par celui-ci est appliqué au dispositif automatique de commande (9).
  11. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'un dispositif automatique de commande (9) commande la vitesse de rotation de soufflante conformément à une valeur de consigne de puissance, et en ce qu'il est produit par un dispositif d'évaluation (18) à partir de la modification respective de la vitesse de rotation de soufflante une part de dérivation (dJ') pour le signal de commande (J), où la part de dérivation (dJ'), lorsque la vitesse de rotation de soufflante augmente, modifie le signal de commande (J) en direction d'un plus grand flux volumique de gaz et, lorsque la vitesse de rotation de soufflante diminue, en direction d'un plus petit flux volumique de gaz.
  12. Procédé selon la revendication 11,
    caractérisé en ce qu'il est défini autour d'une ligne caractéristique de puissance et d'un signal de commande une bande de tolérance et que, lorsqu'un signal de commande réel quitte la bande de tolérance, il est produit un signal de coupure pour le brûleur.
  13. Procédé selon l'une des revendications précédentes, pour la surveillance de sécurité de la flamme dans un brûleur à gaz (1) avec l'électrode d'ionisation (5) dans la zone des flammes, à partir de laquelle est dérivé pendant le fonctionnement du brûleur un signal d'ionisation (Ui),
    caractérisé en ce que sont surveillées pendant le fonctionnement du brûleur les oscillations résultant des vacillements de l'intensité de la flamme du signal d'ionisation (Ui) électrique dérivé de celle-ci et, lorsque de telles oscillations du signal d'ionisation (Ui) ne se produisent pas, un signal de coupure de gaz est émis.
  14. Procédé selon la revendication 13,
    caractérisé en ce que le signal d'ionisation (Ui) est également utilisé pour le réglage de la combustion à une valeur de consigne lambda (Is).
  15. Procédé selon la revendication 13 ou 14,
    caractérisé en ce que les oscillations surveillées sont des oscillations du signal d'ionisation (Ui) qui résultent d'une modulation imprégnée à l'amenée de gaz de combustion et/ou d'air de combustion.
  16. Procédé selon l'une des revendications précédentes 13 à 15,
    caractérisé en ce qu'un premier bloc de fonctionnement (12) supprime respectivement redresse les oscillations du signal d'ionisation (Ui), en ce qu'un deuxième bloc de fonctionnement (14) disposé en aval produit une bande de tolérance d'amplitudes (B) autour du signal de départ du premier bloc de fonctionnement (12), où la bande de tolérance d'amplitude (B) est dimensionnée de telle sorte qu'elle est plus petite que les oscillations d'amplitude se reproduisant toujours dans le signal d'ionisation (Ui), en ce que le signal de départ du deuxième bloc de fonctionnement (14) et le signal d'ionisation (Ui) contenant les oscillations sont appliqués à un bloc de fonctionnement de comparateur (16) qui émet alors un signal de remise à l'état initial à une horloge (17) lorsqu'une oscillation d'amplitude du signal d'ionisation (Ui) dépasse ou passe en dessous de la bande de tolérance d'amplitude (B), et en ce que l'horloge (17) lorsqu'elle ne reçoit pas après une durée de temps préréglée un signal de remise à l'état initial, déclenche alors le signal de coupure de gaz.
  17. Procédé selon la revendication 15,
    caractérisé en ce qu'il est disposé dans l'amenée de gaz de combustion et/ou d'air de combustion du brûleur à gaz (1) un modulateur (20) auquel est associé un démodulateur (21) pour le signal d'ionisation (Ui), qui déclenche le signal de coupure de gaz lorsqu'il ne reconnaít pas le signal de modulation.
EP97105850A 1996-05-09 1997-04-09 Procédé pour le fonctionnement d'un brûleur à gaz Expired - Lifetime EP0806610B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19618573A DE19618573C1 (de) 1996-05-09 1996-05-09 Verfahren und Einrichtung zum Betrieb eines Gasbrenners
DE19618573 1996-05-09
DE19627857 1996-07-11
DE19627857A DE19627857C2 (de) 1996-07-11 1996-07-11 Verfahren zum Betrieb eines Gasgebläsebrenners
DE19631821A DE19631821C2 (de) 1996-08-07 1996-08-07 Verfahren und Einrichtung zur Sicherheits-Flammenüberwachung bei einem Gasbrenner
DE19631821 1996-08-07

