EP0614047B1 - Dispositif électronique de commande et de réglage pour des brûleurs à gaz d'installations de chauffage - Google Patents

Dispositif électronique de commande et de réglage pour des brûleurs à gaz d'installations de chauffage Download PDF

Info

Publication number
EP0614047B1
EP0614047B1 EP93114750A EP93114750A EP0614047B1 EP 0614047 B1 EP0614047 B1 EP 0614047B1 EP 93114750 A EP93114750 A EP 93114750A EP 93114750 A EP93114750 A EP 93114750A EP 0614047 B1 EP0614047 B1 EP 0614047B1
Authority
EP
European Patent Office
Prior art keywords
burner
microcomputer
temperature
air pressure
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93114750A
Other languages
German (de)
English (en)
Other versions
EP0614047A1 (fr
Inventor
Anton Dipl.-Ing. Pallek (Fh)
Eckhard Dipl.-Ing. Schwendemann (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrowatt Technology Innovation AG
Original Assignee
Landis and Gyr Technology Innovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Technology Innovation AG filed Critical Landis and Gyr Technology Innovation AG
Publication of EP0614047A1 publication Critical patent/EP0614047A1/fr
Application granted granted Critical
Publication of EP0614047B1 publication Critical patent/EP0614047B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • F23N5/203Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/10Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught
    • F23N1/102Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/12Measuring temperature room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/13Measuring temperature outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/20Measuring temperature entrant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/04Prepurge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed

Definitions

  • the invention relates to an electronic control device for heating systems in the preamble of the claim 1 genus mentioned.
  • Such control devices are known as automatic firing devices known (Sarkowski, oil fire control technology, 1964).
  • the supply of air to the burner is controlled since the heating chamber must first be flushed with air.
  • the blower for the air is used in the known control device driven by a constant speed motor and the amount of air delivered per unit of time is determined by a Throttle valve controlled, which uses a microcomputer can.
  • An additional one is used for the actual heating operation Regulator used, which in turn a microcomputer can have.
  • valves for the Air on the one hand and for the fuel on the other To control motors each with an interface to one have associated logic circuits of two, which are connected to a microprocessor.
  • a gas-operated instantaneous water heater is also known (EP-A-73 717), in which a pilot flame must burn continuously.
  • a burner control system which includes a central microprocessor Input signals from temperature sensors, gas and water flow meters and receives a tachometer of the blower.
  • the invention has for its object such a device to simplify without the safety regulations be disregarded.
  • the microcomputer the burner control takes on additional tasks; its control signals serve both to control the burner start-up program of the burner control as well as for regulation in the heating phase of the temperature controller.
  • temperature monitor tasks can be fulfilled by the same institution:
  • the microcomputer or the one equipped with the microcomputer Device is provided with a signal generator that especially pulse width modulated, i.e. digital control signals generates which both a DC motor of the blower during the preparation phase in which the burner control has to fulfill its main task, as well as during the actual regular operation, i.e. in the heating phase, and thereby control the air supply to the burner.
  • the microcomputer or the one equipped with it To provide a facility with a comparator, which the Actual speed values of the DC motor or fan with in stored in memory, i.e. predetermined by a program Speed limit or setpoint values are compared. Dependent on The control signals depend on the type and / or size of the difference values triggered or influenced.
  • the Microcomputer or the device equipped with it also the Controller that affects the signal generator so that during the operating time of the burner depending on the burner output regulating parameters also control signals to the DC motor of the blower are delivered, which in turn are preferably pulse width modulated.
  • the speed of the fan is not regulated directly, which is why a separate control loop is unnecessary for the drive motor. Still finds one Correction of the speed etc.
  • blower motor is equipped with a specific power requirement Control signal applied to achieve a certain speed. If this was not achieved, then inevitably that would also be the case performance requirement in question not reached, so because of the remaining temperature control difference the power requirement is automatically increased.
  • the speed of the blower is in particular a Hall sensor as a speed sensor in the drive motor of the fan. If the fan speed exceeds a minimum speed and is also a minimum air pressure as a limit or setpoint on the burner, which is achieved by a pressure sensor can be determined, then the pre-rinse time can begin, in which the Microprocessor ensures that the blower runs at high speed runs to the boiler room and the fireplace well within a short time flush with air.
  • the invention also makes the use of direct speed control in the form of a separate control circuit unnecessary, as has already been stated.
  • a further simplification of the invention is made possible by the fact that the function of a temperature monitor is also integrated, which makes an external thermostat unnecessary.
  • the existing boiler sensor which determines the boiler water temperature T K , is used as an actual value transmitter for the monitor function. As a result, synergistic effects are achieved.
  • the Burner controls such as obtaining test results from Function tests and the output of ignition signals to the ignition electrodes the burner to use another microcomputer because of the smaller number or the smaller size of the tasks are chosen in a cheaper modification can.
  • This additional microcomputer then becomes the main microcomputer connected by data exchange lines.
  • the other The microcomputer can be provided with an automatic timer or work together to deliver control signals for a to interrupt or release a certain period of time.
  • the control device which is equipped with electronic components and is distributed, for example, on two printed circuit boards, is provided with a microcomputer MC, which both fulfills the functions of the burner control unit for burner B and also controls the temperature of the heating boiler HK as a function of the heat requirement.