Publications (3)

Publication Number Publication Date
EP0806610A2 EP0806610A2 (fr) 1997-11-12
EP0806610A3 EP0806610A3 (fr) 1998-04-15
EP0806610B1 true EP0806610B1 (fr) 2001-07-04

Family

ID=27216215

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97105850A Expired - Lifetime EP0806610B1 (fr) 1996-05-09 1997-04-09 Procédé pour le fonctionnement d'un brûleur à gaz

Country Status (7)

Country Link
US (1) US5899683A (fr)
EP (1) EP0806610B1 (fr)
AT (1) ATE202837T1 (fr)
CA (1) CA2204689C (fr)
DE (1) DE59703939D1 (fr)
DK (1) DK0806610T3 (fr)
ES (1) ES2158400T3 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024763B3 (de) * 2005-05-31 2006-06-08 Stiebel Eltron Gmbh & Co. Kg Heizgerät und Verfahren zum Steuern eines Heizgerätes
DE102006006964A1 (de) * 2006-02-14 2007-08-23 Ebm-Papst Landshut Gmbh Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen
DE102008005216B3 (de) * 2008-01-18 2009-07-23 Honeywell Technologies Sarl Verfahren zum Betreiben eines Gasbrenners
US11231174B2 (en) 2017-03-27 2022-01-25 Siemens Aktiengesellschaft Detecting blockage of a duct of a burner assembly

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831648B4 (de) * 1998-07-15 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasheizgerät
DE69920158T2 (de) * 1999-02-03 2005-10-20 Riello S.P.A., Legnago Gas Regelanlage
DE19936696A1 (de) * 1999-08-04 2001-02-08 Ruhrgas Ag Verfahren zum Betreiben eines Vormischbrenners
US6299433B1 (en) * 1999-11-05 2001-10-09 Gas Research Institute Burner control
DE10003819C1 (de) * 2000-01-28 2001-05-17 Honeywell Bv Verfahren zum Betreiben eines Gasbrenners
DE10025769A1 (de) 2000-05-12 2001-11-15 Siemens Building Tech Ag Regeleinrichtung für einen Brenner
DE10040358B4 (de) * 2000-08-16 2006-03-30 Honeywell B.V. Regelungsverfahren für Gasbrenner
DE10113468A1 (de) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Regeleinrichtung für einen Luftzahlgeregelten Brenner
EP1191662B1 (fr) * 2000-09-21 2010-06-16 ABB Schweiz AG Configuration d'un système de contrôle d'une installation électrique
DE50105055D1 (de) * 2000-11-18 2005-02-17 Bbt Thermotechnik Gmbh Verfahren zur Regelung eines Gasbrenners
DE10057233C2 (de) * 2000-11-18 2003-04-10 Buderus Heiztechnik Gmbh Gasbrenner für ein Heizgerät
DE10125574A1 (de) * 2001-05-25 2002-11-28 Siemens Building Tech Ag Flammenüberwachungsvorrichtung
EP1304527B1 (fr) * 2001-10-18 2004-12-15 Honeywell B.V. Méthode de régulation d'un chauffe-eau
DE10214879A1 (de) * 2002-04-04 2003-10-16 Solo Kleinmotoren Gmbh Verfahren zur Überwachung eines Gasgeräts, insbesondere eines Wärmeerzeugers, mit überwiegend flammloser Oxidation und Überwachungsmodul zur Durchführung des Verfahrens
DE10322217B4 (de) * 2003-05-16 2005-03-10 Miele & Cie Einstelleinrichtung für ein Gaskochgerät und Gaskochgerät
DE10341543A1 (de) * 2003-09-09 2005-04-28 Honeywell Bv Regelungsverfahren für Gasbrenner
ES2376312T3 (es) * 2003-10-08 2012-03-12 Vaillant Gmbh Procedimiento para la regulación de un quemador de gas, particularmente en instalaciones de calefacción con ventilador.
DE102004055716C5 (de) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I)
DE102004058087A1 (de) * 2004-12-01 2006-06-08 G. Kromschröder AG Verfahren zum Brennerstart eines Gasheizgeräts
EP1741979A1 (fr) * 2005-07-05 2007-01-10 Betronic Design B.V. Système de surveillance de flammes
ITMO20050204A1 (it) 2005-08-02 2007-02-03 Merloni Termosanitari Spa Metodo di controllo della combustione a ricerca guidata del set point
US7051683B1 (en) 2005-08-17 2006-05-30 Aos Holding Company Gas heating device control
US9228746B2 (en) * 2006-05-31 2016-01-05 Aos Holding Company Heating device having a secondary safety circuit for a fuel line and method of operating the same
KR100805630B1 (ko) * 2006-12-01 2008-02-20 주식회사 경동나비엔 가스보일러의 연소장치
US8751173B1 (en) 2007-03-28 2014-06-10 LDARtools, Inc. Management of response to triggering events in connection with monitoring fugitive emissions
DK2020572T3 (da) * 2007-07-31 2013-04-08 Sit La Precisa Spa Automatisk indretning til tænding og regulering af et gasapparat og tilhørende fremgangsmåde til drift
US7927095B1 (en) * 2007-09-30 2011-04-19 The United States Of America As Represented By The United States Department Of Energy Time varying voltage combustion control and diagnostics sensor
US8274402B1 (en) 2008-01-24 2012-09-25 LDARtools, Inc. Data collection process for optical leak detection
NL1035791C2 (nl) * 2008-08-05 2009-06-10 Philip Emanuel Bosma Meetmethode welke door middel van een elektrische stroom via twee elektroden door een vlam heen kontroleert of de brander van een gasgestookt apparaat de brandstof daadwerkelijk verbrandt zodat deze na de ontsteking blijft branden.
DE102010008908B4 (de) * 2010-02-23 2018-12-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Brenners und zum Luftzahl-geregelten Modulieren einer Brennerleistung
DE102010046954B4 (de) * 2010-09-29 2012-04-12 Robert Bosch Gmbh Verfahren zur Kalibrierung, Validierung und Justierung einer Lambdasonde
US8587319B1 (en) * 2010-10-08 2013-11-19 LDARtools, Inc. Battery operated flame ionization detector
US8821154B2 (en) * 2010-11-09 2014-09-02 Purpose Company Limited Combustion apparatus and method for combustion control thereof