  • a further smaller microcomputer MC1 can have a data exchange relationship with the microcomputer MC, which has an automatic time switch which enables the delivery of control signals, for example an ignition signal Z, for a specific period of time.
  • the flame sensor F F emits output signals both to the microcomputer MC and to the other microcomputer MC1 used for monitoring purposes.
  • a setting device "Settings” enables the programming of the microcomputer MC by entering data into the memory SP (EEPROM).
  • the microcomputer MC initiates, in particular, pulse-width-modulated control signals S ST in the signal generator SG, while the comparator V e compares the actual speed value n with the programmed speed setpoint values n TARGET in order to initiate corresponding functions in the event of deviations or undershoots, Carry out lockouts or prevent certain processes from starting.
  • a single signal generator SG is sufficient to generate and deliver the pulse-width-modulated control signals S ST , which are used both for controlling the start-up program, ie the preparation phase (in the function as an automatic burner control unit) and for regulating during burner operation (in the function as a temperature controller), ie in the heating phase.
  • the control signals S ST are supplied in both phases to the direct current motor M G of the fan G, which is located in the connecting line VL to the burner B and builds up the pressure P A of the supplied air A at the burner B.
  • The, sensed by the speed sensor F n, in particular a Hall sensor on the DC motor M G actual rotational speed values N are evaluated both in its function as a burner control as well as in the function as a controller.
  • the burner B (FIG. 2) is switched off due to the temperature monitor function as soon as the boiler water temperature T K reaches a maximum limit value TK max , as is shown schematically in FIG. 5 by the switch-off point of the monitor curve d.
  • the temperature monitor releases operation again as soon as the release point of the monitor curve c is reached.
  • the target temperature (setting value) for the boiler water temperature TK SOLL which can be set on the setpoint potentiometer , is plotted on the abscissa, while the switching point according to the actual value of the boiler water temperature T KIST is plotted on the ordinate.
  • the heating circuit pump When the temperature monitor responds in accordance with the monitor curve d, the heating circuit pump is switched on (burner B had already been switched off when the temperature rose before the control curve b was exceeded). The heating circuit pump now remains in operation until the guard curve c is undershot. After falling below the guard curve c, the controller R can take over the burner control again. The burner start is triggered immediately after the switch-on curve a. Commissioning by a two-point controller R takes place according to curve a and the decommissioning by two-point controller R according to curve b. When commissioned by the two-point controller R in accordance with the controller curve a, the burner B starts with full power, for example, because at that moment the control deviation between the setpoint and actual value reaches its maximum size.
  • the burner output can advantageously be reduced to 33 to 10% of the nominal output according to a selected degree of modulation 1: 3 to 1:10. It is thereby advantageously achieved that the burner B burns only at a low power at the moment of switching off given by the control curve b, so that an overshoot of the temperature turns out to be very small even if the heat requirement suddenly decreases. This reliably prevents the response of a safety temperature limiter present in such systems.
  • the flow water pump runs for the set time. If the temperature monitor switches off, the pump runs until the release temperature (c) is reached.
  • the watchdog function is also at switched off burner B active and also activates the pump due to "residual heat".
  • combustible fluid F flows via a feed line ZL to the burner B of a heating boiler HK.
  • the pressure of the fluid F is regulated by a valve V, in particular a pneumatic pressure regulator as a function of the air pressure P A on the burner, maW: the gas pressure P F is tracked to the air pressure P A , which is determined by the fan speed, ie the speed n of the DC motor M G is controlled, which in this example can be driven with 39 volts DC and can be set at speeds of up to 22 VA at speeds between approximately 200 and 6000 rpm.
  • the valve V could also be formed by a ratio regulator.
  • air A is conducted to burner B via the connecting line VL.
  • the air pressure P A in the connecting line VL is determined by the air pressure sensor F A. This does not necessarily output analog (corresponding to the actual air pressure P A ) output signals to the comparator Ve, but an air pressure present signal LP is sufficient when a specific air pressure setpoint or limit value P AG is reached in the connecting line VL. If this limit value P has not yet been reached, then no air pressure present signal LP occurs.
  • the air pressure P A can be adjusted by the speed of the fan G, which is driven, for example, by a 39 V DC motor M. The speed of which can be sensed as the actual speed value n ACT using a speed sensor F n , in particular the Hall sensor.
  • the temperature control and the preparation phase are controlled by the controller R.
  • this controls, for example, the air supply as a function of actual temperature values, for example the room temperature T R , the boiler temperature T K , the outside temperature T A and / or the flow temperature T V , which are fed to controller R via an analog-to-analog / digital converter A / D, where they are set in relation to setpoint values T RSOLL .
  • the controller R generates an output signal which corresponds to the speed setpoint n SET and is compared in the comparator V e with the actual speed value n ACT .
  • control unit St G is influenced, which in turn generates corresponding control signals S ST .
  • control signals S ST are, in particular, pulse width modulated digital signals and control the speeds of the direct current motor M G.
  • the pressure P F for the combustible fluid F is regulated here as a function of the air pressure P A by controlling the regulator drive V.
  • the controller part of the control device issues a start command to the burner control part thereof by the message "heat request" WA when the temperature T K in the process water circuit or in the heating circuit has dropped below a minimum value.
  • the direct current motor M G of the blower G is acted upon with, in particular, pulse-width-modulated control signals S, so that its speed n ACT increases to a maximum value as soon as an (adjustable) setpoint (speed setpoint n SET ) is reached and the air pressure detector F A closes its contact and emits an air pressure present signal LP.
  • the pre-rinse time tv begins. At this time, a certain air pressure P A is reached in the connecting line VL.
  • the automatic burner control can continue its function program when the required minimum values are reached. If the speed and / or the air pressure have not reached the predetermined limit value at the start of the pre-purge time tv (no LP available), a lockout occurs.
  • the speed n IST of the fan G should exceed a minimum value of, for example, 2400 rpm during the pre-purge time tv.
  • the speed of the fan G is reduced in accordance with lower pulse-width-modulated control signals S ST .
  • An ignition signal Z is then applied to an ignition unit of the burner B during the ignition time tz, for example to ignition electrodes thereof, while the fan G continues to run at a speed of, for example, 40% of the maximum speed, but does not exceed the maximum value of 2900 rpm in this example.
  • the valve in the supply line ZL opens, ie the adjusting unit V for the combustible fluid F, whereby the safety time ts begins, within which a flame signal must be detected by a flame sensor F F , otherwise the lockout occurs.
  • This safety time ts is, for example, up to 10 s, while the pre-rinsing time tv can be, for example, up to 50 s and the maximum braking time tbre is also of this order of magnitude.
  • the transition to the operating position takes place and the burner operating time tb begins, during which the fan speed n ACT in dependence on the pulse-width-modulated control signals S ST and this in turn in dependence on the output signals specified by controller R in one
  • the speed range can be regulated, which is between approximately 600 and 6000 rpm, as the maximum value specification and plausibility limit, while the maximum speed is typically 4000 rpm.
  • the burner operating time tb it is generally not necessary to monitor the air pressure, since the speed sensor Fn with its output signals regularly offers sufficient security.
  • the burner operation is set by the controller R at the time C by switching off the supply of combustible fluid F to the burner B by the setting element V.
  • the fan G can remain in operation in order to blow off combustion residues.
  • the fan speed n ACT is ramped up to full load (programmable), whereupon the home run follows as a regular transition to the standby phase.
  • FIG. 4 A particularly preferred variant of the invention, which also has its own inventive meaning is shown in FIG. 4 explains:
  • the microcomputer MC is connected via the resistor R to the flame sensor F F. If the signal emitted (or not emitted) by the flame sensor F F to the microcomputer MC does not match the value stored in the microcomputer MC, which expresses a malfunction, the microcomputer MC outputs an output signal to the control units SA and SA1, which in turn switch S and S1 in that process circuit P and, in the absence of a flame sensor signal that is necessary per se, the process in question, such as the introduction of gas into burner B, is interrupted.