US9249988B2 (en) * 2010-11-24 2016-02-02 Grand Mate Co., Ted. Direct vent/power vent water heater and method of testing for safety thereof
AT510002B1 (de) * 2010-12-20 2012-01-15 Vaillant Group Austria Gmbh Verfahren zur regelung eines gas-/luftgemisches
DE102010055567B4 (de) * 2010-12-21 2012-08-02 Robert Bosch Gmbh Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
EP2667097B1 (fr) * 2012-05-24 2018-03-07 Honeywell Technologies Sarl Procédé de fonctionnement d'un brûleur à gaz
WO2020006212A1 (fr) 2018-06-28 2020-01-02 Clearsign Combustion Corporation Système de combustion comprenant un capteur de combustion et un générateur de plasma
EP3073195B1 (fr) * 2015-03-23 2019-05-08 Honeywell Technologies Sarl Procédé de calibration d'un brûleur à gaz
ITUB20152534A1 (it) * 2015-07-28 2017-01-28 Sit Spa Metodo per il monitoraggio e controllo della combustione in apparecchi bruciatori a gas combustibile e sistema di controllo della combustione operante in accordo con tale metodo
ITUB20159682A1 (it) * 2015-12-23 2017-06-23 Idea S P A Metodo e dispositivo di controllo della combustione di un bruciatore
EP3228936B1 (fr) 2016-04-07 2020-06-03 Honeywell Technologies Sarl Procédé de fonctionnement d'un appareil à brûleur à gaz
DE102016123041B4 (de) * 2016-11-29 2023-08-10 Webasto SE Brennstoffbetriebenes Fahrzeugheizgerät und Verfahren zum Betreiben eines brennstoffbetriebenen Fahrzeugheizgerätes
DE102016225752A1 (de) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Verfahren zur Kontrolle eines Brennstoff-Luft-Verhältnisses in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem
CN106907735B (zh) * 2017-02-22 2019-05-17 大唐国际发电股份有限公司陡河发电厂 200mw机组送风机和吸风机跳闸rb控制方法
US10948192B2 (en) * 2018-05-03 2021-03-16 Grand Mate Co., Ltd. Gas appliance and control method thereof
US10801722B2 (en) * 2018-07-16 2020-10-13 Emerson Electric Co. FFT flame monitoring for limit condition
DE102019107367A1 (de) * 2019-03-22 2020-09-24 Vaillant Gmbh Verfahren zum Prüfen des Vorhandenseins einer Rückschlagklappe in einer Heizungsanlage
DE102020102117A1 (de) * 2020-01-29 2021-07-29 Ebm-Papst Landshut Gmbh Verfahren zur Optimierung eines Toleranzbereichs einer Regelungskennlinie einer elektronischen Gemischregelung bei einem Gasheizgerät
CN116898296B (zh) * 2023-09-13 2023-12-15 广东万和电气有限公司 一种小火防风烤炉及点火方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD41519A (fr) *
US2324821A (en) * 1939-02-08 1943-07-20 Gen Electric Measuring and control method and apparatus
JPS56157725A (en) * 1980-05-07 1981-12-05 Hitachi Ltd Proportional combustion device
US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
DE3630177A1 (de) * 1986-09-04 1988-03-10 Ruhrgas Ag Verfahren zum betreiben von vormischbrennern und vorrichtung zum durchfuehren dieses verfahrens
FR2638819A1 (fr) * 1988-11-10 1990-05-11 Vaillant Sarl Procede et un dispositif pour la preparation d'un melange combustible-air destine a une combustion
US5049063A (en) * 1988-12-29 1991-09-17 Toyota Jidosha Kabushiki Kaisha Combustion control apparatus for burner
JPH03158918A (ja) * 1989-11-17 1991-07-08 Ricoh Co Ltd 電子フアイリング装置のカーソル制御装置
DE4309454C2 (de) * 1993-03-24 1997-03-06 Dungs Karl Gmbh & Co Ionisationsflammenwächter
GB9400289D0 (en) * 1994-01-08 1994-03-09 Carver & Co Eng Burner control apparatus
US5472337A (en) * 1994-09-12 1995-12-05 Guerra; Romeo E. Method and apparatus to detect a flame
DE4433425C2 (de) * 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024763B3 (de) * 2005-05-31 2006-06-08 Stiebel Eltron Gmbh & Co. Kg Heizgerät und Verfahren zum Steuern eines Heizgerätes
DE102006006964A1 (de) * 2006-02-14 2007-08-23 Ebm-Papst Landshut Gmbh Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen
DE102006006964B4 (de) * 2006-02-14 2012-09-06 Ebm-Papst Landshut Gmbh Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen
DE102008005216B3 (de) * 2008-01-18 2009-07-23 Honeywell Technologies Sarl Verfahren zum Betreiben eines Gasbrenners
US11231174B2 (en) 2017-03-27 2022-01-25 Siemens Aktiengesellschaft Detecting blockage of a duct of a burner assembly