  • the signal from the flame sensor F F is also passed in parallel to the branch leading via the resistor R to the microcomputer MC, namely via the further resistor R1 to the further microcomputer MC 1, which can, but does not have to, have a data exchange connection with the first microcomputer MC. If this additional microcomputer MC1 also detects a malfunction due to the absence (or occurrence) of output signals from the flame sensor F F , then it outputs an output signal to the control units SA and SA1, which in turn control further switches S and S1, which are connected in series Process circuit P, here a relay for the gas valve V, are. Normally, switch S1 also responds when switch S responds. If, however, an error occurs in one of the two shutdown circuits, the process circuit P is nevertheless shut down, specifically via the second shutdown circuit by means of the further switch S1. This parallel connection of two monitoring circuits therefore ensures increased security.
  • This security is based on a further embodiment of the invention then enlarged when the further microcomputer MC1 constructed differently, for example with other electronic ones Components is assembled and especially if it is different is programmed as the first microcomputer MC.
  • the further microcomputer MC1 constructed differently, for example with other electronic ones Components is assembled and especially if it is different is programmed as the first microcomputer MC.
  • An advantage of this integration of the electronic control device is that it is unnecessary to use a separate control device with the associated components on the one hand for the burner control and on the other hand for the temperature controller.
  • a single signal generator SG is sufficient to generate and deliver the pulse-width-modulated control signals S ST , which perform their task both for controlling the start-up program (in the function as an automatic burner control unit) and for regulating the temperature during burner operation (in the function as a controller).
  • the n sensed actual rpm values n IS the Hall speed sensor F are not only evaluated during the start-up program (function as automatic firing), but also during the regular burner operation to control and regulate.
  • the air pressure switch or sensor F A ensures that when the burner controls are operated, ie in the "start-up phase", sufficient air pressure is always built up for purging the burner chamber and chimney. If there is a great demand for heat during normal operation, e.g. by switching on additional radiators and tap water, which requires a high speed of the fan G and - depending on this - the gas pressure P F , then it is advisable to check the air pressure sensor F A if a certain one is exceeded Speed setpoint n SET .
  • Speed setpoint n SET During the operation of the temperature controller R, uz in modulating operation, the speed of the fan G can decrease so much with a low heat requirement that the air pressure sensor F A no longer responds. In this case, the use of an additional air pressure sensor could be recommended, which responds to lower air pressure corresponding to a lower fan speed.
  • One or the other air pressure sensor can then be used depending on the speed range.
  • the air pressure sensor F A also responds to the safety test, according to which there is a brief switch-off and restart at least once every 24 hours using the automatic burner control.
  • the temperature sensor for the boiler temperature T K which is integrated in the temperature monitor function, is connected to the analog / digital converter A / D via a circuit F consisting of a filter and a series resistor and via an input circuit E. which is at the entrance of the microcomputer MC or in this itself.
  • the connection point between the circuit F of filter and series resistor and the input circuit E of the analog / digital converter A / D is connected to ground on the one hand via a switch S4 and to voltage U with, for example, 5 V via another switch S3.
  • the microcomputer MC now carries out a rough test of the A / D conversion in that it closes the switch S3 one after the other, for example first, in order to close the voltage U of 5V and then, when the switch S3 is open again, the switch S4 to connect ground via the input circuit E to the analog / digital converter A / D.
  • the A / D conversion with regard to the correct choice of the A / D channel and with regard to the correct result must result in the A / D conversion result matching the known expected value (FF or 0).
  • the invention surprisingly achieves also a simplification of the function. So there is no need mutual interlocking separate construction units, because of Microcomputer does not follow commands from the controller as long as the Automatic burner control after a starting process (start-up phase) Program is running.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Claims (14)

  1. Dispositif de commande et de régulation électronique pour des installations de chauffage, comportant un brûleur (B),
    un moteur d'entraínement (MG) pour un ventilateur (G) d'amenée d'air pour le brûleur (B),
    un dispositif d'allumage pour le brûleur (B),
    un système automatique de commutation temporelle y compris un automate d'activation de chauffe, dans lequel au moins une durée prédéterminée de sécurité (ts) pour le programme de démarrage du brûleur est programmable, durée pendant laquelle certaines conditions du brûleur, pouvant être déterminées par exemple par un détecteur de flamme, doivent être satisfaites,
    un dispositif de production de signaux servant à produire des signaux de commande (SST) du moteur d'entraínement et des signaux de commande d'allumage (Z) en fonction de données de valeurs limites et de valeurs de consigne mémorisées dans un dispositif de mémoire et en fonction de données de valeurs réelles, déterminées par le capteur, et un régulateur de température (T) pour régler la température (TK) de l'eau d'une chaudière et/ou la température d'arrivée (TV) dans l'installation de chauffage pendant la phase de chauffage en fonction de paramètres tels que la température (TR) d'une pièce et la température extérieure (TA),
    caractérisé par
    l'intégration de l'automate d'activation de chauffe et du régulateur de température (T) pour former un dispositif électronique uniforme avec la disposition selon laquelle, dans le cas de l'utilisation d'un brûleur à gaz en tant que brûleur (B), un générateur de signaux (SG) d'un micro-ordinateur (MC) combiné au dispositif de mémoire, produit des signaux de commande (SST) aussi bien pour la commande du programme de démarrage du brûleur de l'automate d'activation de chauffe que pour la régulation pendant la phase de chauffage du régulateur de température (R), signaux de commande qui parviennent par l'intermédiaire d'une même interface (SS) au moteur d'entraínement (MG) du ventilateur (G) d'envoi d'air.
  2. Dispositif selon la revendication 1, caractérisé en ce que la puissance du moteur d'entraínement (MG) est commandable.
  3. Dispositif selon la revendication 1 ou 2, comportant un contrôleur de température servant à contrôler la température de l'eau de la chaudière, caractérisé en ce que le contrôleur de température est intégré avec l'automate d'activation de chauffe et le régulateur de température (T) pour former le dispositif électronique unitaire.
  4. Dispositif selon la revendication 3, caractérisé en ce
    que le signal de sortie du contrôleur de température intégré est dérivé du capteur de température, qui détecte la température (TK) de l'eau de la chaudière.
  5. Dispositif selon l'une des revendications précédentes, caractérisé en ce
    que le micro-ordinateur (MC) délivre des signaux de commande numériques (SST) modulés selon une modulation d'impulsions en durée au moteur d'entraínement (MG) agencé en tant que moteur à courant continu.
  6. Dispositif selon l'une des revendications précédentes, caractérisé en ce
    que le micro-ordinateur (MC) échange des données avec un autre micro-ordinateur (MC), qui assume des taches supplémentaires de contrôle d'un automate d'activation de chauffe.
  7. Dispositif selon la revendication 6, caractérisé en ce
    que l'autre micro-ordinateur (MC1) est également pourvu d'un système automatique de commutation temporelle, qui interrompt ou libère la délivrance de signaux de commande pendant un intervalle de temps déterminé.
  8. Dispositif selon la revendication 6 ou 7, caractérisé en ce
    que les deux micro-ordinateurs (MC et MC1) sont branchés en parallèle en ce qui concerne les circuits de contrôle utilisés par ces micro-ordinateurs de sorte qu'au moins l'un des micro-ordinateurs (MC, MC1) commande l'installation de chauffage dans un état sur dans le cas de la défaillance de l'autre circuit de contrôle ou de l'autre micro-ordinateur.
  9. Dispositif selon l'une des revendications précédentes, caractérisé en ce
    qu'un régulateur de pression (V) règle la pression (PF) d'un fluide combustible (F), qui est envoyé par l'intermédiaire d'une canalisation d'amenée (ZL) jusqu'au brûleur (B) d'une chaudière (HK), en fonction de la pression d'air (PA).
  10. Dispositif selon l'une des revendications précédentes, caractérisé en ce que
    le micro-ordinateur (MC) possède un comparateur (Ve) et un régulateur (R) et que le comparateur (Ve) compare les valeurs réelles (nIST) du ventilateur (G), produites par un capteur de vitesse de rotation (Fn), à des valeurs limites ou à des valeurs de consigne (nSOLL) de la vitesse de rotation, mémorisées dans la mémoire (SP) et déclenche ou influence des signaux de commande (SST) en fonction du type et/ou de la grandeur des valeurs de différence.
  11. Dispositif selon l'une des revendications précédentes, caractérisé en ce
    qu'un capteur de Hall est utilisé en tant que capteur (Fn) de la vitesse de rotation.
  12. Dispositif selon l'une des revendications précédentes, caractérisé en ce
    que le micro-ordinateur (MC) compare des valeurs (PAG, LP) de pression d'air, détectées par un capteur (FA) de la pression d'air, dans la canalisation de liaison (VL) entre le ventilateur (G) et le brûleur (B) à une valeur limite mémorisée (P'AG) de la pression d'air et déclenche le débranchement en cas de perturbation ou empêche le démarrage en fonction du type et/ou de la grandeur de la valeur de différence.
  13. Dispositif de commande selon la revendication 12, caractérisé en ce
    qu'une interrogation du capteur (MA) de la pression d'air, qui agit en tant que contrôleur de la pression d'air, s'effectue lorsque la valeur de consigne réelle (nSOLL) de la vitesse de rotation est supérieure, pendant une durée déterminée, à une certaine valeur de consigne prédéterminée (nSOLL) de la vitesse de rotation en tant qu'indication d'une demande élevée de chaleur (WA).
  14. Dispositif selon l'une des revendications 6 à 13, caractérisé en ce
    que l'autre micro-ordinateur (MC1) est constitué et programmé différemment du premier micro-ordinateur (MC) et que le premier micro-ordinateur (MC) assume les tâches de contrôle et commande des interrupteurs (S,S1) branchés en série dans le circuit considéré de traitement (P).
EP93114750A 1993-03-05 1993-09-14 Dispositif électronique de commande et de réglage pour des brûleurs à gaz d'installations de chauffage Expired - Lifetime EP0614047B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH662/93 1993-03-05
CH66293 1993-03-05