Also Published As

Publication number Publication date
CA2204689C (fr) 2003-09-09
ATE202837T1 (de) 2001-07-15
EP0806610A2 (fr) 1997-11-12
DK0806610T3 (da) 2001-10-15
CA2204689A1 (fr) 1997-11-09
ES2158400T3 (es) 2001-09-01
US5899683A (en) 1999-05-04
DE59703939D1 (de) 2001-08-09
EP0806610A3 (fr) 1998-04-15

Similar Documents

Publication Publication Date Title
EP0806610B1 (fr) Procédé pour le fonctionnement d&#39;un brûleur à gaz
DE19618573C1 (de) Verfahren und Einrichtung zum Betrieb eines Gasbrenners
EP0770824B1 (fr) Procédé et circuit pour commander un brûleur à gaz
DE102010055567B4 (de) Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
DE19539568C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP1154202B2 (fr) Dispositif de commmande pour un brûleur
DE10113468A1 (de) Regeleinrichtung für einen Luftzahlgeregelten Brenner
DE19831648A1 (de) Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasgerät
DE19627857C2 (de) Verfahren zum Betrieb eines Gasgebläsebrenners
DE19839160B4 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP0614047B1 (fr) Dispositif électronique de commande et de réglage pour des brûleurs à gaz d&#39;installations de chauffage
EP2408272A2 (fr) Agencement de commutation et procédé de fonctionnement d&#39;au moins une lampe à décharge
DE4312801A1 (de) Verfahren zur Steuerung eines Gas-Gebläsebrenners
EP2843312A1 (fr) Procédé de détermination de l&#39;état de maintenance des electrodes d&#39;ionisation d&#39;une installation de chauffage
EP1843645B1 (fr) Circuit pour lampes à décharge haute pression
EP1207340A2 (fr) Procédé de réglage d&#39;un brûleur
DE19631821C2 (de) Verfahren und Einrichtung zur Sicherheits-Flammenüberwachung bei einem Gasbrenner
DE19501749C2 (de) Verfahren und Vorrichtung zum Steuern eines Gas-Gebläsebrenners
DE19601517B4 (de) Regelung eines Gasheizgeräts
EP0614051B1 (fr) Automate à brûleur
DE4038925C2 (fr)
DE10214879A1 (de) Verfahren zur Überwachung eines Gasgeräts, insbesondere eines Wärmeerzeugers, mit überwiegend flammloser Oxidation und Überwachungsmodul zur Durchführung des Verfahrens
DE10057233C2 (de) Gasbrenner für ein Heizgerät
DE19805801A1 (de) Lampen-Steuerschaltung
DE19726169C2 (de) Regeleinrichtung für einen Gasbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 970409;LV PAYMENT 970409;SI PAYMENT 970409

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 970409;LV PAYMENT 970409;SI PAYMENT 970409

17P Request for examination filed

Effective date: 19980429

17Q First examination report despatched

Effective date: 19991220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD FOR OPERATING A GAS BURNER

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 19970409;LV PAYMENT 19970409;SI PAYMENT 19970409

LTIE Lt: invalidation of european patent or patent extension
REF Corresponds to:

Ref document number: 202837

Country of ref document: AT

Date of ref document: 20010715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59703939

Country of ref document: DE

Date of ref document: 20010809

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158400

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010911

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59703939

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59703939

Country of ref document: DE

Effective date: 20150327

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20160422

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160420

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160421

Year of fee payment: 20

Ref country code: CH

Payment date: 20160420

Year of fee payment: 20

Ref country code: ES

Payment date: 20160413

Year of fee payment: 20

Ref country code: GB

Payment date: 20160421

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160421

Year of fee payment: 20

Ref country code: BE

Payment date: 20160420

Year of fee payment: 20

Ref country code: IT

Payment date: 20160427

Year of fee payment: 20

Ref country code: DK

Payment date: 20160420

Year of fee payment: 20

Ref country code: SE

Payment date: 20160420

Year of fee payment: 20

Ref country code: AT

Payment date: 20160421

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59703939

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20170409

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170408

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170408

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 202837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170410