Publications (2)

Publication Number Publication Date
EP0614047A1 EP0614047A1 (fr) 1994-09-07
EP0614047B1 true EP0614047B1 (fr) 1999-01-13

Family

ID=4192216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114750A Expired - Lifetime EP0614047B1 (fr) 1993-03-05 1993-09-14 Dispositif électronique de commande et de réglage pour des brûleurs à gaz d'installations de chauffage

Country Status (2)

Country Link
EP (1) EP0614047B1 (fr)
DE (2) DE9310458U1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518445A1 (de) * 1995-05-19 1996-11-21 Meissner & Wurst Reinraumanlage
KR100295087B1 (ko) * 1995-09-27 2001-09-17 전주범 가스보일러의역풍감지방법
DE19633317A1 (de) * 1996-08-19 1998-02-26 Kromschroeder Ag G Regelanordnung für einen Brenner
DE19860399A1 (de) * 1998-12-28 2000-07-06 Bosch Gmbh Robert Steuereinrichtung für einen Brenner
DE10159033B4 (de) * 2000-12-01 2012-08-16 Vaillant Gmbh Regelungsverfahren für Heizungsgeräte
US6536678B2 (en) 2000-12-15 2003-03-25 Honeywell International Inc. Boiler control system and method
DE10148642B4 (de) * 2001-10-02 2006-04-27 Robert Seuffer Gmbh & Co. Kg Kochherd mit einer Bedieneinheit zum Bedienen wenigstens einer von einem Gasbrenner beheizten Kochstelle
DE50308404D1 (de) * 2003-03-24 2007-11-29 Siemens Schweiz Ag Vorrichtung zur Temperaturregelung/-begrenzung für eine Wärmeerzeugungsanlage
DE102004013971B4 (de) * 2004-03-19 2008-07-17 Rational Ag Brennereinrichtung für ein Gargerät und Gargerät mit solch einer Brennereinrichtung
US7819334B2 (en) 2004-03-25 2010-10-26 Honeywell International Inc. Multi-stage boiler staging and modulation control methods and controllers
US8251297B2 (en) 2004-04-16 2012-08-28 Honeywell International Inc. Multi-stage boiler system control methods and devices
US11175040B2 (en) 2016-02-19 2021-11-16 Haldor Topsøe A/S Over firing protection of combustion unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315053A1 (fr) * 1987-11-06 1989-05-10 Joh. Vaillant GmbH u. Co. Automate de brûleur
EP0480312A1 (fr) * 1990-10-10 1992-04-15 Honeywell B.V. Dispositif de sécurité de courant d'air pour des brûleurs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348169A (en) 1978-05-24 1982-09-07 Land Combustion Limited Control of burners
FR2512179A1 (fr) * 1981-08-27 1983-03-04 Sdecc Chaudiere a gaz etanche a tirage force avec regulation par microprocesseur
JPS63169421A (ja) * 1986-12-27 1988-07-13 Isuzu Motors Ltd 暖房器の燃焼制御装置
JPS63318417A (ja) * 1987-06-19 1988-12-27 Matsushita Electric Ind Co Ltd 強制給排気式暖房機の制御装置
JPS6484020A (en) * 1987-09-26 1989-03-29 Noritz Corp Combustion control device
JPH01252819A (ja) * 1988-03-30 1989-10-09 Harman Co Ltd 燃焼装置
JPH01302027A (ja) * 1988-05-31 1989-12-06 Rinnai Corp 燃焼制御装置
JPH0221123A (ja) * 1988-07-11 1990-01-24 Matsushita Electric Ind Co Ltd 給湯器の制御装置
JP2688071B2 (ja) * 1988-08-26 1997-12-08 松下電器産業株式会社 送風機の制御装置
DE4007699A1 (de) * 1990-03-10 1991-09-12 Hella Kg Hueck & Co Mit brennstoff gespeiste zusatz-heizeinrichtung fuer kraftfahrzeuge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315053A1 (fr) * 1987-11-06 1989-05-10 Joh. Vaillant GmbH u. Co. Automate de brûleur
EP0480312A1 (fr) * 1990-10-10 1992-04-15 Honeywell B.V. Dispositif de sécurité de courant d'air pour des brûleurs

Also Published As

Publication number Publication date
DE9310458U1 (de) 1994-06-30
EP0614047A1 (fr) 1994-09-07
DE59309307D1 (de) 1999-02-25

Similar Documents

Publication Publication Date Title
EP0614046A1 (fr) Dispositif de commande et réglage pour des automates à brûleur à gaz d'installations de chauffage
EP0614047B1 (fr) Dispositif électronique de commande et de réglage pour des brûleurs à gaz d'installations de chauffage
EP0806610B1 (fr) Procédé pour le fonctionnement d'un brûleur à gaz
DE19618573C1 (de) Verfahren und Einrichtung zum Betrieb eines Gasbrenners
EP0275439B1 (fr) Dispositif de régulation de puissance de générateurs de chaleur à carburant
EP0030736A2 (fr) Appareil de régulation de la quantité d'air de combustion pour un brûleur
EP0770824A2 (fr) Procédé et circuit pour commander un brûleur à gaz
DE3638410C2 (fr)
DE3243922C2 (de) Verfahren zum Regeln des Luftströmungsdurchsatzes eines Gebläses
WO2014040874A1 (fr) Procédé de commande d'une pompe de recirculation dans une installation comportant au moins deux circuits de recirculation
DE19627857C2 (de) Verfahren zum Betrieb eines Gasgebläsebrenners
DE60021779T2 (de) Ein modulierendes Brennersystem zur Verhinderung der Benutzung von nicht-inbetriebgesetzten Bauelementen und Prüfung der Funktionsfähigkeit von inbetriebgesetzten Bauelementen
EP1650502A2 (fr) Procédé et dispositif pour le calibrage d'un appareil de chauffage
EP0615095B1 (fr) Commande de brûleur
EP1207340B1 (fr) Procédé de réglage d'un brûleur
EP3754258A1 (fr) Procédé de détection d'erreur dans un dispositif de guidage de fluide
EP0614048A1 (fr) Dispositif avec un automate à brûleur
EP0614051B1 (fr) Automate à brûleur
EP0352217B1 (fr) Méthode de commande et de surveillance d'un appareil chauffé au fuel par l'utilisation d'au moins un système à micro-ordinateur et dispositif d'exécution de cette méthode
DE19601517A1 (de) Regelung eines Gasheizgeräts
EP3680553B1 (fr) Procédé de régulation du rapport d'air de combustion sur le brûleur d'un appareil de chauffage
EP0890790B1 (fr) Dispositif de commande, notamment un automate à brûleur, pour un brûleur à air soufflé
DE19511366B4 (de) Verfahren zur Steuerung einer Heizungsanlage
EP0384959B1 (fr) Régulateur pour un brûleur non modulant
DE19545987A1 (de) Vorrichtung zum Schutz eines Triebwerks vor Überdrehzahlen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19940927

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANDIS & GYR TECHNOLOGY INNOVATION AG

17Q First examination report despatched

Effective date: 19960117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990113

REF Corresponds to:

Ref document number: 59309307

Country of ref document: DE

Date of ref document: 19990225

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: LANDIS & GYR TECHNOLOGY INNOVATION AG TRANSFER- SIEMENS BUILDING TECHNOLOGIES AG C-IPR

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59309307

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59309307

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: LANDIS & GYR TECHNOLOGY INNOVATION AG, ZUG, CH

Effective date: 20110804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120917

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121002

Year of fee payment: 20

Ref country code: IT

Payment date: 20120927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121119

Year of fee payment: 20

Ref country code: CH

Payment date: 20121210

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120911

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130704 AND 20130710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59309307

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130913

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029

Ref country code: FR

Ref legal event code: CD

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029